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Preface

Science has developed progressively from the late nineteenth century to the twentieth
century and, without stopping, has continuously been evolving through the twenty first
century to explore new technologies in various fields. These new technologies give us their
benefits with the result that our standard of living is improving. However, negative aspects
behind their application to economic development, such as public pollution and global
warming etc., have accompanied them and lead to the destruction of the natural environ-
ment in some cases. Reconstruction of environmental conditions at a global level is the
biggest problem to be solved by us and, therefore, as scientists we should always keep in
mind the mission for the next generation.

There are without exception the same pressures on the field of chemistry. Synthetic
organic chemistry especially has grown quickly through the design of new intelligent
reagents and the discovery of innovative andwidely applicable reactionmethods.Now, total
synthesis of target compounds with an even more complex structure can be formally
achieved by the skilful combination of conventional and new methods; there is strong
competition between research groups throughout the world to do this.

In spite of the large contribution of chemistry to the improvement in our standard of
living, the negative and dangerous image of chemistry has been spread in human society
because of destructive damage, such as big explosions in chemical factories in some cases.
Therefore, chemistry should progress with the creation of a comfortable world in harmony
with nature.

High efficiency based on environmentally benign concepts is strongly required of
synthetic organic chemistry in twenty first century. The efficiency involves not only a
short reaction process and higher yield in each step, but also lower energy costs and reaction
with less waste (high atom economy), and of course from the economical aspect the
selection of cheap and easily available materials for the reaction sequence. An important
mission of organic chemistry in twenty first century is the establishment of new sustainable
chemistry and, in order to achieve the mission, the efficient and repeated use of limited
resources is essential. Thus, various types of new recyclable catalysts with high potency
have been extensively explored. Organosuperbases are one compound group of promising
catalysts in organic chemistry because of their easy molecular modification, possible
recyclability, and non or lower toxicity.

Recently, nitrogen-containing organobases, such as guanidines and amidines, have been
attracting much attention in organic synthesis due to their potential functionality. It is
known that nitrogen–phosphorus hybrid organobases such as phosphazenes show stronger
basicity than the nitrogen bases. This book will review the multi-functional ability of these
organosuperbases and related molecules in organic synthesis and will discuss their possible



perspective as intelligent molecules. I am very happy if this book is able to give a hint in
research activity to organic chemists who are interested in organobase catalysts.

I am responsible for this book as editor. Thus, please do not to hesitate to contact me
benti@p.chiba-u.ac.jp with any questions.

Tsutomu Ishikawa
Chiba Japan, June 2008
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1

General Aspects of Organosuperbases

Tsutomu Ishikawa

Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi,
Inage, Chiba 263-8522, Japan

In the field of organic chemistry, a base is generally defined as a reagent capable of
abstracting proton to yield a carbanion species. At a basic textbook level, organobases are
normally limited to amines, which are categorized as very weak bases according to the
above definition. The introduction of an imine function (¼NH) to the a-carbon of amines
affords more basic amine species, amidines, which correspond structurally to amine
equivalents of carboxylic esters (carboxylic acid imidates). Guanidines, which carry three
nitrogen functions (one amine and two imines) and correspond to amine equivalents of
ortho esters (carbonimidic diamides), show the strongest Brønsted basicity among these
amine derivatives [1]. Thus, basicity is proportional to the number of the substituted
nitrogen functions at the same carbon atom; representative examples are shown in
Figure 1.1. The basicity of guanidine is comparable to the hydroxyl ion (OH�) [2]. Basic
amino acids, lysine and arginine, have amino and guanidine groups, respectively, at the side
chains as additional functional groups and can act as base catalysts responsible for
important biological actions, such as enzymatic reactions in living organisms, through
hydrogen bonding networks caused by these basic characters [3]. On the other hand,
histidine belongings to an acidic amino acid in spite of carrying an imidazole ring involving
an amidine function as a partial structure [4].

The basicity of these amine derivatives is due to the construction of highly effective
conjugation system after protonation under reversible conditions; primitively, it is a
reflection of the number of canonical forms, especially isoelectronic forms, in the
resonance system (Figure 1.2). This is one of the reasons why guanidines are stronger
bases than amidines [5].

Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts
Edited by Tsutomu Ishikawa © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-51800-7



Thus, a pentacyclic amidine (vinamidine) [6] and biguanide [7] with a vinylogous
conjugation system show very strong basicity [8], as expected by the above account
(Figure 1.3).

An alternative stabilization effect on the protonation to these two bases leading to their
highly potential basicity is through bidentate-type hydrogen bond formation as shown in
Figure 1.4. Alder also discussed the effects of molecular strain on the Brønsted basicity of
amines [9].

In 1985, Schwesinger [10] introduced phosphazenes (triaminoiminophosphorane ske-
letons), which contain a phosphorus atom [P(V)] bonded to four nitrogen functions of three
amine and one imine substituents, as organobases containing a phosphorus atom. They are
classified as Pn bases, based on the number (n) of phosphorus atoms in the molecule [11].
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The examples of simple P1 and P4 bases are shown in Figure 1.5. Their basicity is basically
reflected by the number of the triaminoiminophosphorane units and, thus, P4 bases, the
strongest phosphazene bases, show basicity comparable to organolithium compounds.
Schwesinger et al. [12] reported that the strong basicity of phosphazene bases could be
caused by the efficient distribution of positive charge through conjugation system in the
molecules. However, crystallographic analysis indicates a tetrahedral-like structure around
the phosphorus atom in solid state. Phosphazene bases are easily soluble in common organic
solvents and stable to not only hydrolysis but also attack by electrophiles owing to their
steric bulk [13].
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Verkade [14] discovered proazaphosphatranes (cycloazaphosphines) as alternative
phosphorus-containing organobases, in which a P(III) atom bonded to three amino groups
is located at the bridge head. The basicity of Verkade�s bases is comparable to those of P2-
type phosphazene bases. The corresponding phosphonium salts formed by protonation on
the phosphorus atom are stabilized through effective trans-annular N�P bond formation, to
which the fourth nitrogen atom located at the alternative bridge head position participates;
this result in propellane-type compounds with tricylo[3.3.3]dodecane skeletons, as shown
in Figure 1.6.

In 1968, Alder [15] reported the preparation of 1,8-bis(dimethylamino)naphthalene
(DMAN) by N-methylation of 1,8-diaminonaphthalene. DMAN shows exceptional proton
affinity through bidentate-type coordination by the two dimethylamino groups located at
peri position of the naphthalene skeleton, in spite of being categorized as a weakly basic
aromatic amine (Figure 1.7). Thus, DMAN is called a �proton sponge�.

1,8-Bis(tetramethylguanidino)naphthalene (TMGN) [16] and guanidinophosphazenes
[17], such as tris[bis(dimethylamino)methylene]amino-N-tert-butylaminophosphorane
[(tmg)3N

tBu], are designed as hybrid organobases by the introduction of the guanidine
function into the proton sponge and phosphazene skeletons, respectively (Figure 1.8).

P
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Verkade's base
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P+ NHHN
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Figure 1.6 Typical structure of Verkade�s base and its basicity due to trans-annular P–N
formation
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Figure 1.8 Examples of hybrid organobases
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Computational calculation of their proton affinities indicates that these newgenerations are,
as expected, stronger than the original ones [12,18].

Organic chemists often use the words �strong� or �super� as the intensive expression of
basic property; however, the criteria are ambiguous and dependent upon the chemists who
use the expression. Therefore, the expression such as �strong� or �super� is ambiguous and
causes confusion among organic chemists. Caub�ere has proposed the definition of
superbases as follows in his excellent review [19]: The term �superbases� should only be
applied to bases resulting from amixing of two (or more) bases leading to new basic species
possessing inherent new properties. The term �superbase� does not mean a base is
thermodynamically and/or kinetically stronger than another, instead it means that a basic
reagent is created by combining the characteristics of several different bases. The general
equation for the definition of a �superbase� is illustrated in Scheme 1.1, in which the
examples of �unimetal superbase� introduced by Caub�ere and a �multimetal superbase� by
Schlosser [20] are given. Thus, the term superbases in general applies to ionic metal-
containing bases acting under irreversible proton abstraction.

One of important and beneficial characteristics of an organic base, especially from the
view point of environmental aspects, is the ability of recycling use in repeated reaction, in
which reversible proton transfer occurs between the base and a substrate, an acidic
counterpart. Thus, powerful organic bases that may be applicable in various organic
syntheses as base catalysts have attracted much attention. According to Caub�ere�s defini-
tion, organic superbases should be amixture of two ormore different kinds of amine species
and show a new property. In this book nonionic powerful amine derivatives of amidines,
guanidines, phosphazenes andVerkade�s bases with comparable or higher basicity to that of
DMANare arbitrarily classified as organic superbases and discussed on their chemistry due
to basic characteristics, mainly focusing on their applications to organic synthesis as
potentially recyclable base catalysts. Related intelligent molecules are also discussed.
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2.1 Introduction

From the physical-organic point of view, the most interesting physico-chemical property of
neutral organosuperbases is their exceptional basicity associated with high kinetic activity
in proton exchange reactions. Because of their high basicity and relatively weak nucleo-
philicity, these nonionic compounds have found wide application as catalysts for organic
reactions. By definition [1] the superbases are stronger bases than a �proton sponge� [1,8-bis
(dimethylamino)naphthalene: DMAN], that is, they have an absolute proton affinity (APA)
larger than 245.3 kcal mol�1 and a gas phase basicity (GB) over 239 kcalmol�1.

The basicity of organic molecules can be measured by various physical methods, in gas
phase or condensed media experiments, or calculated by quantum chemical methods.
Several solvents, including dimethyl sulfoxide (DMSO), acetonitrile (MeCN), and tetra-
hydrofuran (THF), have found wide application as media for studies of strong bases.
Acetonitrile has been the most popular solvent and a vast number of basicity measurements
in acetonitrile have been carried out. Nevertheless, various reference bases have been used
for gas phasemeasurements. Hence, a variety of results obtained by different authors and by
different methods has been collected in this review. Material collected in tables has been
arranged in descending order of basicity. A number of other organobases approaching a
superbasicity threshold have been alsomeasured; however, due to limitations in space here,
thesemolecules have been omitted. This review is divided according to the chemical classes
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of bases, and starts with the proton sponges, then gradually moves to stronger groups. In
addition, superbases predicted by calculation have been included,with a separate section on
quantum chemical methods used for basicity estimation and the study of superbases.

2.2 Proton Sponges

2.2.1 ‘Classical’ Proton Sponges

Proton sponges (PS) are organic diamines with unusually high basicity. The exceptional
basicity of the very first proton sponge, DMAN (1) was reported by Alder in 1968 [2]. This
compound has a basicity about 10 million times higher (pKa¼ 12.1 in water) than other
similar organic amines (its experimentally measured proton affinity (PA) in the gas phase is
246.2 [3], while the calculated value [4] is 246.5 and 258.7 kcalmol�1, using 6-31G*//6-
31GþZPE and 6-31G methods). Proton sponges and their complexes have attracted
considerable interest from chemists, giving rise to over 70 structural and 100 spectroscopic
papers (Table 2.1) [5]. The name proton sponge is given because of the high thermodynamic
basicity combined with a kinetic inactivity to deprotonation that resembles the affinity of a
sponge for water.

The general feature of all proton sponges is the presence of two basic nitrogen centres in
the molecule, which have an orientation that allows the uptake of one proton to yield a
stabilized intramolecular hydrogen bond (IMHB). A dramatic increase in basicity of
aromatic proton sponge can be achieved on account of: destabilization of the base as a
consequence of strong repulsion of unshared electron pairs; formation of an IMHB in the
protonated form; and relief from steric strain upon protonation [6]. Two general concepts to
raise the thermodynamic basicity or PA are established. One is to replace the naphthalene
skeleton by other aromatic spacers, thus influencing the basicity by varying the nonbonding
N. . .N distances of the proton-acceptor pairs. The other concept focuses on the variation of
basic nitrogen centres or its adjacent environment (�buttressing effect�).

The trend that proton sponges with high thermodynamic basicity typically have a low
kinetic basicity (kinetic activity in proton exchange reactions) is a serious limitation of
proton sponges: the captured proton does not usually take part in rapid proton exchange
reactions, whichwould allow such neutral superbases to serve as catalysts in base-catalysed
reactions. Their further limitations are moderate solubility in aprotic nonpolar solvents and
stability towards auto-oxidation.

From a physical organic point of view, there is continuing debate about whether the
enhanced basicity in proton sponges is due mainly to strain relief on protonation, or to the
special properties of the hydrogen bonds in their monoprotonated ions.

Experimental and theoretical studies have shed light on the structural factors that
influence the high basicity of proton sponges. Their abnormally high basicity is accepted
to be produced by various contributions: the effective PA for one of the amine groups
(assuming asymmetric protonation at one nitrogen); the relief of strain (possibly also
accompanied by an increase in aromatic stability) caused by loss of destabilizing lone pair–
lone pair repulsion on protonation; the formation of a hydrogen bond which stabilizes the
protonated species; the difference in solvation energies of the base and protonated cation in
solution.
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Table 2.1 Experimentally determined pKa values of the conjugated acids
of naphthalene-type proton sponges [8]

Me2N NMe2

R2R1

R6R5

R3 R4 Me2N NMe2

2 5
1: R1 = R2 = H

3: R1 = NMe2, R2 = H

4: R1 = R2 = NMe2

Compound R3 R4 R5 R6 pKa (solvent)

1 12.00; 12.03; 12.34
(H2O); 12.10 (30% DMSO/H2O)
18.28; 18.18 (MeCN);
7.47 (DMSO); 16.8 (THF); 11.5
(20% dioxane)

2 NEt2 NEt2 H H 18.95 (MeCN); 12.7
(20% dioxane)

NMe2 NMe2 OMe OMe 16.1 (35% DMSO/H2O); 16.3
(H2O); 11.5 (DMSO) [10]

NEt2 NEt2 OMe OMe 16.6 (H2O)

NN MeMe H H 13.6 (30% DMSO)

NN MeMe H H 13.0 (30% DMSO)

NN MeMe

O
H H 12.9 (30% DMSO)

CH2NMe2 CH2NMe2 H H 18.26 (MeCN)
NMe2 NMeEt H H 18.5 (MeCN)
NEt2 NMe2 H H 18.7 (MeCN)
NMeEt NMeEt H H 18.7 (MeCN)
NEt2 NMeEt H H 18.9 (MeCN)
NMe2 NMe2 NH2 H 10.3 (MeCN)
NMe2 NMe2 NMe2 H 9.0 (MeCN)
NMe2 NMe2 NMe2 NMe2 11.2 [10]; 15.8 [11] (DMSO)
NMe2 NMe2 Me Me 9.8 (DMSO) [10]
NMe2 NMe2 SMe SMe 8.1 (DMSO) [10]
NMe2 NMe2 pyrra pyrra 15.5 (DMSO) [11]

3 8.0 (DMSO)
4 9.8 [12]; 14.4 [11] (DMSO) [13]
5 7.7 (DMSO) [12]; 18.3

(MeCN) [12]

a Pyrrolidinyl.
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It was shown that the IMHBand the solvation energies in the protonated forms could each
increase the basicity by 2–4 pKa units. The lone pair repulsion was found to be able to
increase the pKa values by up to six pKa units. Protonation and IMHB reduce steric
deformation to the neutralmolecule due to repulsion of lone electron pairs of nitrogen atoms
of the nearby alkyl groups. Structures particularly favourable for forming an almost linear
and, therefore, strong IMHB between nitrogen atoms on protonation (N�Hþ. . .N around
175�) are more stabilized. The structural parameters of the IMHB obtained for twenty
proton sponges show: the N. . .N distances are 2.717–2.792A

�
[7], while protonated proton

sponges generally haveN. . .N,N–Hþ andN. . .Hþ distances of 2.541–2.881, 0.86–0.92 and
1.376–1.580A

�
, respectively, and N–Hþ. . .N angles between 150 and 180�. The strength of

the IMHB calculated for proton sponges is in the range of 16–21.5 kcal mol�1 [9].
Detailed study by Pozharskii [12] has shown that the so-called �buttressing effect�

represents the complex combination of various interactions of ortho substituents with
dimethylamino groups in corresponding bases and cations. Basicity is determined by
interplay of several factors among which are: the polar effect of ortho substituents
(electron-releasing substituents increase basicity); electrostatic repulsion between lone
electron pairs of the dimethylamino (N(CH3)2) groups (considered as one of the leading
in increasing the basicity); reduction of conjugation between peri-N(CH3)2 groups and the
naphthalene system (may enhance the basicity by 1.2 pKa); increase of the p-character of the
nitrogen lone pairs (enhances the basicity of nitrogen atom); increase of the IMHBstrength in
the cation; decrease of steric strain in the cation (strain decrease on protonation increases
basicity); p,d-interaction of theN(CH3)2 groupswithd-elements of suchortho-substituents as
SCH3, Si(CH3)3 and bromine (slightly reduces basicity); and changes in solvation caused by
substituents (hydrophobicgroups inhibit solvation of the cation and thus exert some reduction
in basicity, while hydrophilic groups favour solvation and bring some increase in pKa).

Several authors have pointed out the importance of the extent of the p-character of the
lone electron pairs of nitrogen and of the distortion of the n,p-conjugation (Korzhenevskaya
et al.). Flattening of the nearby NR2 groups (planarization caused by sp3! sp2 rehybri-
dization) increases their mutual repulsion, which is supplemented by the Coulomb
repulsion due to high charge density on the nitrogen atoms, so that the neutral molecule
of the proton sponge is structurally destabilized. The consequence of considerable twisting
of the N(CH3)2 groups out of the ring plane is loss of conjugation between the NR2 and
naphthalene p-system, which is initially reduced bythe larger sp2 character of the nitrogen
(N) atom. Both effects provide an essential increase in basicity [14]. The protonation of the
proton sponge leads to sp2! sp3 rehybridization of the nitrogen atomic orbitals (AOs).
Repulsion becomes considerably weaker, the N. . .N distance shortens, while strong
attractive interaction appear, which is favoured by formation of the N�Hþ. . .N hydrogen
bond due to the high p-character of lone electron pair of the unprotonated nitrogen atom. At
the same time, sp2! sp3 rehybridization enhances p-conjugation and stabilization of the
protonated system.

2.2.2 Proton Sponges with Other Aromatic Backbones

After the discovery of DMAN (1), the search started for other, more basic proton sponges
possessing aromatic backbones with optimal, even shorter N. . .N distances to form
N�Hþ. . .N bridges with the optimal linear geometry. Staab has found that fluorene series

12 Physico-Chemical Properties of Organosuperbases



are stronger bases than DMAN (1), with a pKa value of 12.8 units for 4,5-bis(dimethy-
lamino)fluorene (7) (measured in 35% DMSO/H2O) [15] (Table 2.2). It was found that in
this molecule the reduction in N. . .N distance upon protonation is more important for the
increase in basicity, that is, the strength of the N�Hþ. . .N bond, than the N. . .N distance in
the neutral proton sponge [16]. 4,5-Bis(diethylamino)-9,9-diethylfluorene (8) was found to
be an even stronger base, as well as a cyclic derivative 9. The basicity of the corresponding
heterocycles dibenzothiophene 10, dibenzoselenophanes 11 and 12 are between that of
fluorene 7 and DMAN (1). Although the N. . .N distances are predicted to be shorter than
fluorene 7, extreme steric strain due to the interactions between N(CH3)2 groups causes a
deviation from planarity of the aromatic moiety, as evidenced by X-ray crystallography,
with an energy increase of protonated species. Biphenyl structures 14–15 are more
conformationally flexible and sterically less strained. Thus, the destabilizing interactions
of lone pairs are minimized, but the preconditions of forming a stable, nearly linear
hydrogen bridge are reflected in smaller pKa values. Proton sponges with a phenanthrene
structure 16 and 17 have shorter N. . .Ndistances than inDMAN (1) and fluorene 7. Because
of the larger steric strain, the N–Hþ. . .N hydrogen bridge is compressed beyond the
energetically optimal N. . .N distance. There is noticeable bending of peripheral aromatic
rings by 36�, making them nonplanar aromatics. Furthermore, the 9,10-dichloro derivative
17 shows a reduction in pKa due to the inductive effect of the chlorine substituents. As a
consequence, compounds 16 and 17 show lower basicity than DMAN (1).

Incorporation of a dialkylamino group of proton sponge into an aromatic ring such as in
quino[7.8-h]quinoline (18) results in an increase in basicity [18,19]. In contrast to

Table 2.2 Experimentally determined pKa values of aromatic proton sponges

X

NMe2Me2N NEt2Et2N

Et Et

NMeMeN

O

NMeMe2N

7: X = CH2

10: X = S 
11: X = Se
13: X = CH2CH2

14: X = 2 x H
15: X = CH2OCH2

16: X = CH=CH
17: X = CCl=CCl

8
9

12

NN NN

18 19

Compound pKa (solvent) Compound pKa (solvent)

7 12.8 (35% DMSO/H2O) 14 7.9 (DMSO)
8 13.6 (60% DMSO/H2O) 15 9.4 (DMSO)
9 14.1 [17] (60% DMSO/H2O) 16 11.5 (DMSO)
10 11.9 (DMSO) 17 10.4 (DMSO)
11 11.8 (DMSO) 18 12.8 (DMSO)
12 12.3 (DMSO) 19 10.3 (DMSO)
13 10.9 (DMSO)
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naphthalene proton sponges, 18 lacks hydrophobic shielding of the basic centres and thus of
the hydrogen bond in the monoprotonated cation, which was responsible for the low rate of
proton transfer. Therefore, this kinetically active base is stronger than quinoline by 8 pKa

units. A quinoline derivative of 16, benzo[1,2-h:4,3-h0]diquinoline [20] (19), has a helical
deviation of the planar arrangement of aromatic rings, but the N. . .N distance of 2.705A

�
is

almost identical to DMAN (1) (2.728A
�
). Due to lack of conformational flexibility,

protonation exchange experiments showed lower basicity than 16.
Superbasic properties have been predicted byBucher [21] for a series of bases possessing

the syn-tris-8-quinolylborane framework. Density functional theory (DFT) calculations
employing the B3LYP/6-311þG(d,p)//B3LYP/6-31G(d) and IPCM/B3LYP/6-31G(d)
methods indicate a dramatic increase in the basicity of 20–22 possessing three quinoline
nitrogen lone pairs, with additional bridging forcing the nitrogen lone pairs into close
proximity. In particular, 21 is predicted to showa basicity approaching that of themost basic
known neutral nitrogen bases [PA 268.1 kcalmol�1, pKa 30.2 (MeCN)], while a smaller PA
was calculated for 22 due to the lower flexibility of the benzoquinolines (Figure 2.1).

2.2.3 Polycyclic Proton Sponges

Further extension of the proton sponge concept by anchoring two nitrogen atoms closely in
a rigid framework and functionalizing them with substituents has led to the design of a
variety of molecular frameworks, which differ from the classical proton sponge framework
consisting of condensed phenyl rings. For instance, superbasic properties have been found
for bispidines (3,7-diazabicyclo[3.3.1]nonanes) 23–25 by Toom [22] (Figure 2.2). Their
respective, spectrophotometrically determined pKa values in acetonitrile are 21.25, 21.38
and 21.66 units. Previously a considerably lower pKa of 17.50 was determined for (�)-
sparteine in acetonitrile, which might be explained by the presence of moisture that would
generate a levelling effect. Measurements in water gave pKa¼ 11.96 for 25, while its gas
phase determined GB is 243.4 kcalmol�1 [23]. Calculations indicate that the dominant
basicity-increasing factor in bispidines 23–25 is the nature and strength of the IMHB.

Structurally related, superbasic proton sponges have been designed by Estrada [24]. A
minimal framework was provided by the structures of 3,6,7,8-tetraazatricyclo[3.1.1.12,4]
octane (26) and 4,8,9,10-tetraazatricyclo[5.1.1.13,5]decane (30). These molecules, posses-
sing two pairs of nitrogen atoms fixed in a configuration where two nitrogen atoms are in

NN

B

N

NNN

N

B

NN

B

N

22
21

20

Figure 2.1 Structures of C3-symmetric organic base quinolines 20–22
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close proximity, are predicted to have pKa values in water larger by 5–11 units than DMAN
(IPCM/B3PW91/6-311þþG** level), with tetraalkylated 29 the largest. Their extreme
basicity is ascribed to atypically shortN. . .Ndistances (average 2.4A

�
, while proton sponges

have on average 2.5 A
�
).

The endo,endo-8,11-disubstituted pentacyclo[5.4.0.02,6.03,10.05,9]undecanes 32–34 and
the tetracyclo derivatives 35 ensure that nitrogen lone pairs of electrons are in close
proximity, and the rigid framework of the polycyclic cage guarantees acid–base properties
similar to those of a proton sponge [25]. Amine functionalization with alkyl substituents,
imines and guanidines, in the line of Sundermeyer and Maksi�c�s work on 1,8-bis(tetra-
methylguanidino)naphthalene (TMGN) and 1,8-bis(hexamethyltriaminophosphazenyl)
naphthalene (HMPN) proton sponges, leads to high basicity. Based on DFT computations,
32–34 are predicted to have gas phase PAs higher than DMAN (1) and approaching the
TMGN. Compound 34 has the highest PA value among all the aliphatic proton sponges
reported (282.7 kcalmol�1, B3LYP/6-311þG**//B3LYP/6-31G*) (Figure 2.3).

The tetracyclic framework of 11,12-diazasesquinorbornane 36 (n¼ 1) is another poly-
cyclic proton sponge system forcing the nitrogen lone pairs of electrons to be present in
close proximity. The rigid skeleton leads to basicity properties that are similar to those of the
DMAN (1), which are partially the consequence of the multiple IMHB stabilization in poly
(7-azanorbornane) systems 36 [26]. Furthermore, DFT calculations of the parent tetracyclic
compound 37 (which is endo-substituted by electron donor groups) have predicted gas
phase PAs that exceed that of the DMAN (1) by as much as 18.1 kcal mol�1 for 39 [27] and
equal some of the higher PAvalues reported for aliphatic proton sponges (at the B3LYP/6-
311þG**//B3LYP/6-31G* level). Furthermore, superbasic proton sponges 38 and 39 are
predicted to have a high kinetic activity, with the low-energy proton-transfer barriers (1.2
and 0.86 kcalmol�1, respectively, at theB3LYP/6-311þG** level).Unsaturation in 40 and

NN
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R1
R1

R1 R1

R2
R2

R2

R2

NN

NN

R1
R1

R1 R1
R

R
H

H
R

R
H

H

26: R1

: R1

: R1

 = R2 = H
27: R1 = Me, R2 = H
28 = H, R2 = Me 
29 = R2 = Me

30: R1 = H
31: R1 = Me

32: R = NMe2

33: R = N=CMe2

34: R = N=C(NMe2)2

35
R = NMe2, N=CMe2, N=C(NMe2)2

Figure 2.3 Structures of polycyclic amines 26–35
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Figure 2.2 Structures of bispidines 23–25
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41 has a minor effect on PAs, while bulkier endo substituents enhance basicity, presumably
due to the buttressing effect, by forcing the NCH3 groups to be closer to each other, which
increases the lone pair repulsions and, thus, destabilizes the base (Figure 2.4).

Potentiometric titration of azatriquineamine trimer 42 [28] in acetonitrile gave a pKa

value of 25.1, which is considerably higher than 1.8-diazabicycloundec-7-ene (DBU)
(23.9) and close to phosphazenes. The enhanced basicity of 42 is due to enforced
pyramidalization of the apical nitrogen atom in rigid tricycle, together with a tweezer-
like structure. Calculations indicate that its protonated form has a strong IMHBwith almost
ideal geometrical parameters (N. . .N distance 2.75A

�
, and N�Hþ. . .N angle 177�),

contributing to its pronounced superbasicity (Figure 2.5).
Nitrogen bridgehead cyclic polyamines are another structural class of molecules in

which interaction between lone pair electrons is dictated by the carbon framework. Many
polyamines in which two or more nitrogen atoms lie in close proximity show increased
basicity, some of them larger than DMAN (1).

In 1988 Alder reported that the alicyclic diamine 43 was a slightly stronger base than 2
(R3¼R4¼N(CH3)2, R

5¼R6¼OCH3) in DMSO (pKa¼ 11.9) [29]. The 1,6-diazacyclo-
decane framework provides an ideal geometry for a trans-annular hydrogen bond, but there
is not much strain relief when 43 is protonated, since the nitrogen lone pairs in the free base
are accommodated on opposite sides of a relatively strain-free conformation. Following this
work, by use of DFT calculations, Alder designed new, chiral diamines with high pKa

values, in which strain relief on monoprotonation is the main cause of the extreme
thermodynamic basicity [30]. A more tightly constrained structure than 43 is that of
44: the calculated PAof 44 ismuch higher than that of 43, due to strain relief on protonation;

N

H H

N
H

N
H

H

42

Figure 2.5 Structures of azatriquineamine trimer 42
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39: X=Et

40: X=H
41: X=Me

36 (n=1–4)

n

Figure 2.4 Structures of polycyclic polyamines 36–41
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theoretical PA values are 257.6 (250.2 [31]) and 250 kcalmol�1, respectively, while
aqueous pKa values are estimated to be 21.0 (44) and 15.8 (43). However, deprotonation
experiments have shown that 44 is ineffective as a base, because the inside proton can be
neither inserted nor removed by conventional proton transfers [32]. A very low energy
barrier for proton transfer between the nitrogen atoms contributes to the high thermody-
namic stability of inside protonated 44 [33]. Calculations show that strain in 45 is not
effectively relieved by protonation, since the calculated PA is only a little higher than that
for 43. Diamines 46 and 47 are quite flexible, and are able to achieve relatively strain-free
conformations. The calculated PAs of 46 and 47 are 253.3 and 243.3 kcalmol�1, presum-
ably due to the electron-withdrawing acetal groups. Diamines 48 and 49, in which each
nitrogen atom is built into a bicyclic framework, retain enough conformational freedom to
allow one of the lone pairs to interact with external hydrogen bond donors. Their calculated
PAs are 268.6 and 265.8 kcal mol�1, respectively, making them stronger bases than 44,
since the hydrogen bond in protonated 44 (44Hþ) is shorter than ideal. There is greater
strain relief when 48 and 49 are protonated than in the case of 44. The C�N�C angles in 48
average 109.8�, thus signifying perfect sp3 hybridization. Tricyclic diamines 50 and 51 are
only slightly weaker bases than 49. For the C2-symmetrical bis tertiary diamine 52 [34] it
was found that the proton is buried in the core, leaving a hydrophobic surface. Tertiary
amine 52 is more basic than DBU in acetonitrile (pKa¼ 24.7) (Figure 2.6).

Bell [35] has developed a series of triamines 53–55which show enhanced basicities. The
pKa values in water for 53, 55 and 54 are >13.5, 13.1 and 12.8, respectively, due to the
exceptional stability of rapidly protonated 53 obtained by strain relief [36]. Cooperation
between all three nitrogen atoms of a triamine in stabilization of a single proton increases
the pKa, as evidenced from the crystal structure of 55Hþ, where three nitrogen atoms are
participating almost equally in a hydrogen-bonded network. The strength of the hydrogen
bond of 6.2 kcalmol�1 was estimated from dynamic NMR for 55 (Figure 2.7).

Meyer investigated the physico-chemical properties of the tripyrollydinyl-1,4,7-triaza-
cyclononane system 56 [37]. Triamine 56 has a sterically favourable disposition of the three
nitrogen lone pairs towards an electrophilic centre, leading to the high Brønsted basicity in
aqueous solution (pKa¼ 12.8). Due to an effective stabilization of the positive charge, the
PA is up to 20 kcal mol�1, higher than the values of noncyclic tertiary aliphatic amines, as
estimated by experiment and MP2/6-31þG*//MP2/6-31þG* calculations. The stabiliz-
ing effect is an energy-lowering interaction between the lone pairs of both the unprotonated
nitrogen atoms with the positive charge of the ammonium group via hydrogen bridges
(Figure 2.7).

Macrocyclic cryptates 57–61 behave as superbasic fast-equilibrating PS due to their
flexibility (Figure 2.8). For instance, bicyclo[6.6.2] tetraamine 57 (cross-bridged cyclam) is
capable of adopting conformations having all four nitrogen lone pairs pointing towards
the cavity centre. The acid dissociation constant for 57Hþ is larger than 13.5 in water,
and the pKa¼ 24.9 in acetonitrile, which is a comparable basicity to DBU (24.32 in
acetonitrile) [38].

Cage-adamanzanes such as [3]6adamanzane 58 capture a proton, which in solution
rapidly shuttles between all four nitrogen atoms. All the nitrogen lone pairs in the polyaza
cage were pointed inward toward the cation, so the complex enjoys both thermodynamic
and kinetic stability [39]. As reported by Springborg, these cryptate species are so
kinetically resistant to deprotonation that it survives in the presence of strong bases and
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even alkali metal solutions in ammonia and amines, so the pKa values for protonated cages
remains unknown [40].A common feature for outside protonated adamanzanes is the strong
basicity of the free amines. In several cases monoprotonated adamanzanes have a pKa

between 13 and 15 units (in water), while the pKa ofN,N
0-dimethyl[23.32.21]adamanzane is

measured to be 24.9 (acetonitrile), acting as a superbasic proton sponge. The remarkably
increased basicity is explained by a hydrogen bonding stabilization of the monoprotonated
species between the two bridgehead nitrogen atoms. When the distance between the two
bridgehead nitrogen atoms becomes larger, it results in a weakening of the hydrogen
bonding stabilization and a concomitant decrease in the base strength, as supported by the
B3LYP/6-31þG**//HF/6-31G** calculations [41].

A number of other medium ring di- and polyamines have been found to have enhanced
basicities. For instance, Lehn�s [1.1.1]cryptand 59has an estimated pKa inwater of 17.8 [42]
for the internal protonation, while the externally protonation has a much smaller pKa value.
The rates of the proton transfer in and out of the cavity are very slow, the internally
protonated species cannot be deprotonated unless the cage is destroyed, making it a
thermodynamically very strong and kinetically extremely slow base. Variations on the
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53: R = H
54: R = Me

Figure 2.7 Structures of polycyclic polyamines 53–56
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cryptand structure developed by the Ciampolini and Micheloni groups, such as 60 and 61,
are kinetically much more active [43]. Their respective pKa values in water are>14, while
pKað60ÞH2O=DMSO ¼ 14:8. Protonation of 60 at the secondary nitrogen atom gives IMHB,
which is stabilized by interactions with bridgehead atoms. The specially pre-organized
structural array of six hydrogen bonds makes the structure particularly stable from a
thermodynamic point of view, albeit no single hydrogen bond is particularly strong,
accounting for its fast protonation/deprotonation kinetics (Figure 2.8).

The substitution of nitrogen for oxygen greatly increases the proton affinity of aza-18-
crown-6 ether (62) relative to 18-crown-6; it was detected to be 250 kcal mol�1 by the
kinetic method. This unusually high basicity is rationalized by a highly symmetrical
structure for protonated 62 in which the three most distant oxygen atoms are able to fold
back and simultaneously hydrogen bond with the protonated nitrogen [44] (Figure 2.8).

2.3 Amidines

Formamidines are iminoamines built from two nitrogen-containing functionalities, one
imine and one amine. Until recently, amidines and guanidines were generally considered
the strongest synthetically useful auxiliary bases. Their high basicity is the effect of
resonance-stabilized cations. A number of amidine bases are well established reagents in
organic synthesis, the strongest of them that are commercially available are 1,5-diazabi-
cyclo[4.3.0]non-5-ene (DBN) and DBU.

Basicity measurements of a great number of amidines have been conducted, both in
solution and more recently in the gas phase. It was established that the basicity of amidines
depends on the extent and type of substitution at three sites: at the amino and imino nitrogen
atoms and at the functional carbon atom. Since the protonation occurs at the imino nitrogen
atom, substitution at this site has the largest influence on the pKa value of amidines,
followed by the substitution at the functional carbon [45]. The pKa values of alkyl-N-
substituted amidines measured in ethanol are presented in Table 2.3. Since these sub-
stituents show identical electronic effects, pKas are quite uniform along the series, and the
values indicate a modest superbasicity at the lower part of the superbasicity scale.

As shown by Koppel, solution basicity of amidines could be increased to some extent by
OCH3 and NCH3 groups positioned at the end of an alkyl chain [47] (Table 2.4). Here, the

Table 2.3 pKa values of amidines (in 98.5% EtOH) [46]

Rsssssssssssssssssssssssss

Me2N

N

H

R

Me2N

N

Me

R

Me2N

N

Et

R

Me2N

N

i-Pr

R

iPr 12.56 12.20 12.26
cyclohexyl 12.55 12.20 12.26
nPr 12.22 12.46 12.20 12.26
nhexyl 12.37 12.11 11.95
nBu 12.34 12.13 12.22
iBu 12.30 11.96 11.93
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additional lone pair of the 3-aminoethyl (or 3-methoxyethyl) chain enhances the basicity by
stabilization of the conjugate acid (by chelation of the proton and IMHB).

The influence of incorporating an amidine moiety into cyclic structures has also been
studied. Simple bicyclic amidines such as DBN and DBU have larger pKas, compared to
alycyclic amidines (Table 2.5). Five-membered amidine DBN is weaker base compared to

Table 2.4 pKa values of amidines with (hetero)ethyl chain

R2
N

NH

R4
N

R1 R3

R1 R2 R3 R4 pKa (DMSO) pKa (H2O)

H H H H 11.6 13.6
H Me H H 11.4 13.6
H H Me H 12.0 13.4
H H Me Me 12.0 13.4
Tos H H H 10.8 13.3
Tos Me H H 11.5 13.3
Tos H Me H 11.9 13.3
Tos H Me Me 11.2 12.8

Table 2.5 pKa values for cyclic amidines

N

N

DBN

N

N

DBU
N

NH
N

N

N

N

N N

R
R

R
R

N

N

N R

N

N
H

N

N

N

N HN
N

N

63

N

N

N

N

N N

65: R=H
66: R=Me 68: R=H

69: R=Me64

67 70

Base pKa (MeCN) pKa (DMSO) pKa (H2O) pKa (THF) pKa (MeCN)
(calcd [49])

70 31.94 31.4
69 30.03
68 29.51 29.8
66 26.95 27.1
65 26.22
67 25.18
64 13–14
DBU 24.33 13.9 16.9 (17.5)
63 24.0
DBN 23.79
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six- and seven-membered rings, which is associated with smaller ring strain. The strongest
base is DBU, having values close to guanidines. Furthermore, it was found that in water
dihydrodiazepine 64 has high basicity, the pKa value range is 13–14 units, due to the
possession of a stable vinamidinium moiety in the conjugate acid [48]. X-ray crystallo-
graphic study showed the extensive p-electron delocalization in the vinamidinium portion
of the molecule, with stabilization energy of about 19 kcal mol�1.

Schwesinger found a dramatic increase in pKa by fusion of a five-membered cyclic
amidine with a vinamidine moiety, which was additionally attached to a 1,3-imidazolidine
ring in 65 [50]. The cation of 65 is planar and has an effective conjugation, which is crucial
for effective aromatic stabilization. Joining together two 65 moieties, tricyclic 2,4-
diaminovinamidine proton sponges 68 and 69 of extraordinary basicity have been prepared
[their pKa(MeCN) are 30.03 and 29.51, respectively] [51]. In such a molecular system,
destabilizing lone pair interactions of the chelate forming nitrogen atoms are diminished by
protonation, nitrogen atoms come closer in the protonated form (the N. . .N distance of
2.54A

�
indicates strong IMHB), and pronounced conjugation. Vinamidine proton sponge 67

has slightly less pronounced basicity. The introduction of an additional double bond in 68
gives themost basic vinamidine 70 [52]. Calculations of pKa (MeCN) values for 66, 68, and
70 by IPCM-B3LYP/6-311þG**//HF/6-31G* method by Kova�cevi�c and Maksi�c [49]
have revealed the importance of enlargement of the p-system and aromatic stabilization
upon protonation.

Comparisons of solution and gas phase proton transfer thermodynamic data by
Raczy�nska shed some light on the role played by solvation on amidine basicity. The gas
phase basicity and proton affinity values collected in Table 2.6 indicate identical basicity
order, as established previously by solution basicity measurements (Tables 2.3–2.5). The
following order of gas phase basicities could be established: GBP1phosphazene>GBVIN>
GBAAMs>GBGuanidine>GBCAM>GBDBU>GBAMs>GBFAMs>GBBAMs>GBEAMs.
Vinamidines 66 and 65 are by far the strongest bases containing imidine functionality.

As observed, an increase in the number of amino groups in the molecule has an
exceptionally strong influence on the gas phase basicity. The large set of investigated
compounds allows some additional comparisons to be made. For simple alkyl amidine
derivatives, the basicity in series increases with the polarizability of alkyl groups [56].
Alkylation of the imino nitrogen by increasingly larger groups increases their basicity
(1-adamantyl group being the largest, compound 72). This alkylation effect at the imino
nitrogen is estimated to be �8.4 kcal mol�1 [57].

The influence of the aryl substitution for derivatives bearing the aryl group at the
functional carbon depends on the electronic nature of the aryl substituent. Smaller basicity
is measured than for acetamidines. Bicyclic amidines show larger basicity, compared to the
most of simple alkyl derivatives, with the gas phase basicities in the following order:
DBU>DBD> PMDBD>DBN> 74. DBU has the largest gas phase basicity value of
243.4 kcalmol�1. Five-membered ring amidines display smaller basicity than six- and
seven-membered cyclic amidines.

Respectable strength has been observed by gas phase basicity and PA measurements for
acyclic derivatives containing the dimethylaminopropyl, dimethylaminoethyl and meth-
oxyethyl groups at the imino nitrogen; however, these compounds exhibit rather slow
proton transfer rates. The PAvalue of 71 is 256.7 kcalmol�1, indicating that 71 is a stronger
base than TBD andDBU. These groups induce a strong increase in basicity in the following
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order: (CH2)3N(CH3)2> (CH2)2N(CH3)2> (CH2)2OCH3. The basicity increase is associ-
ated with the formation of the resonance-assisted strong IMHB. The exceptionally high
basicity of 71 suggests that both basic sites participate in themonoprotonation reaction.One
site binds the proton and the other one interacts with the protonated function. The chelation
of a proton in flexible bidentate nitrogen ligands increases the gas phase basicity value by 5–
20 kcal mol�1 in comparison to monodentate bases. Strong basicity was also observed for
the flexible polyfunctional (2-pyridylethyl)-formamidine 73 (GB¼ 241.1 kcal mol�1)
[58]. The separation of the two basic sites in 71 (and 74) by the alkane chain increases
the chelation effect against the proton. The size of IMHB effect depends on the strength
of the basic sites that can chelate the proton and the geometry of monocations, which
favours the formation of the IMHB. Direct azinyl substitution on the imino nitrogen in
formamidines, leads to proton chelation and IMHB, similar to 74. However, gas phase
basicity values are below the superbasicity threshold, due to less effective cation stabiliza-
tion by n-p conjugation of the amidine with aza groups [59].

Table 2.6 Gas phase basicities of amidine derivatives [53,54]

PMDBDbDBDa 74

R1 RN 2

N
R3

N

N

NN
H

Me

Me

Me

Me

Me N

H
N

amidine
2

Base R1 R2 R3 Typec GB GBd PA

65 VIN >258 278.0e

66 VIN 254.85
71 Me Me (CH2)3NMe2 AAM 246.1 242.9 256.7
72 Me Me 1-Ad AAM 244.0 240.4 248.2
DBU CAM 243.4 239.7 247.5
DBD CAM 242.5
amidine Me Et t-Bu AM 242.15 238.6 246.4
amidine Me H (CH2)3NMe2 FAM 241.7 238.0 251.7
PMDBD CAM 241.15 237.6 251.7
73 Me H (CH2)2N(2-py)2

f FAM 241.1
DBN CAM 241.0 237.4 245.1
amidine Et Me n-Pr EAM 240.75 237.3 245.0
amidine Me Me (CH2)2OMe AAM 240.55 236.9 248.3
amidine Me Ph Me BAM 239.7 236.2 244.0
amidine Me H 1-Ad FAM 239.6 236.2 244.0
amidine Me Me i-Pr AAM 239.4 235.8 243.5
amidine Me Ph Ph BAM 235.5
74 CAM 233.65
amidine Me H Me FAM 232.0

a 1,5-Diazabicyclo[4.4.0]dec-5-ene.
bPMDBD¼ 3,3,6,9,9-pentamethyl-2,10-diazabicyclo- [4.4.0]dec-1-ene.
cVIN¼ vinamidine, FAM¼ formamidine, AAM¼ acetamidine, AM¼ amidine, BAM¼benzamidine, EAM¼ Et2N-
acetamidine; CAM¼ cyclic amidine.
dRe-evaluated values with different reference base.
eB3LYP/6-31G* gas phase value [55].
fpy¼pyridyl.
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Functionally related to amidines are iminoamines, in which imino and amino func-
tionalities are placed at the termini of the conjugated backbone. Howard has published
high level calculations of the series of iminoamines employing B3LYP/6-31þG**//6-
31G** method [60]. These studies indicate that the larger the backbone, the larger the
conjugation (stabilization of the conjugate acid by the resonance mechanism) and
basicity. Theoretically predicted maximum gas phase PAs for linear (unbranched)
iminoamines with chain lengths up to six CH¼CH units slowly approached saturation
point at 266.3 kcal mol�1. Single-branched iminoamines have PAs that are not much
larger, slowly approaching the saturation limit at 275.8 kcal mol�1 (iminoamine 75),
while double-branched iminoamines are more basic, with the saturation limit at
288.9 kcal mol�1 (molecule 76). Since an unsaturated carbon chain transmits conjugation
differently to an alternate ¼N�C¼N�C¼ structure there is a different relationship
between basicity and chain length (Figure 2.9).

2.4 Guanidines

Guanidines have long been recognized as very strong nitrogen organic bases in solution.
The measured pKa(H2O) of guanidine is 13.6, while the most advanced G2 calculations
provide a PA of 235–236 kcalmol�1. Furthermore, the biologically important compound
arginine has superbasic properties [61]. Guanidine is a stronger base than other nitrogen
compounds containing one potentially basic site (N-imino or N-amino) linked to a carbon
atom, for example, pyridines, amines, and amidines, and also those with two basic nitrogen
atoms, for example, diamines. Basic properties of guanidines have been used for catalysis of
various organic reactions [62]. The unusual thermodynamic stability of acyclic guanidines
and their monoprotonated forms is ascribed to the following factors: resonance stabiliza-
tion; Y-aromaticity [63,64]; favourable distribution of positive charge that leads to a
favorable Coulomb interaction; aromaticity; stabilization by intramolecular hydrogen
bonding; and the effect of solvation on the stability of the protonated form (strong hydrogen
bond between the cation and solvent molecules in solution). All of these factors play an
important role in the gas phase and in solution [65].

It was found experimentally that the protonation of guanidine occurs at the imino
nitrogen, as the amino nitrogen is less basic than the imino nitrogen atom by�30 kcal
mol�1.

H2N

H2N

NH

H2N NH

NH2 NH2

75
76

Figure 2.9 Structures of iminoamines 75–76
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The solution basicity of guanidine is larger than its gas phase basicity. Solvation effects
are highly important in determining this difference. The enthalpy of hydration depends on
the number of hydrogen atoms linked to the nitrogen atom(s), the size of the neutral and
ionic species, and the charge dispersion in the ionic form. The number of positively charged
peripheral hydrogen atoms in the guanidinium ion, capable of forming hydrogen bondswith
water molecules, and the relatively small size of the cation capable of interacting
electrostatically with water dipoles may be the reason for the high enthalpy of hydration
of the guanidinium ion. This may account, for the higher basicity of guanidine compared
with trimethylamine, which contains the same number of heavy atoms. The pKa data
[45,46,66] experimentally determined are given in Table 2.7.

Substitution of the nitrogen atoms in guanidine by electron-donating groups (such as
alkyls) slightly increases its basicity, and substation by electron-accepting groups (e.g., Ph,
NH2, OH, OCH3, COCH3, CN, NO2) causes a reverse effect. The linear relationship
between the pKa and the Hammett sI constants (or other structural parameters, sm,p)
describes this behaviour.

An increase in the number of amino groups in the molecule has a strong influence on the
gas phase basicity. Generally, biguanides that contain three amino groups are stronger bases
than guanidines that have two amino groups (for instance 77 and 79). Guanidines are
stronger bases than amidines which contain only one amino group, while amidines are
stronger bases than imines which have no amino group. The same behaviour was found in

Table 2.7 Experimentally determined pKa values for guanidines

N

N

N

R2Me2N

Me2N

RN 1

N

N

N

R3

R2 = H: TBDa

R2 = Me: MTBD
R2 = Et: ETBD
R2 = Pr: ITBDi

78a: R = H3

78b: R = Me3

H
N

H
N NH2

NH NH

Me

79

Base R1 pKa (H2O) pKa (EtOH) pKa (MeCN) pKa (THF)

TBD 25.96 21.0
MTBD [17.33]b 25.43 17.9
77 C(NMe2)¼NMe 17.1 [67]

(benzene)
PMGc Me 15.6 [16.90] 25.00
78a [16.45] 24.55
78b 23.79
TMGd H [15.2] 23.3
guanidine CH2Ph 14.19
guanidine Ph 12.18 20.6 14.0
79 19.43 [68]

a 1,5,7-Triazabicyclo[4.4.0]dec-5-ene.
bValues in square brackets are extrapolated from other solvent: DpKa(MeCN-H2O)�8.1.
cN,N,N0,N0,N00-Pentamethylguanidine.
dN,N,N0,N0-Tetramethylguanidine.
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solution. The pKa values in acetonitrile obtained for biguanides (27–32)were larger than for
the corresponding guanidines (23–26) [69].

By combining the proton sponge skeleton, with highly basic guanidine, a superbasic
TMGN was obtained by Raab [70]. It represents the one of most basic guanidines
experimentally determined, with pKa(MeCN)¼ 25.1. This value is comparable with
basicities of MTBD (7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene) and PMG in acetoni-
trile and it is by 5.2 pKa units higher than DMAN (1). In a subsequent paper, Kova�cevi�c
and Maksi�c report theoretical PA and pKa values for TMGN and related proton sponges
(Table 2.8), as well as giving an insight into the origin of the high basicity of TMGN [71].
The basicity of these bisguanidines is the combined result of the unfavourable nonbonded
repulsions in the initial base, the large PA of guanidine group and strong IMHB present in
the protonated species.

The computational results suggest that the origin of high PA and basicity in guanidine
proton sponges arises from the inherent basicity of the tetramethyl substituted guanidine
fragment and from strong IMHB in the corresponding conjugate acid. The structural and
electronic motif given by guanidine fragments undergoes a very strong cationic resonance
stabilization that is caused by protonation. Resonance stabilization is found not only in the
directly bonded guanidine moiety, but also in the other guanidine fragment, which is more
distant from proton (partial protonation). The strength of IMHB is enhanced by this effect
and contributes to the IMHB stabilization. Furthermore, angular strain effect and steric
repulsion are practically nonexistent in TMGN, contributing to its high basicity. The
nonbonded repulsions in the fluorene proton sponge counterpart [4,5-bis(tetramethylgua-
nidino)fluorene (TMGF)] are higher than in TMGN, which in conjunction with a slightly
stronger IMHB in the corresponding conjugate acids makes TMGF more basic (PA
(MP2)¼ 263.7 kcal mol�1).

When the guanidine moiety of proton sponge is incorporated in a five-membered ring,
such as in bis(dimethylethyleneguanidino)naphthalene (DMEGN), it has been shown by
experiment and calculations to be less basic than its TMGN counterpart [72]. The decrease
of DMEGN basicity is the consequence of constraints imposed by the geometry of the five-
membered imidazoline ring. It leads to considerable pyramidalization of ring nitrogen
atoms, thus preventing a perfect p-conjugation of both amino groups with the CN3 unit. In
TMGN, N(CH3)2 groups are conformationally less constrained, thus being in better
conjugation with the CN3 unit. Basicity could be increased by involving the peripheral
nitrogen atoms in an aromatic planar 1,3-dimethylimidazole system (e.g. by introduction of
C¼C bond in 84). Induction of some p-conjugation in imidazoline ring by protonation
indicates that the IMHB is a complex phenomenon, affecting the whole conjugate acid.
IMHB in guanidine and its proton sponge derivatives plays an important role in the basicity
increase [73] (Table 2.8). The strength of IMHB could be deduced from the molecular
structures of protonated species: 80 and 81 have the shortest Hþ. . .N distance, the highest
hydrogen bond stabilization and largest APAs. At the same time, the N�Hþ. . .N angle
assumes maximal value for 80 and 81 (138� and 137�). On the contrary, N. . .N distance in a
protonated base (BHþ) is not a good indicator of the strength of IMHB. The �partial
protonation� of other N imino atoms in BHþ is a general feature for all molecules.

Good choice of molecular backbone for attachment of bis(tetramethylguanidine) frag-
ments leads to a strong superbase. The substitution of the aromatic backbone could also
affect the basicity, as shown for 1,2-bis(dimethylethyleneguanidino)benzene (86) by
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Table 2.8 Computationally estimated PAs and pKa values for guanidine proton sponges
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N
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N

Me2N
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NMe2

NMe2

N N

N

NN

N

Me

Me

Me

Me
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TMGF

87

DMEGN

84
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80: X = CH=CH
81: X= CH2CH2

82: 2 x X = H

83

88

86

R

PA (MP2)a PA (HFSC)
b pKa (MeCN)theor

c

80 268.2 264.7 29.0
81 266.8 264.0 28.8
82 263.8 260.0 25.9
TMGF 263.7 27.8
TMGN 257.5 25.4 (25.1)
83 260.5 260.1 24.4
84 256.0 257.8 25.8
85 254.3 253.3 24.0
86 average 240.3–250.3 243.6–252.7 18.0–20.7
87 253.8 24.6
88 252.0 251.8
DMEGN 250.8 252.3 23 (TMGN>DMEGN)
DMAN 245.5 19.9 (18.2)
TMPhG 245.1 21.1 (20.6)
TMG 244.6 23.7 (23.6)
guanidine 233.7 24.1

aMP2(fc)/6-311þG**//HF/6-31G*þZPVE(HF/6-31G*).
b Scaled HF/6-31G*.
c IPCM-B3LYP/6-311þG**//HF/6-31G* (experimental values are given in brackets).
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Margeti�c and Ishikawa [74]. The backbone change from benzene to naphthalene and
phenanthrene rings has a minor effect on the APA of 86. Substitution of an aromatic ring in
trans-86 with electron-withdrawing halogen atoms leads to decreased APAs in the order
3,4,5,6-tetrafluoro< 3-6-dibromo< 3-bromo< 86. These estimations are in good accor-
dance with literature data showing that aromatic substitution and electron withdrawing
groups decrease the APA of amines. The decrease of basicity going from 86 to 85 is
expected, as earlier discussed for the DMEGN/TMEGN basicity difference (PA(MP2)86
250.3, PA(HFSC)86¼ 252.7 kcalmol�1, pKa(MeCN)86¼ 20.7). A comparison with the
APA of DMAN (1) indicates that o-bisguanidinobenzenes 86 are of similar basicity or
slightly more basic than DMAN (1), thus at the lowest part of the superbasicity ladder,
however still being strong hydrogen acceptors [75].

The increase in the guanidine basicity scale, going from mono- to polyguanidines has
been theoretically studied by Maksi�c and Kova�cevi�c. Replacement of one of the amino
groups in guanidine by the N¼C(NH2)2 structural fragment forms polyguanidines [76]. It
was shown that the increase of APA(HFSC) could be as much as 50 kcal mol�1, compared to
guanidine itself. The origin of their very highly intrinsic basicity is traced to a large increase
in the resonance interaction of the corresponding conjugate bases (in the range of 24–
27 kcal mol�1): that is, to the high stability of the corresponding protonated cations. The
guanidine group of biguanidine linked by its imino nitrogen to the amidine group has a
strong electron-donating character, and the amidine group linked by its functional carbon to
the guanidine group has a strong electron-accepting character. Therefore, the n-p conjuga-
tion of the guanidine groupmay be transmitted to the imino nitrogen in the amidine group. It
was calculated that the linear chain polyguanides exhibit increased basicity as a function of
the number of guanide subunits. The increase of APA is around 7 kcal mol�1 per guanidine
unit, reaching a limit for n¼ 5 (APAvalue of 254 kcalmol�1). TheAPA increase going from
mono to biguanide can be explained in terms of p-electron conjugation induced in the
conjugate acid (larger number of resonance structures), indicating greater stability of
protonated species. At the same time, there is a relaxation effect due to reorganization of the
electron density upon protonation. Positive charge is delocalized over the conjugate acid via
mobile p-electrons through the p-conjugation mechanism. Branched polyguanides have
higher APAs than their linear counterparts, possessing an additional stabilization by IMHB.
The largest PA was found in a doubly bifurcated heptaguanide 89, being as high as
285 kcal mol�1, due to strong resonance effect, partially enhanced by IMHB intramolecular
multiple corona effect (on six N sites). N-Alkylation further increases APA (for instance,
going from 90 to its heptamethyl derivative, or from 89 to 91), where 91 has the largest
calculated APA of the all studied polyguanides (290.0 kcalmol�1) (Figure 2.10).

These predictions are further corroborated by pKa estimations using the IPCM-B3LYP/6-
311þG**//HF/6-31G* method (heptaguanidine 86 (33.5), triguanidine (31.3), hepta-
methyl derivative of biguanide 90 (28.1)) [49], and by the B3LYP/6-31G* calculations of
polyguanidines recently reported byChamorro et al. [55]. Similarly, Kolomeitsev [77] have
calculated very high gas based basicity (PA) values for triguanidine [(H2N)2C¼N]2C¼NH
and its tetramethyl derivative [((CH3)2N)2C¼N]2C¼NHat the B3LYP/6-311þG** level –
248.4 (255.1) and 268.4 (276.2) kcalmol�1, respectively.

The importance of the IMHB for achieving larger intrinsic PAs in organosuperbases has
been mentioned in several papers and discussed in more details by Kova�cevi�c et al. in the
case of N,N0,N00-tris(3-dimethylaminopropyl)guanidine (92) [78]. The aminopropyl chain
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amplifies basicity, if it was linked to the highly basic imine nitrogen,which in turnwas a part
of the molecular backbone undergoing aromatization upon protonation (Table 2.9). The
APAof 94 forming a pseudo eight-membered ring (two-centre corona effect, with IMHBon
the imine aminopropyl chain with the neighboring amine) is larger than the pseudo six-
membered IMHB of 93 (single-centre corona effect, the loop starts and ends with the same
atom) by about 2 kcalmol�1. This difference is caused by ring strain differences and
stronger IMHB of 94 due to better alignment of N�Hþ. . .N atoms.

Aminopropyl substitution of guanidines leads to high intrinsic APAs and basicities
culminating in the APA(MP2) of 92. The reason behind a high PA is a strong cationic
resonance in the central guanidine moiety (the contribution to the PA is in the range
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Figure 2.10 Structures of polyguanidines 89–91

Table 2.9 Calculated APAs (kcal mol–1) and pKa values
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Molecule PA (MP2) APA (HFSC) pKa (MeCN)

92 275.5 266.9 29.4
93 254.2 254.5 25.9
94 256.5 256.7 26.8
95 268.4 267.5 28.8
96 275.1

MP2(fc)/6-311þG**//HF/6-31G*þZPVE(HF/6-31G*);IPCM-B3LYP/6-311þG**//HF/6-31G*.
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24–27 kcalmol�1) and the strength of the IMHB, which is enhanced upon protonation. In
the conjugate acid BHþ the protonated imino nitrogen of guanidine acts as a proton donor,
whereas the side chain amino group is a proton acceptor. A cooperative IMHB effect in
95Hþ realized by three N(sp3)–H. . .N(sp3) hydrogen bridges (multiple corona effect)
contributes 18.3 kcal mol�1 to the APA of 95. Guanidine 92 assumes an even higher PA due
to an additional relaxation effect caused by the methyl groups. The multiple two-centre
corona effect was later found experimentally by Glasovac in the X-ray structure of 92 [79].
The incorporation of stronger hydrogen bonding acceptor functionalities in the propyl
chain, such as imidazole in molecule 96, is predicted to further enhance guanidine basicity
(275.1 kcal mol�1) [80].However, it should be noted that IMHB [81] are almost exclusive to
the gas phase, and their relevance to the reactivity in condensedmedia ismuch smaller. This
is so because the hydrogen bond donor of an IMHB prefers to form IMHBs with the solvent
molecules, mainlywhen they are good hydrogen bond acceptors, rather than being involved
in the IMHB itself.

Extended p-electron systems with guanidine and cyclopropenimine structural subunits
[82] devised byMaksi�c offer another structural variation of guanidines capable of effective
stabilization of the system upon protonation. It was calculated that the guanidino-cyclo-
propenimines possess higher PAs than their polyguanide counterparts (PA(HFSC):
97 : 251.0; 98 : 262.8; 99 : 267.9, and 100 : 280.1 kcalmol�1). The origin of the increased
basicity lies in a large resonance effect triggered by the protonationvia aromatization of the
three-membered rings in the conjugate acid form. Resonance stabilization of guanidine is
within the range of 24–27 kcalmol�1, while those of guanidino-cyclopropenimines con-
tribute to PAs by 41–44 kcalmol�1. Alkyl groups further stabilize protonated forms by an
inductive effect through s- and pseudo-p-hyperconjugation mechanisms (Figure 2.11).

Gas phase basicities of a number of guanidine derivatives with PAs larger than 239 kcal
mol�1 (1000 kJmol�1) have been experimentally evaluated byRaczynska et al. [53,54]; the
results are summarized in Table 2.10. Some trends for various classes of compounds could
be identified.

Examination of the gas phase basicity values indicates that for acyclic alkyl derivatives,
the basicity increases with the polarizability of alkyl groups in the following order:
TEGs>TMGs> ITBD>ETBD>MTBD>TBD, (where TEG is the (Et2N)2C¼N� and
TMG the ((CH3)2N)2C¼N� group). Guanidine derivatives bearing the aryl group at the
imino nitrogen have smaller gas phase basicity values than alkyl groups, hence: TMG–
CH3>TMG–Ph. The relative order follows the same substitution trends obtained by
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NR2N
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N
R

NR2

NN
NR2

N
R1

NR2R2N

97: X = R = H, Y = NH2

98: X = Y= NMe2, R = Me
99 :R = R1 = Me
100: R = R1 = Me

Figure 2.11 Structures of guanidino-cyclopropenimines 97–100
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solution pKa measurements (Table 2.7). Heteroalkyl groups [(CH2)nOCH3 and (CH2)nN
(CH3)2, n¼ 2 or 3] at the imino nitrogen induce the strongest increase in basicity. The order
of this increase is: (CH2)2OCH3> (CH2)2N(CH3)2> (CH2)3OCH3> (CH2)3N(CH3)2. In-
corporation of the guanidine moiety into cyclic structures such as six-membered rings in
TBD increases basicity comparing to acyclic guanidine, the gas phase basicity values are
further increased by alkylation in MTBD, ETBD and ITBD.

2.5 Phosphazenes

The exceptional basicity of phosphazenes (iminophosphoranes) has been discovered by
Schwesinger [83]. The phosphazene derivatives have been proved to be chemically very
stable, kinetically active and highly versatile, and the large number of these bases has
been synthesized. The gas phase and solution equilibrium basicitymeasurements for a large
number of phosphazenes are conducted by Kaljurand et al. [84], and their PA and pKa

values are published in various papers. These measurements show that phosphazenes
surpass in their basicity the derivatives of acyclic or bicyclic guanidines, amidines and
vinamidines (Table 2.11). Extraordinary basicity of phosphazenes was theoretically
rationalized byMaksi�c et al. [85], in terms of effective resonance stabilization of protonated
molecules [86].

Condensed phasemeasurements have been conducted in several solvents. In acetonitrile,
for most of the alkylphosphazenes the pKa values arewithin the range 26–47 pKa units. The
analysis of the pKa values in acetonitrile (Table 2.11) shows some general trends. The most
significant is that substitution of the hydrogen atoms of the aniline (amine) amino group by
the ¼P(pyrr)3 group increases the basicity approximately by 10–12 pKa units [69].
Throughout the text Schwesinger�s nomenclature will be used (here P1, P2, etc. numbers
denote number of P¼N- units). There is an increase in basicity with increasing number of
phosphorus atoms. Hence, P2 phenyliminophosphoranes are stronger bases than the
corresponding P1 phenyliminophosphoranes by about 4–5 pKa units and so on, where for

Table 2.10 Gas phase basicities of guanidine derivatives (kcalmol�1)

Guanidine base GB(B) PA [18]

TMG 234.9 [18] 243.1
(Et2N)2C¼N�Me 246.1
ITBD 248.3 248.3
ETBD 247.5 247.5
MTBD 246.95; 243.3 [18] 250.9
TBD 244.7; 241.2 [18] 249.3
(Me2N)2C¼N�Me (PMG) 242.8
(Me2N)2C¼N�Ph (TMPhG) 240.7
(Me2N)2C¼N�(CH2)2OMe 246.6 246.6
(Me2N)2C¼N�(CH2)2NMe2 248.4 248.4
(Me2N)2C¼N�(CH2)3OMe 248.75 248.75
(Me2N)2C¼N�(CH2)3NMe2 250.65 250.65
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Table 2.11 Solution and gas phase basicity data for phosphazenes [90,91]
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125: BEMP122

119: R = Me; R '= tBu
120: R = R' = Me
121: NR 2= pyrr ; R' = tBu R'P1(pyrr)

112: R = R' = Me
113: R = Me, R' = Et
114: R = Me, R' = tBu
115: R = Me, R' = cctyl
116: NR2  =pyrr, R' = tBu

R'P2(dma)

R'P1(dma)

108: R = R'' = Me, R' = tBu
109: R = Me, R'' = iPr, R '= tBu

R'P3(dma)R''
R'P3(pyrr)R''

102: R = Me; R' =  tBu
103: R = Me; R' = CMe2CH2

tBu
104: R = Me; R' = CEt3
105: R = Me; R'= CMe2

tBu
106: NR2 = pyrr ; R' = tBu
107: NR2 = pyrr ; R' = 2-ClC6H4

R'P2(pyrr)

Base pKa (MeCN)
pKa calc
(MeCN)

pKa

(THF)

pKa

DMSO
(H2O) GBexp GBcalc

111 P5 46.9
118 P7 (45.3) >32
110 P5 45.3 >32
117 P5 (44.0)
106 P4 44.0
105 P4 (42.7)
104 P4 (42.7)
103 P4 (42.7) 29.4
102 P4 (42.7) 30.2
108 P3 38.6 26.2
109 P3 38.6 26.1

4-MeO-C6H4P4(pyrr) 28.9 [76]
101 P4 36.6
114 P2 33.49 21.5
107 EtP3(dma) 25.3
115 P2 33.27
124 P2 33.11
123 P2 33.08
113 P2 32.94 21.1
112 P2 32.72

(continued)
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every additional phosphorus unit decreasing basicity incrementswere found [87]. There is a
limit in the homologation, as shown by P7 phosphazene 118 in DMSO, which is not more
basic than P5 base 110. This finding indicates that a leveling effect due to resonance
saturation of the cation is operative in large systems. In the gas phase there is currently no
answer on the limit, because no measurements have been made with higher phosphazenes.
Computational studies on model compounds predict the beginning of the plateau ranges
from n¼ 4 to 9, depending on the type of model compound and on the computational
method used.

Branching of phosphazene bases leads to higher basicity, as evident in the P3 serieswhere
branched base 108 is more basic than linear base 101. This increase in basicity of branched
compared to linear structures has been ascribed mainly to effect of stability differences of
the free bases, rather than of the cations, since linear conjugation in neutral phosphazenes is
more effective than cross conjugation. Similarly, we could observe that in the P5 series
linear base 117 is weaker than the branched 110, but in this case differences in resonance of
the cations are more significant.

Table 2.11 (Continued )

Base pKa (MeCN)
pKa calc
(MeCN)

pKa

(THF)

pKa

DMSO
(H2O) GBexp GBcalc

114 P2 33.49 21.5
107 EtP3(dma) 25.3
115 P2 33.27
124 P2 33.11

EtP1(pyrr) 28.89 28.8 21.7 259.5 257.8
t-BuP1(pyrr) 28.35 20.2 258.7 258.2

122 P1 28.27
PhP2(pyrr) 27.55 20.9

120 MeP1(dma) 27.58 [70] 20.7 252.2 252.3
125 BEMPa P1 27.5 [92] 256.0 255.6

HP1(pyrr) 27.01 20.8 (13.93) 255.1 255.0
119 t-BuP1(dma) 26.88 27.2 18.9 15.7 253.2 252.1

HP1(dma) 25.85 25.7 19.7 (13.32) 250.0 249.6
2,5-Cl2-C6H3P1(pyrr) 248.4
2-Cl-C6H4P2(pyrr) 25.42 17.5 260.5 258.7
4-NMe2-C6H4P1(pyrr) 23.88 17.1 (12.00) 257.5
4-OMe-C6H4P1(pyrr) 23.12 16.6 (11.94) 255.2
PhP1(pyrr) 22.34 22.8 15.9 (11.52) 252.2 250.9
4-Br-C6H4P1(pyrr) 21.19 15.3 (11.23) 249.3
2-NO2-4-Cl-C6H3P1(pyrr) 245.0 246.4
2-Cl-C6H4P1(pyrr) 20.17 13.2 (9.98) 251.1
4-CF3-C6H4P1(pyrr) 20.16 14.6 (10.65) 254.4
4-NO2-C6H4P1(pyrr) 18.51 13.3 (9.22)
2,5-Cl2-C6H3P1(pyrr) 18.52 11.9 (9.21) 248.4 244.2
2,6-Cl2-C6H3P1(pyrr) 18.56 11.8 (9.00) 245.3 247.5

a 2-tert-Butylimino-2-diethylamino-1,3-dimethyl-perhydro-1,3,2-diazaphosphorane.
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The basicity in P1 phosphazenes is affected by phenyl substitution on the imino nitrogen,
as expected from inductive and resonance effects of substituents. By substitution of the
phenyl ring, the basicity can be varied over awide pKa range. The pKa values are decreasing
in the following order: 4-N(CH3)2> 4-CH3O>H>Br> 4-CF3> 2-Cl> 2,5-Cl2> 4-Cl-
2-NO2> 2,4-NO2. Furthermore, it is evident that alkylimino phosphoranes are significantly
stronger bases than corresponding arylimino phosphoranes: EtP1(pyrr)> t-BuP1(pyrr)>
PhP1(pyrr). As suggested by Rodima, the inductive effect and some delocalization of the
lone electron pair of the imino nitrogen into the aromatic ring aremost probably the reasons
[88]. While in guanidines substitution of imino hydrogen by phenyl group leads to basicity
increase, in the phosphazenes small decrease has been found. The low sensitivity of pKa to
steric bulk of the substituents in the phosphazene systems could be established. This
behavior is explained by the high flexibility of the P–N–P bridges in the cations, which
effectively helps to accommodate steric strain. There is no significant difference in basicity
measured for sterically larger groups on the imino nitrogen in P1 bases. In the P2 series a
small increase in basicity is noted for a successive increase of bulkiness of alkyl substitution
on the nitrogen basic center. However, the replacement of the tert-butyl group in 114 by
neopentyl group slightly reduces the basicity. Similar basicity reducing effect of neopentyl
group was found for phosphazene 103within the P4 series. Bulky diisopropylamino group
does not affect basicity change in P3 series going from 108 to 109.

The enhancement in basicitywas also achieved by the replacement ofN(CH3)2 groups by
cyclic pyrrolidine groups and their inductive effects, as was previously observed for the
guanidine superbases. Small pKa increase is obtained by incorporation of phosphazene
moiety into six-member ring. For instance 2-tert-butylimino-2-diethylamino-1,3-dimethy-
perhydro-1,3,2-diaza-phosphorane (BEMP) 125 is highly basic (pKa¼ 27.5 in MeCN)
[93]. Similar basicity possesses cyclic 122 [89] (28.27), and these values are amongst the
strongest for P1 bases. The representatives of cyclic P2 phosphazene bases 123 and 124
have pKa values strongest than most of the P2 and even more basic than some of P3 bases.
The branched P5 phosphazene 111 is the strongest phosphazene base known to date, with
measured pKa value in acetonitrile of 46.9 units.

Further increase of nitrogen atom basicity was achieved by the combination of
Schwesinger�s phosphazene base concept and the Alder�s idea of the disubstituted 1,8-
naphthalene spacer, as reported by Raab [94]. 1,8-Bis(hexamethyltriaminophosphazenyl)
naphthalene (HMPN) (126), represents the up to date most basic representative of this class
of �proton sponges�, as evidenced by the theoretically estimated proton affinity of 274 kcal
mol�1 and themeasured pKBH

þ(MeCN)¼ 29.9 (Figure 2.12). HMPN is by nearly 12 orders

NN
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NMe2

NMe2
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NMe2

Me2N

Me2N NMe2
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Figure 2.12 Structures of HMPN
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of magnitude more basic than DMAN (1). Its high basicity is ascribed to the high energy
content of the base in its initial neutral state and additional stabilization of conjugate acid by
strong intramolecular hydrogen bonding. This cooperative proton chelating effect renders
the bisphosphazene more basic than Schwesinger�s P1 phosphazene bases.

2.6 Guanidinophosphazenes

As described in the previous section, replacement of phosphazene alkyl substituents with
aminosubstituents, and especially with the phosphazo substitutents, leads to a significant
enhancement in the gas phase basicity. However, Schwesinger has shown that the
progressive increase of the basicity of phosphazene bases with increasing number of
phosphorus atoms reaches a limit at n¼ 5. The further increase in basicity of phosphazenes
(and also guanidines) has been accomplished by Koppel et al. [77] by the introduction of
guanidino or substituted guanidino (cyclic or acyclic) fragments into the phosphazene
structure. In such away, a new family of super strong, uncharged bases of the guanidinopho-
sphazene type has been synthesized, and their basic strengths in THF have been measured
(Table 2.12).

The pattern of basicity change has been observed in THF solution by incorporation of
tetramethylguanidino (tmg) groups in PhP1(dma) phosphazene. In THF, changing all three
dma groups in tBu-P1(dma) and P1(dma) phosphazenes to tmg groups increases the basicity
enormously: by 10.2, 9.1 and 8.9 powers of 10, respectively. The consecutive introduction
of tmg fragments, instead of dma substituents, contributes equally to the total basicity
increase of 9.1 pKa units in 131, by an increment of 3.0 pKa units per tmg group. The
observed additive basicity increase in THF is in contrast to the findings in the gas phase,

Table 2.12 Guanidinophosphazenes: experimental pKa values in THF
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Guanidinophosphazenes GBcalc pKa (THF)

127: EtP1(tmg) 29.7
128: tBu-P1tmg) 29.1
129: P1(tmg) 276.1 28.6
130: tBu-P1(tmg)2(NEt2) 26.8
131: PhP1(tmg) 24.3
132: PhP1(tmg)2(dma) 21.5
133: PhP1(tmg)(dma)2 18.4
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where the consecutive introduction of guanidino and tmg fragments seems to be nonaddi-
tive. Further increase going from 131 was achieved by replacement of the phenyl imino
group with hydrogen and alkyl substituents (tBu and Et) in 129, 128 and 127 by 4.3, 4.8 and
5.4 pKa units, respectively. The most basic guanidinophosphazene experimentally mea-
sured so far is 127with a pKa value of 29.7 inTHF.There is an increase of about 2.3 pKa units
for sterically more demanding tert-butyl groups than phenyl on the imino nitrogen.

As seen from the data collected in Table 2.11, the differences in measured pKa values of
phosphazenes in acetonitrile and THF, D[pKa(MeCN–THF)] are in the range 7–10 pKa

units, with an average being eight. This allows an estimate to be made of the acetonitrile
basicities of guanidinophosphazenes (Table 2.12) and compared with those of phospha-
zenes (Table 2.11). The estimates for 127 and 128 in acetonitrile indicate their extreme
basicity comparable to these of P3 and P4 phosphazenes. Furthermore, Raab et al. [70]
found that in acetonitrile solution the basicity ofDMAN (1) increased by about 6.9 pKa units
when the dma substituents were replaced with tmg groups to form TMGN. In THF solution
a similar change of the substituents in the naphthalene ring results in a somewhat more
modest increase in the basicity of TMGN (by 5.8 pKa units). These results allow a prediction
of a further increase of 1 pKa unit going from THF to MeCN.

Furthermore, DFT calculations have been used for quantum-chemical studies of gas
phase basicities of some guanidinophosphazene bases (B3LYP/6-311þG** method).
Their extremely high basicity has been rationalized by electronic reasons. The strongly
electron-donating tmg groups as the building units lead to a significant delocalization of the
positive charge over the tmg groups, due to the conjugation of guanidino moieties with
either a phosphorus atom of guanidinophosphazene or a phosphonium centre. These
electronic effects reduce the electrophilic character of phosphorus and provide the
respective bases with increased thermodynamic stability.

The calculated gas phas basicities indicate that the protonation at the ¼NH group of
guanidinophosphazene is the most favourable site in the molecule (Figure 2.13). The
replacement of amino groups by the cyclic guanidino fragment (1,3-dimethylimidazolidin-
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Figure 2.13 Structures of guanidinophosphazene bases 134–136
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2-ylidene)amino is predicted to have a somewhat stronger basicity-increasing effect than
replacement by the less polarizable guanidino, 1,3-dihydro-2H-imidazol-2-ylideneamino,
and imidazolidin-2-ylideneamino fragments. All these trisubstituted cyclic or open chain
guanidino phosphazenes are expected to be extremely strong superbases, such as 134
(GB¼ 280 kcalmol�1). However, replacement of guanidinophosphazene NH2 groups by a
tmg group gives the largest increase. The introduction of alkyl groups into the guanidine
moiety strongly increases the basicity due to the change in charge delocalization effects.
Significant (9.6 kcal mol�1) basicity-increasing alkylation effects are expected to accom-
pany the transfer from the tris-guanidino to the respective tris-tmg guanidinophosphazene
derivatives. Smaller basicity increases due to iminoN-alkylation were predicted: CH3, 2–3
and tBu, 5.2–6.5 kcalmol�1.

The replacement of only one NH2 group in (H2N)3P¼NH phosphazene with the
triguanidine fragment, yielding P1 guanidinophosphazene, increases the gas phase basicity
by 30.9 kcal mol�1. Replacement of all three NH2 groups leads to non-alkylated P1
triguanidophosphazene 136, with a gas phase basicity of 296.2 kcal mol�1. Concomitant
increase by alkylation of the imino nitrogen and the amino groups is predicted to result in
gas phase basicity values well beyond 300 kcalmol�1.

The estimated increase of the intrinsic basicity for the transfer from P1 to P2 guani-
dinephosphazenes is 13–18 kcalmol�1. Gas phase basicity of the novel guanidino substi-
tuted P2 phosphazenes is expected to be above 290 kcalmol�1. Calculations show that the
replacement of threeNH2 groupswith three guanidino groups in the simple P2 phosphazene
produces the superbase 135 with an GB¼ 290.8 kcal mol�1. Further basicity increase of
135 is predicted due to alkylation of guanidino NH2 and of the imino basicity centre, with
the basicity higher than 300 kcalmol�1.

Another extraordinarily strong base has been constructed by the combination of Alder�s
DMAN proton sponge concept and guanidinophosphazenes [95]. Considerable increase in
basicitywas obtained upon replacement ofN(CH3)2 groups in the phosphazene baseHMPNby
dimethylguanido groups yielding 137 (Figure 2.14). One of the highest calculated gas phase
proton affinities calculated so far (305.4 kcalmol�1, B3LYP/6-311þG**//B3LYP/6-31G*
method) and pKa value in acetonitrile (44.8, IPCM) is 26 orders of magnitude more powerful
than DMAN.

2.7 Other Phosphorus Containing Superbases: Verkade�s
Proazaphosphatranes

Other phosphorus containing superbases are phosphines and phosphorus ylides. The most
detailed studied class isVerkade�s proazaphosphatranes (cyclic azaphosphines). Because of
the extraordinary basicity and relatively weak nucleophilicity of nonionic proazapho-
sphatranes, they have been found to be efficient catalysts and promoters for many reactions
[96]. Proazaphosphatranes 138 have a cage framework in which one end is flattened owing
to van der Waals interactions among the methylene protons adjacent to the axial nitrogen
[97]. In contrast to proazaphosphatranes, azaphosphatranes 139 have oblate frameworks
that feature a trans-annular N–P bond in the [3.3.3] tricyclic cage, as in the case of cations in
which the PN3 end of the proazaphosphatrane is flattened and its bottom is puckered
upward. The approximately 3A

�
bridgehead–bridgehead transannular Nax–P distance in 138
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thus shortens to about 2A
�
in azaphosphatranes [98]. Basicity measurements have shown

that proazaphosphatranes are exceedingly strong nonionic Brønsted bases. They are unique
in that, unlike all of the commonly used nonionic bases (including the phosphazene series),
they are protonated on their phosphorus atom rather than on one of their nitrogen atoms.
High basicity is the combination of the degree of delocalization of the bridgehead nitrogen
lone pair into a three-centre, four-electron bond system along themolecular axis and partial
donation of electron density from the axial nitrogen enhances electron density on
phosphorus atom [99].

The originally reported pKa value of 41.2 for 139, which was in the vicinity of that for P3
and P4 phosphazene bases, was recently re-evaluated at 32.82 in acetonitrile by UV–Vis
spectrophotometric titration, as shown in Table 2.13 [100]. This value is similar to the
phosphazene base P2-Et (pKa¼ 32.74). The pKa values for 139–141 determined in
acetonitrile by 31P NMR spectroscopy fall in the same range (32.84–33.63). X-ray-
determined P–Nax bond distances of 141 and 142 are 2.037 and 1.958A

�
. An even larger

pKa value for 143 was determined by 31P NMR spectroscopy in acetonitrile (34.49) [101],
while the parent compound138 has a pKa value of 29.6 inDMSO [102]. Thegreater stability
and therefore weaker acidity of cation 138Hþ compared with 139 (R¼CH3) and 144
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Figure 2.14 Structures of DMAN-related guanidinophosphazene bases
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(R¼CH2Ph) is rationalized as the consequence of the dominant electronic stabilization
effect associated with greater delocalization and hence greater charge balance in the
phosphorus orbitals involved in the three-centre, four-electron H–P–Nax bond. This idea is
supported by X-ray: the short P–Nax bond distance in 138Hþ is 2.078A

�
.

Theoretical predictions have beenmade that ylides of phosphorus, nitrogen and sulfur are
potentially superstrong neutral organic bases. Limited experimental results: showed that the
Ph3P¼CH2 ylide in DMSO has pKa¼ 22.5 [103], while the pKa of (Ph(CH3)2N)3P¼
C(CH3)2 ylide in THF was estimated to be in the range between 26 and 28 units [104].

General predictions are the following: phosphazenes and phosphorane can reach high
superbasicity levels of about 300 kcal mol�1 (for P7 or higher number of phosphorus atoms
in the system, n� 7), whereas the strongest organic phosphazene ylide superbases are
estimated to have (at n� 5) gas phase basicities around or beyond 310–320 kcalmol�1. The
phosphine superbases are predicted to have basicity comparable to P2 phosphazenes or P1
phosphorus ylides, whereas the respective proazaphosphatrane imines and ylides are
expected to be the strongest organic superbases which contain only a single phosphorus
atom.

Calculations have revealed that the proazaphosphatrane bases are approximately equal in
thermodynamic basicity to the Schwesinger P2 phosphazene bases (Table 2.14). The RHF/
6-31G* calculations of proton affinities indicate that phosphazene (Z¼NH) and phospho-
rus ylide (phosphorane, Z¼CH2) counterparts (146 and 145) are stronger than the parent
Verkade superbase 139. Higher basicity is associated with the higher degree of delocaliza-
tion of the positive charge in the protonated iminophosphoranes and phosphorus ylides as a
result of the more electropositive character of phosphorus atom [67]. On the other hand,
phosphorus oxides 147 and 150 are weaker than 139, but still above the superbasicity
borderline. The strained polycycles 138, 149 and 148, as representatives of superbases

Table 2.13 Basicity values for proazaphosphatranes

138H+

PN
N
N

N

H
H

H

H

P
N

N
N

N

R1
R3

R2

R1 R2 R3 pKa (MeCN) pKa (DMSO) pKa (THF) GB [85]

138 H H H 29.6
143 iPr H H 34.49
140 iPr iPr iPr 33.63
142 iBu iBu iBu 33.53 260.8

(261.7)
139 Me Me Me 32.90;

32.82
(41.2)

26.8 26.6 [102] 259.1

141 Piv Piv Piv 32.84
144 CH2Ph CH2Ph CH2Ph 26.8
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which contain only one phosphorus atom, are significantly stronger bases than the
respective open chain derivatives of phosphines, phosphorus imines and phosphorus ylides,
which also contain only one phosphorus atom. However, P2 and P3 iminophosphoranes and
phosphoranes, which contain several phosphorus atoms, are stronger bases than 138, 149 or
148. Although theory indicated that 146 would be more basic than 139, experiments by
Verkade in acetonitrile showed the opposite [105]. This was rationalized by themore distant
polarizing proton from the lone pair on axial nitrogen in 143Hþ than in 139Hþ which is
fully transannulated. Solvation effects probably play a significant role. The same authors
confirmed experimentally that 145 is more basic than 139.

Triguanidinophosphines 154 and 155 are expected by calculations to be rather strong
superbases. Themodification from 155 to 154 results in amuch stronger base; the gas phase
basicity of 154 is expected to exceed that of the landmark cyclic phosphatrane superbase
139 by 12 kcal mol�1. Even stronger phosphine superbases are expected to be designed by
replacement of the tmg groups in 154 by (dma)3P¼N� groups to give [(dma)3P¼N]3P. The
basicity of its simple NH2 analogue 153 is calculated to be about equal to the predicted
basicity of the respective imino base [(H2N)3P¼N]3P¼NH (GB¼ 273.2 kcalmol�1).
Calculations estimate the gas phase basicity of [(dma)3P¼N]3P at around 280 kcalmol�1,
which is close to the gas phase basicity value for 153.

Table 2.14 Theoretical basicity values for phosphorus imines, ylides and phosphinesa

P
N

N
N

N

R
R

R

Z

Base R Z
PAb

[106] PAc GB
pKa(MeCN)d

[86]

139 Me — 274.6 255.0e

145 Me ¼CH2 296.6
144 Me ¼NH 281.8
147 Me O 249.4
138 H — 267.3 244.6
148 H ¼CH2 304.7 273.3
149 H ¼NH 281.8 258.9
150 H O 252.2
151 Me ¼NMe 265.2f 29.0
152 Me

phosphines [78]
tmg 272.4f 31.0

153 [(NH2)3P¼N]3P 283.3 275.0c

154 [(dma)2C¼N]3P 276.7 267.1c

155 [(NH2)2C¼N]3P 263.7 258.9c

a PA and GB values are given in kcalmol�1.
b6-31G*.
cB3LYP/6-311þG**.
d IPCM/B3LYP/6-311þG**//B3LYP/6-31G*.
eB3LYP/6-311þG**.
fB3LYP/6-311þG(2df,p)//B3LYP/6-31G*.
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2.8 Theoretical Methods

There have been extensive efforts put into the accurate calculation of PAs, gas phase
basicities and solution pKa values in recent years. Results vary depending on the level of
sophistication of the applied calculations, and the fit to experimental values varies with the
theoretical model employed. Although the calculated PA, gas phase basicity and pKa values
differ from the experimentally determined, these calculations appear reliable enough that
themajor effects found in superbases can be clearly demonstrated. To generalize, more high
level the theory method the better the results, but it is not always, dependent on the system
under study. Large molecular systems need some trade-off between accuracy and compu-
tational effort (CPU time).

The proton affinity of a base is defined as the negative change of enthalpy (PA¼�DHprot)
associated with the protonation reaction Bþ (Hþ!BHþ), while the absolute gas phase
basicity corresponds to the negative of the Gibbs free energy change, that is, GBðBÞ ¼
�DGo

prot. For estimation of PAs and GBs in the gas phase, high level Hartree-Fock (HF),
post-HFandDFTquantum-chemical calculationswere employed. It has been found that the
quality of obtained geometry is not crucial if PAs are estimated by single-point calculations
at higher levels of theory, which is the approach generally used. For instance, ZPE(HF/6-
31G*)þMP2/6-31þG*//MP2/6-31þG*; [37] ZPEþMP2/6-311þþG**//HF/6-311þþ
G**; MP2(fc)/6-311þG**//RHF/6-31G*; [71] BP86/TZVP//BP86/TZVPþZPE; [107]
B3LYP/6-311þG(3df,3pd); [108] B3LYP/6-31þG**//HF/6-31G**; [8] BP/DZVP [6] and
B3PW91/6-311þþg(d,p)//B3PW91/6-31G* methods have been the most successful. For
larger molecular systems, a somewhat less accurate but computationally more efficient
model, the scaled Hartree-Fock (HFSC), scheme has been developed by Maksi�c et al., based
on the linear correlation of experimental results and calculations [109]: APA(B)¼ 0.8924
DEel(HF/6-31G*)þ 10.4 kcalmol�1.

High level computations such as CBS-QB3, CPCM/MP2/6-311þG**//CPCM/HF/6-
31þG* andCPCM/B3LYP/6-311þG**//B3LYP/6-31þG** gavegas phase basicity and
absolute aqueous pKa values with chemical accuracy [110]. Unfortunately, these methods
are computationally too intensive to be applied to larger molecules. Maksi�c and Kova�cevi�c
[49] have used a computationally more economical model for pKa estimation, in which
solvation energies were calculated by IPCM/B3LYP/6-311þG**//HF/6-31G* method.
Then, the pKa values were estimated by a linear regression model of the experimental pKa

data and calculated APA(solv). The correlation between APA(MeCN) calculated in
acetonitrile and the experimental pKa values for series of bases containing imino groups
is: pKa(MeCN)imine¼ 0.4953, APA(MeCN)¼ 119.7. It should be noted that such linear
relations of pKa are valid for each computational level and each family of compounds
separately, hence they should be derived in each case [85,111–113].

2.9 Concluding Remarks

In summary, guanidinophosphazenes belong to the most basic, experimentally deter-
mined class of superbases, followed by phosphazenes, proazaphosphatranes and guani-
dines. Amidines and classical proton sponges generally show less pronounced basicity.
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Computational predictions indicate that extended p-systems could be even more potent
superbases. On the basis of experimental evidence and theoretical results, the set of
general rules for the molecular design of exceedingly strong superbases has been
established by Kova�cevi�c and Maksi�c [114]: the choice of the appropriate skeleton
subunit (molecular backboneþ highly basic functional group); modulation (insertion of
substituents at strategic sites); and inclusion of additional effects (destabilizing in initial
base, stabilizing in the conjugate acid). In addition, application of various physical
phenomena, such as host-mediated basicity shifts [115] may even further increase amine
basicity. Following these premises, novel classes of superbases have been designed:
polyimines, cyclopropeneimines, quinodiimines, polycyclic quinines, carbonyl poly-
enes, [3]carbonylradialenes, iminopolyenes, poly-2,5-dihydropyrrolimines, acenes,
zethrenes, pyrones and pyrone-like structures, N-substituted azacalix[n](2,6) pyridines,
subporphyrins [116], polypyridine macrocycles and bases possessing S¼N functional
group (Chapter 11). The success of themolecular designwill be completed by synthesis of
novel bases, preferrably by simple synthetic procedures, possessing chemical stability,
solubility in common organic solvents and, above all, high kinetic activity.
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Amidines in Organic Synthesis
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3.1 Introduction

Amidines are the nitrogen analogues of carboxylic acids and contain two nitrogen atoms in
amino and imino groups. Amidines are widely used for the constructions of nitrogen-
containing heterocycles because of the functional units of biologically and medicinally
importantcompounds[1].Then� pconjugatedheteroallylicsystems,isoconjugatabletothe
allyl ions resulting in cross-conjugated (or Y-conjugated) hetero p-systems [2], control the
total functionality of amidine as bases and/or nucleophiles in organic reactions (Figure 3.1).

Benzamidine reacts with p-nitrophenyl acetate in chlorobenzene at least 15 000 times
faster than n-butylamine, which has a basicity similar to that of benzamidine. This reactivity
is attributable to bifunctional nature of the nucleophile, which can concertedly attack the
carbonyl carbon of the ester and deliver a proton to the carbonyl oxygen (Scheme 3.1) [3].

The bifunctional character allows for amidines to catalyse the transfer of two hydrogen
atoms in allylic rearrangement and enolization (epimerization) through formal intermo-
lecular 1,3-sigmatropic shifts (Scheme 3.2a). However, monofunctional 1,3-rearrangement
is possible, too, and thus amidines can also operate as monofunctional catalysts
(Scheme 3.2b). These modes of reaction are dependent upon the conditions and/or the
amidine substrates used [1a].

On the other hand, in the 1960s sterically hindered bicyclic amidines, 1,8-diazabicylo
[5.4.0]undec-7-ene (DBU) (1) and 1,5-diazabicylo[4.3.0]non-5-ene (DBN) (2), were
introduced as useful dehydrohalogenation reagents in the synthesis of vitaminA. Treatment
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of halotetraene with DBN (2) in benzene gave a conjugated pentaene, in which a newly
introduced double bond has Z-configuration [4] (Scheme 3.3). DBN (2) was found to be the
most suitable dehydrohalogenation reagent among organobases examined.

DBU (1) and DBN (2) are originally synthesized from cyclic lactams by three steps of
Michael addition of acrylonitrile, reduction with Raney nickel, and treatment with p-
toluenesulfonic acid (TsOH). Thus, DBN (2) was prepared in 69% overall yield [4]
(Scheme 3.4).
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These amidines have been extensively applied to dehydrohalogenation in organic
synthesis and in some cases DBU (1) is more effective than DBN (2) [5]. A double bond
can be also introduced into organic molecules by elimination of sulfonate ester instead of
the halogen atom (i.e. dehydrosulfonation in addition to dehydrohalogenation). Further-
more, these amidines can be applied to the Wittig reaction [6], aldol condensation [6], 1,3-
allyl rearrangement [7] and epimerization of the b-lactam skeleton (at C6 of the penicillic
acid derivatives). Sterically hindered phenols (e.g. 2,6-di(tert-butyl)-4-fluorophenol) are
O-acetylated with DBU (1), which is superior to sodium hydroxide in the synthesis [8].

The related 6-6 bicyclic system, 2,10-diazabicyclo[4.4.0]dec-1-ene (3), was prepared
from trans-decahydro-1,8-naphthyridine [9] andanalternativemethodviadirect cyclization
of bis(3-aminopropyl)malonic acid was developed for large scale operation [10]. Heinzer et
al. [11] reported the preparation of a sterically strongly hindered bicyclic amidine, 3,3,6,9,9-
pentamethyl-2,10-diazabicyclo[4.4.0]dec-1-ene (Eschenmoser amidine) (4) (Figure 3.2)
and itsN-alkylated analogues and their potential uses in the formations of salts of carboxylic
acids and related proton complexes of bidentate ligands (Section 3.3.8) [11b].

The efficiencies of DBU (1) and DBN (2) as sterically hindered (non-nucleophilic) and
strong organobase catalysts have been widely demonstrated [5]. However, Reed et al. [12]
claimed that they could behave as strong nucleophiles in the reaction of chlorobis
(diisopropylamino)phosphane and DBU (1) or DBN (2).

Modification of the amidine function to chiral versions has been examined. For example,
C2-symmetrical chiral bicylic amidine 5was prepared for studies on molecular recognition
and were proven to differentiate analytically between the enantiomers of chiral carboxylic
acids [13]. Near the same time, a mannose-based amidine 6 was synthesized as a potential
mannosidase inhibitor, but not a chiral auxiliary [14]. Three enantiopure hydroxyl
substituted amidines 7 of the DBN-type were synthesized from 5-(phenylsulfonyl)pyrror-
idine-2-one by an oxazaborolidine-catalysed reductive desymmetrization of meso-imide
followed by functionalization through N-acyliminium ion [15] (Figure 3.3).
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Numerous applications have been found for the uses of imidazole derivatives as ionic
liquids and N-heterocyclic carbenes and their use in organic chemistry has been well
discussed in books or reviews. Thus, in this chapter, the use of non-heteroaromatic amidine
compounds as functional tools in asymmetric synthesis and the related chemistry after
presentation of the preparation method of amidines will mainly be discussed.

3.2 Preparation of Amidines

Amidines can be basically synthesized by manipulation of carboxaminde or its analogues.
In this section, preparation methods based on the mode of the reactions are given in
alphabetical order.

3.2.1 Alkylation of Amidines

Cyclic amidines are prepared by alkylation of acylic amidines [16]. Bromoamination of
olefins by N-bromosuccinimide (NBS) and cyanamide (NH2CN) affords b-bromoalkyl-
cyanamides. Chemoselective hydrogenation of the nitrile function leads to acyclic amidines
followed by spontaneous cyclization to yield cyclic amidines, which are hydrolyzed under
basic condition to give 1,2-diamines (Scheme 3.5).
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Cyclic sulfate is transformed to cyclic amidine [isoamarine (8)] by reaction with
phenylamidine [17]. The cyclic amidine is hydrolyzed after acetylation to give chiral
1,2-diphenylethylenediamine, a useful chiral building block (Scheme 3.6).

3.2.2 Condensation of 1,2-Diamine

Cyclic amidines are prepared by the condensation of 1,2-diamines and b-ketoester
derivatives [18]. Reaction of N-monomethyl-1,2-diamine and formylacetate acetal in the
presence of an acid catalyst such as hydrochloric acid (HCl) or p-TsOH initially forms
amidines by cyclocondensation. Elimination of ethanol to ethoxyvinyl amidine, followed
by incorporation of a different 1,2-diamine, furnishes 1,3-dimethyl- and 1-butylimidazo-
lidines (Scheme 3.7). This reaction is applied to the preparation of several kinds of diamines
as a key step [19].

3.2.3 Coupling of Imines (Isoamarine Synthesis)

A sequence of hydrobenzamide–amarine–isoamarine (8) is one of the useful synthetic
routes for C2-symmetric 1,2-diamines through cyclic amidines (Scheme 3.8). The reaction
course is proposed as follows: (i) formation of hydrobenzamide from benzaldehyde and
ammonia, (ii) trimeric condensation to amarine, and (iii) isomerization to isoamarine (8)
under basic condition [20] (path A). Corey and Kuhnle [21] proposed an alternative path
for the reaction course (path B) based on characterization of each intermediate. This
amidine is found to be rather stable to acid-catalysed hydrolysis. Thus, reduction of
isoamarine (8) to imidazolidine with aluminum amalgam in wet tetrahydrofuran (THF)
followed by acid hydrolysis yields the corresponding 1,2-diamine.
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3.2.4 Modification of Amide Derivatives

3.2.4.1 Amide

As described in the preparation ofDBN (2) in Scheme 3.4, themost fundamentalmethod for
the synthesis of amidines is the dehydration reaction of amide and amines. However, severe
conditions such as high temperature and/or pressure are normally required.

3.2.4.2 Imidate

Imidates derived from nitriles and alcohols are also effective precursors for the preparation
of amidines. For example, furamidine, known as an active compound towards parasitic
microorganisms and DNA minor groove binder [22], and its derivative DB-181, were
synthesized from nitrile via the corresponding imidate [23] (Scheme 3.9).

Chiral N-sulfinylamidines are prepared from chiral sulfonamides through N-sulfinyli-
midates [24]. The resultant amidines react with excess amounts of imidates to be able to
furnish iminoamidines (Scheme 3.10). Cyclic amidines are also synthesized from the same
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sulfonamide by treatment with g-bromoorthobutanoate followed by azidation and reduc-
tion. These bisamidines are used as chiral ligands for the copper-catalysed enantioselective
Diels–Alder reaction [24a].

Bicyclic amidines are synthesized from aziridines and cyclic imidates [25]. Thus, NH-
aziridines react with cyclic imidates in the presence of a small amount of ammonium
bromide to give aziridinylamidine, which is treated with iodine (I2) to give bicyclic
amidines. The use of 2-methylaziridine results in the introduction of methyl group at
position 2 of the bicyclic amidine product. The mechanism proposed is shown in
Scheme 3.11, which involves iodine-induced ring opening of aziridine and recyclization
of the resultant iodoethylamidine.

3.2.4.3 Haloiminium Salt

One-step conversion of N-(o-azidoalkyl)lactams to bicyclic amidines, avoiding the protec-
tion–deprotection sequence on the amine part, is explored by applying the intramolecular
Staudinger-type reaction [26]. Oxalyl chloride [(COCl)2] and bromide [(COBr)2] are found
to be effective trigger reagents and the corresponding bicyclic amidines are produced in high
yield (Table 3.1).

DBN (2) is prepared in 92% yield by treatment of N-(3-azidopropyl)-g-lactam with
oxalyl bromide after quenching with anisole (run 3). A trace of the reaction by IR spectrum
suggests the formation of a bromoiminium intermediate, which spontaneously cyclizes to
the bicyclic system through either 1,2-addition (path A) or [3þ 2]cycloaddition (path B)
(Scheme 3.12).

N

EtO

H
N

R
N

N

R

I2

acetone

reflux

N

N

RI

I

N

N

R

a: R = H (74%)

b: R = Me (71%)

Scheme 3.11 Synthesis of cyclic amidines from imidate and aziridines

Table 3.1 Synthesis of DBN (2) from N-(3-azidopropyl)-g-lactam

N

O

N3

N

N
reagent

solvent

DBN (2)

Run Reagent Solvent Yield (%)

1 Ph3P or Bu3P xylene <10
2 (COCl)2 DCM 81
3 (COBr)2 (CH2Cl)2 92
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3.2.4.4 Thioamide

Thioamides are used as more reactive precursors than amides for amidine synthesis. Lawesson
reagent is normally used for conversion of amide to thioamide. Preparation of an amidine-type
mannosidase inhibitor 6 is shown as a representative example [14] (Scheme 3.13).

(COBr)2

N

Br

N3

bromoanisole

anisole

Br- N+

N
Br

N

O

N3

N

N

DBN (2)

Br-

N
N

Br

N2

+

1,2-addition

path A

Br-

N
N

Br

N
N

path B

retro [3+2] 
cycloaddition

[3+2] cycloaddition

- N2- N2

Scheme 3.12 Proposed reaction mechanisms for the synthesis of bicyclic amidine from
haloiminium salt
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Diazabicyclo[4.3.0]nonene-based peptidomimetics with a quaternary chiral centre are
prepared via intramolecular condensation of N-aminopropyl-g-lactam [27]. Reductive
amination of oxazolidinone aldehydes with N-monoprotected propylenediamine give
N-phthalimidopropyl lactams; however, trials of cyclization to bicyclic amidines after
deprotection under dehydration conditions are unsuccessful. To solve this problem,
the phthalimides are converted to thiolactams with Lawesson reagent. Deprotection
followed by treatment with mercury (II) chloride (HgCl2) yields desired cyclic amidines
(Scheme 3.14).

BnNH2

DCM

HCl
NH

HO

HO NHBn

HO OH

Cl-

X = O
X = S

Lawesson's reagent

NH

O

O X

O O

Me

Me

MeMe

N

O

O

O O

Me

Me

MeMe

NHBn

Bn = CH2Ph

MeOH

6

Scheme 3.13 An example of conversion of thioamides to amidines

O

O

CbzN

Ph

CHO

Me

H2N NPhth

Lawesson's reagent
PhMe

NH2NH2· H2O

NH2NH2

HgCl2
THF

R = NPhth
R = NH2

NaBH3CN
AcOH, NaOAc
MeOH

Δ

HCl

75%

R = NPhth

R = NH2

N R

O
Me

CbzNH

N NPhth

S
Me

CbzNH
N NH2

S
Me

CbzNH

N
Me

CbzNH

N

40%

67%

Scheme 3.14 Synthesis of bicyclic amidine on cyclization of N-aminopropyl-g -thiolactam
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3.2.4.5 Thioimidate

Activation of thioamides to thioimidates with alkylation is also applied to the synthesis of
amidines. Dijkink et al. [28] applied this method to the synthesis of chiral bicyclic amidines
from (S)-malic acid as a key step. However, the amidine was found to be unstable due to
isomerization of the imine double bond followed by elimination of the silyloxy group
(Scheme 3.15).

g-Lactam, which is derived from pyroglutamic acid by reduction, protection of the
hydroxy group and conjugate addition to acrylonitrile, is subjected to a similar synthetic
route to afford a desired amidine [15] (Scheme 3.16). Intermolecular hydrogen bonding
between hydrogen on the hydroxy group and imino nitrogen was observed by X-ray
crystallographic analysis.

3.2.5 Multi-Component Reaction

Multi-component reaction for the preparation of a variety of compounds in a single step is a
powerful tool in combinatorial chemistry and drug discovery. Reaction of cyclohexyliso-
nitrile and isobutyraldehyde inmethanol in the presence of dimethylamine hydrochloride as
a weak acid catalyst produces N-cyclohexyl-a-dimethylaminoisovaleramide and the
corresponding a-hydroxy compound [29] (Scheme 3.17). a-Aminoamidine is obtained
as a sole productwhendimethylamine is added as a nucleophile.Keung et al. [30] optimized
the reaction conditions using variousmetal catalysts. Scandium (III) triflatewas found to be
the best catalyst and tolerant to a wide variety of amine and aldehyde units.

N-Sulfonylamidines can be prepared by three-component coupling [31] of alkynes
(R1¼ alkyl, aryl or silyl), sulfonyl azide and amine, which is known as �click chemistry.�
[32] The use of alkyl azides in place of sulfonyl azidewithout a copper catalyst results in the
formation of 1,2,3-triazoles (Scheme 3.18). This reaction shows substrate tolerance to each
component. Reaction with an optically active amino ester is performed without racemiza-
tion.N-Boc-ynamide (R1¼NPhBoc) can act as the alkyne component in the synthesis ofN-
Boc-aminoamidines [33].

A step-wise procedure for the preparation ofN-sulfonylamidines viaN-sulfonylimidates
has also been reported [34]. Similar multi-component reaction using alcohols gives N-
sulfonylimidates, which are converted to N-sulfonylamidines by treatment with primary
and secondary amines in the presence of catalytic amount of sodium cyanide (NaCN) [24a]
(Scheme 3.19). This indirect process sometimes shows a better yield than the above direct
method: for example, the one-pot reaction of phenylacetylene (R1¼ Ph), p-toluenesulfonyl
azide (R2¼Ts) and morpholine (2R3¼CH2CH2OCH2CH2) provides amidines in 19%
yield, whereas product is obtained in 72% yield in the step-wise procedure via imidate
(R4¼Me).

o-Alkynylamines can be used as a combined component of alkyne and amine, in which
two kinds of cyclic amidines are formed dependent upon the conditions used [35]
(Table 3.2). When 5-amino-1-pentyne is reacted in the presence of copper catalyst, a
five-membered amidine is obtained as a major product with the loss of one carbon (run 1).
On the other hand, reaction using 6-amino-1-hexyne in the presence of rhodium [Ru(III)]
catalyst affords a six-membered amidine as a major product (run 2).

This selectivity could be rationalized as follows: a stable exo-methylene pyrrolidine
from alkynylamines (n¼ 1) reacts with TsN3 to give spirotriazoline 9, which liberates
diazomethane (CH2N2) to furnish a five-membered amidine, whereas a bicyclic triazoline
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OHO2C

1. CoCl2, NaBH4

    MeOH, NH3

2.  (Boc)2O

1. MeOH, SOCl2
2. NaBH4

3. Th(CH3)2SiCl
(96% for silylation)

N

NHBoc

O
Th(H3C)2SiO

N
H

O
Th(H3C)2SiO

CH2=CHCNcat. NaOH

N N
HO

N

CN

O
Th(H3C)2SiO

96%

70%

3.  MeI
4.  TFA1. Lawesson reagent

2.  TBAF (76%) 5. NaOH 55%

Scheme 3.16 Synthesis of bicyclic amidine from (S)-pyrroglutamic acid
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X
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NMe2

X= NMe2 (32%)
X= OH (32%)

70%

Me2NH HCl
MeOH

Me2NH
iPrCHO

Me2NH HCl
MeOH

iPrCHO

Scheme 3.17 Multicomponent reaction of isocyanide, dimethylamine and aldehyde

R1 R2 N3

H
N

R3 R4

THF THF

N
N

N

R1

R2

R1

NTs

R4
N

R3

+ +

CuI
 (5 mol%)

R2 =Ts, alkyl, aryl
59 – 99%

on R2 = Ts on R2 Ts≠

Scheme 3.18 Multicomponent reaction of alkynes, N-sulfonylazides, and amines
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10, derived from alkynylamines (n¼ 2) through dehydropiperidine, is transformed to a six-
membered amidine by sequential reactions of N�N bond cleavage and methyl-migrated
rearrangement together with the release of nitrogen N2 (Scheme 3.20).

3.2.6 Oxidative Amidination

On the development of copper-catalysed olefin aziridination, Evans et al. [36] reported
oxidative amidine formation. Treatment of cyclohexene, a less reactive substrate towards

R1 R2 N3 R4 OH R1

NR2

R4
O

H
N

R3 R3

Et3N, CHCl3 NaCN (20 mol%)

MeOH

R1

NR2

R3
N

R3

++

CuI
(10 mol%)

Scheme 3.19 Step-wise procedure for the preparation of N-sulfonylamidines via N-
sulfonylimidates

Table 3.2 Preparation of cylic amidines by o-alkynylamines and tosyl azide

H
N

Bn

Ts-N3

THF N
Bn

NTs
R

+
cat.

n n

R = H or Me

Run n Catalyst Yield (%) R¼H/R¼Me

1 1 CuI 63 3.1/1
2 2 Ru3(CO)12 75 1/8

N
Bn

TsN3

H
N

Bn

N
Bn

Me

N
Bn

N
N

N
Ts

N
Bn

Me

N

NN

Ts

- CH2N2
N

Bn

NTs

N
Bn

Me

N-

N2

Ts
N

Bn

NTs

Me

n

cat
n = 1

cat
n = 2

TsN3

+

- N2

9

10

Scheme 3.20 Proposed mechanisms for the selectivity on formation of amidines
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aziridination, and a stoichiometric amount of (N-tosylimino)phenyliodinane (PhI¼NTs)
in acetonitrile in the presence of a catalytic amount ofmanganese (III) tetraphenylporphyrin
perchlorate [Mn(TPP)ClO4] gives N-tosylamidine. In this reaction a metal–imido inter-
mediate is initially formed from Mn(TPP)ClO4 and PhI¼NTs, and then three sequential
reactions – [2þ 2] cycloaddition with acetonitrile (MeCN) [37], rearrangement to imino-
nitrenide and insertion at the allylic position of cyclohexene – occur (Scheme 3.21). Use of
Mn(TPP)ClO4 gives the desired N-tosylamidine in 63% yield, whereas the corresponding
chloride [Mn(TPP)Cl] gives a lower yield (27%).

3.2.7 Oxidative Cyclization to Bisamidine

Bicyclic bisamidines can be prepared from trans-N,N0-dimethyl-1,2-diaminocyclohexane
and a palladium bis(arylisocyanide) complex [38] (Scheme 3.22). Oxidation of the
initially-formed palladium bis(acyclic diaminocarbene) complex with air or idosobenzene
(PhI¼O) followed by treatment with excess amounts of methylisonitrile (MeNC) yields
bicyclic bisamidines. The structure of the product obtained in each step is unequivocally
determined by X-ray crystallographic analysis.

3.2.8 Ring Opening of Aziridine

3.2.8.1 Aziridine

Lewis acid catalysed [3þ 2] cycloaddition ofN-alkoxycarbonylaziridines and cyanoalkane
such as MeCN furnishes 2-imidazolidines [39] (Scheme 3.23). Although ring-fused
aziridines are useable as substrates, cis-stereochemistry in the ring juncture is isomerized
to trans-stereochemistry in the bicyclic amidine products. Benzonitrile also serves as a
nitrile source.

Application to chiral N-acylaziridine-2-carboxylate gives the corresponding chiral 2-
imidazolidine with the retention of configuration [40] (Scheme 3.24). This implies that the

PhI=NTs [ X(TPP)Mn=NTs ]

X(TPP)Mn
N

N

Ts

Me

N
H

N

Me

Ts

X(TPP)Mn N

Me

NTs

63%

MeCN [2+2] cycloaddition

Mn(TPP)X
(5-10 mol%)

X = ClO4

Scheme 3.21 Oxidative amidination of cyclohexene with PhI¼NTs and acetonitrile
catalysed by Mn(TPP)ClO4
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Scheme 3.22 Synthesis of bicyclic bisamidine fromdiamine and palladium isonitrile complex
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R2

CO2R3
BF3·OEt2

MeCN
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R2 N

N

CO2R3

Me

a: R1 = H, R2 = Ph, R3 = Me (82%)

b: R1, R2 =-(CH2CH2CH=CHCH2CH2), R3 = Et (67%)

c: R1, R2 = (CH2)4, R3 = Et (45%)

Scheme 3.23 Synthesis of cyclic amidines from aziridines and acetonitrile

N

H3CO2C

COMe
BF3

MeCN Me N
N
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Scheme 3.24 Chiral cyclic amidine from N-acylaziridine-2-carboxylate and acetonitrile
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aziridine ring is opened by nucleophilic attack of nitrile at the less-hindered position 3 and
the formed ynimium is recyclized. As a Lewis acid catalyst, trimethyloxonium tetrafluor-
oborate (Meerwein reagent) (Me3O

þBF4
�) [41], scandium triflate [Sc(OTf)3] [42] and

cupric triflate [Cu(OTf)2] [43] are also effective, among which Cu(OTf)2 could be
recommended because of easy handling and wide applicability to aziridine substrates.

3.2.8.2 Zirconaaziridine

Carbodiimides are potential nitrogen sources for amidines [44]. Zirconaaziridines, gener-
ated in situ from amines, butyllithium (BuLi) and bis(Z5-cylopentadienyl)methyl
(trifluoromethanesulfonyl)zirconium [Cp2ZrMe(OTf)], are efficiently trapped by carbo-
diimides. Zirconacycles 11, produced by insertion of carbodiimides into the Zr–C
bond of zirconaaziridines, are supposed to be key intermediates, which are hydrolyzed
to give a-aminoamidines (Scheme 3.25).

3.3 Application of Amidines to Organic Synthesis

3.3.1 Acetoxybromination

Isoamarine (8), acyclic amidine, isused for the transferofelectrophilicbromine fromNBSto
vinylarenes [45]. Thus, styrene is acetoxybrominated with NBS in the presence of catalytic
isoamarine(0.01equiv.) inaceticacid(AcOH)toaffordabromoacetate in95%yield.Asingle
anti-diastereoisomer is obtained when the 2-substituted derivative is used (Scheme 3.26).

The catalytic cycle shown in Scheme 3.27 is proposed, in which isoamarine acts as an
electrophilic bromine carrier from NBS. A related brominated 2-phenylamidine, which is

N
Cp2Zr

Ar

Ph

N
C

N

TMS

TMS

Ar N
H

Ph

THF

N
Cp2Zr

Ar

Ph
O

1. BuLi
2. Cp2ZrMe(OTf)

Ar = p-tBu-C6H4

TMS-N=C=N-TMS N
Cp2Zr

N N

Ar
Ph

TMS

TMS

Et 2O

H2N

HN

NH

Ar

Ph

HCl
91%

HCl

11

Scheme 3.25 Insertion of carbodiimides to zirconaaziridines for the preparation of
aminoamidines
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also proven to be a bromine donor, is analyzed by X-ray crystallography. Unfortunately,
chiral induction has never been observed in the reaction using enantiopure isoamarine.

3.3.2 Aldol-Like Reaction

DBU (1) and DBN (2) promote extremely the reaction between chloroform and benzalde-
lyde to give trichloromethylcarbinol [46] (Scheme 3.28). An equimolar amount of base is
required practically. The reaction is applied to a range of aromatic and aliphatic aldehydes
and ketones and is also promoted by a guanidine base.

The DBU (1)-promoted intramolecular aldol condensation of two partially protected L-
lyxo-hexos-5-ulose derivatives, in turn obtained from methyl b-D-galactopyranoside, takes
place with fairly good yield and complete diastereoselectivity to give b-hydroxyinososes
[47] (Scheme 3.29).

Ar

NBS, AcOH
CDCl3

Ph
Ar

OAc

Br

Ar
Br

OAc
Ph Ph

N NH

Ph

Br

OAc

isoamarine (8)
(0.01 equiv)

Ar = Ph, 2-naphthyl 95-100%

96% 93%

isoamarine (8)

(a) On monosubstituted derivatives

(b) On disubstituted derivatives

Scheme 3.26 Isoamarine (8) catalysed acetoxybromination of olefins by NBS
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Ph

Ph Ph

N N

Ph
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N
OO
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N
OO

H

isoamarine (8)

Scheme 3.27 Proposed catalytic cycle of isoamarine (8) catalysed acetoxybromination
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Nucleophilic addition of acyldiazomethane to aldehydes or imines is one of the methods
for preparing a-hydroxy- or a-aminoacyldiazomethanes. Stoichiometric amounts of rather
strong bases such as BuLi, lithium diisopropylamide, sodium hydride (NaH), potassium
hydroxide and so on are frequently required. DBU (1) was found to be an effective catalyst
in this reaction under milder conditions without using anhydrous conditions [48]
(Scheme 3.30). Moderate to high yields (58–97%) are achieved on the reaction of a-
diazoacetate (R1¼OEt) with aromatic and aliphatic aldehydes. The reaction with electron-
rich aromatic aldehydes such as p-anisaldehyde was sluggish. a-Diazoacetate (R1¼ Ph,
Me) reacts only with electron-poor aromatic aldehydes (R2¼m-CF3-C6H4, m-NC-C6H4).
N-Tosylimides (R3¼Ts) are also promising electrophiles and the corresponding b-(N-
tosylamino)-a-diazoesters or ketones (R3¼Ts) are obtained. This reaction system can be
carried out under aqueous conditions [49].

3.3.3 Azidation

Evans et al. [50] examined the DBU (1)-mediated azidation of a-hydroxy ester with
phosphoryl azides and found that the amount of DBU (1) is critical for asymmetric
induction (Table 3.3). In the reaction with bis( p-nitrophenyl)phosphoryl azide in DMF, the
use of 1.2 equiv. of 1 resulted in the production of azide with 80% ee (run 5), while product
was obtained with less than 2% racemization and in good yield when 0.95 equiv. of 1
was used.

DBU (1) (1 equiv)

CHCl3 R1 = Ph, R2 = H (98%)
R1 = Pr, R2 = H (80%)
R1 = R2 = Me (75%)

CCl3

R2

OH

R1

R2

O

R1

Scheme 3.28 Amidine mediated trichloromethylcarbinol synthesis

DBU (1) (cat)

R = H (67%); R = Bn (58%) 
from glycosides

HO OBn

OH

OBnO

ROCHO

HO OBn

OBnO

RO
toluene-DCM

O

HO OBn

OMe

BnOCH2
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OMe

CF3CO2H

MeCN-H2O

Scheme 3.29 DBU (1) promoted intramolecular aldol reaction
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-
+
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+

Scheme 3.30 DBU (1) catalysed addition of acyldiazomethane to aldehyde or imine
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Table 3.3 DBU (1) catalysed azidation

OH

CO2Et

solvent, 50 ˚C, 18 h

azide, DBU (1)

97% ee

N3

CO2Et

Run Azidea Solvent 1 (equiv.) Yield (%) ee (%)

1 DPPA toluene 1.2 63 0
2 DPPA toluene 0.95 61 20
3 (NO2)2DPPA toluene 1.2 86 83
4 (NO2)2DPPA THF 0.95 60 93
5 (NO2)2DPPA DMF 1.2 81 80
6 (NO2)2DPPA DMF 0.95 72 >95

aDPPA¼diphenyl phosphoryl azide; (NO2)2DPPA¼ bis(p-nitorphenyl) phosphoryl azide.

3.3.4 Aziridination

Chiral cyclic and acyclic allylsulfoxonium ylides are generated from sulfoxonium-substi-
tuted g,d-unsaturated a-amino acids (method A) and 1-alkenylsulfoxonium salts (method
B) upon treatment with DBU (1) [51] (Scheme 3.31). Their application to the asymmetric
aziridination of N-tert-butylsulfonyl imine ester, generated either in situ (method A) or
externally added (method B), affords the corresponding alkenylaziridinecarboxylate with
medium to high diastereoselectivity and enantioselectivity.

3.3.5 Baylis–Hillman Reaction

Amidines catalyse the Baylis–Hillman reaction [52]. A novel one-pot synthesis-kinetic
resolution process involving a DBU (1)-catalysed Baylis–Hillman reaction and a subse-
quent pyridine catalyst/DBU (1)-mediated enantioselective acylation has been developed
[52a] (Scheme 3.32).

3.3.6 Cycloaddition

Enantioselective [3þ 2] cycloaddition of nitrile imines, which are generated in situ by
dehydrobromination of hydrazonyl bromides with N-crotonyloxazolidinone, has been
developed. On N-arylhydrazonyl bromides, tertiary amines such as triethylamine (Et3N),
diisopropylethylamine (iPr2NEt) and N-methylmorpholine (NMM) give excellent yields
(90%) and selectivity (94–99% ee). 1,4-Diazabicyclo[2.2.2]octane (DABCO) gives good
selectivity (98% ee) but reduced yield (51%), while both yield and enantioselectivity are
inferior with DBU (1) (60%, 80% ee) and pyridine (37%, 79% ee). However, dehydro-
bromination of N-benzylhydrazonyl bromide did not proceed in the presence of iPr2NEt.
Use of DBU (1) enables dipole formation, giving the cycloadduct in 57% yield and 94% ee
[53] (Scheme 3.33).
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A combination of lithium bromide (LiBr) and DBU (1) catalyses regio- and stereospe-
cific cycloaddition [54]. Imines of aminopyradazino[1,2-a][1,2]diazepine react with a
range of achiral and chiral dipolarophiles in the presence of LiBr and DBU (1) in MeCN to
afford enantiopure spiro-cycloadducts in excellent yield via lithio azomethine ylides [54b]
(Scheme 3.34).
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Scheme 3.31 DBU (1) mediated aziridination through allylsulfoxonium ylides
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Scheme 3.32 DBU (1) catalysed Baylis–Hillman reaction and kinetic resolution
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3.3.7 Dehydrohalogenation

Regioselective introduction of a bromine atom to a double bond in the substituted vinyl
sugar is achieved by bromination with pyridinium tribromide and debromination with
DBU (1) [55] (Scheme 3.35). E-configuration of the product is expected from a specific
anti-addition in the bromination of the E-alkene followed by on E2 (anti-elimination)
process.

3.3.8 Deprotection

In the chemistry of b-lactam antibiotics, isolations of carboxylic acid derivatives are
successfully achieved by formation of amidinium salts [56]. Lewis acid catalysed reaction
of 4-substituted 1-trimethylsilyloxyfurans with 4-acetoxyazetidinone chiron leads to
highly enantioselective construction of tricyclic carbapenam and penems, in which DBU
(1) and Eshenmoser amidine (4) were used for the introduction of the exo double bond on
the b-lactam skeleton by demesylation (A route) and the isolation of carboxylic acids as

+ N
NH

Bn

1. ligand  (30 mol%)
    Mg(NTf2)2 (30 mol%)
    DBU (1) (1.5 equiv)
    MS 4A, CHCl3
    -78 ˚C ,  6 h

2. NaBH4, THF-H2O

Me

O

NO

O
Ph

NN

Me

Ph Br
Bn

HO

NN

57% (94% ee)

ligand

Scheme 3.33 DBU (1) mediated [3þ 2] cycloaddition
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R = 2-naphthyl (82%)
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Scheme 3.34 DBU (1) mediated 1,3-dipolar cycloaddition

2. DBU (1), THF

1.pyridinium tribromide
    dioxane,  rt, 8 hO

O O
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70%

Scheme 3.35 DBU (1) mediated regioselective introduction of bromine atom to double bond
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crystalline amidinium salts with 4 in the deprotection of the benzyloxycarbonyl function (B
route), respectively [56b] (Scheme 3.36).

3.3.9 Deprotonation

Chiral allyl alcohols are obtained from meso-epoxides by treatment with bases [57–59].
Addition of amidines like DBU (1) alters the reactivity and the enantioselectivity in the
epoxide rearrangements, in which 1 is lithiated and works as a bulk base (a catalyst-
regenerating base) as well as being a strong solvating agent [59] (Figure 3.4). NMR studies
using isotopically labeled chiral lithium amide and lithiated DBU show the formation of a
mixed dimer.
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Scheme 3.36 The use of amidines in the b-lactam chemistry
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Figure 3.4 NMR-supported mixed dimer containing DBU (1)
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3.3.10 Displacement Reaction

DBU (1) was used as a base in the dehydrochlorination/ring closure of chiral chlorohydrins
with high retention of optical purity [60]. N-Acyl-b-hydroxy-4-phenyloxazolidinethiones
are rapidly converted into the corresponding ethyl thioesters in high yields by treatment
with ethanethiol (EtSH) in the presence of a catalytic DBU (1) [61] (Scheme 3.37). Thus,
the chiral auxiliary could be removed cleanly and non-destructively.

3.3.11 Horner–Wadsworth–Emmons Reaction

TheWittig reaction of 4-oxopiperidinewith ethoxycarbonyl triphenylphosphoniummethy-
lide either did not occur or conversion was extremely low depending on the reaction
conditions; for example, potassium tert-butoxide (tBuOK) (excess). The use of tBuOK (2.8
equiv.) gives the best isolation of 15%of theE-derivative after 43 h reflux in toluene. On the
other hand, the Horner–Wadsworth–Emmons (HWE) reaction using excess amounts of
triethyl phosphonoacetate and DBU (1) [or DBN (2)] occurred in the presence of lithium
chloride to give a diastereoisomeric E/Zmixture, in which the E-alkene is predominant and
unexpected epimerization at position 2 in the product caused by possible deprotonation at
position 3 with the organobase followed by ring opening and recyclization is observed [62]
(Scheme 3.38).

3.3.12 Intramolecular Cyclization

Alkylidene phthalides are produced from 5-exo-dig cyclization of o-alkynylbenzoic acids.
However, concomitant generation of isocoumarins via 6-endo-dig cyclization is normally
problematic [63].

Cyclization of o-alkenylbenzoic acid catalysed with organobases affords the phthalide
through 5-exo mode regioselectivity in good to excellent yields [64]. Among the bases
examined, DBU (1) exhibits the highest catalytic activity, 5mol% of 1 is sufficient to
promote completion of the reaction and 1 displays an excellent performance in highly polar
solvents such as MeCN and DMSO (Table 3.4).

3.3.13 Isomerization

DBU (1) effectively works in the isomerization of the condensation products from L-
menthonewith salicylamide, which could be a potential chiral 1,3-benzoxazinone auxiliary
[65] (Scheme 3.39).

EtSH (2 equiv), 

DBU (1) (0.19 equiv)

Ph

O

NO

S

92%
Ph

Me

OH

DCM,  0 ˚C ,  0.5 h
Ph

O

EtS

Me

OH

Scheme 3.37 DBU (1) catalysed removal of chiral auxiliary
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OBn
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2

2α / 2β = 92 / 8
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(EtO)2P(O)CH2CO2Et

(3.5 equiv)

LiCl

DBU (1) (10 equiv)

MeCN,  rt, 7 d

78%

Ph3PCH2CO2Et

(2.8 equiv)

tBuOK (2.8 equiv)

toluene, 43 h

15%

Scheme 3.38 Comparison of olefination of piperidone under the basic conditions

Table 3.4 DBU (1) catalysed intramolecular cyclization

MeCN, 80 ˚C

5 mol% DBU (1)

R2 CO2H

R1

R2

O

R1

O
R2

O

O

R1

phthalide
isocoumarin

+

Run R1 R2 Time (h) Phthalide (%) Isocoumarin (%)

1 Ph H 2 94 nda

2 p-MeOC6H4 H 4 96 nd
3 p-CF3C6H4 H 24 80 nd
4 1-naphthyl H 5 97 nd
5b Ph Ac 12 79 8
6 Ph OMe 4 99 nd
7c Pr H 12 58 36
8 2-propenyl H 3 65 nd
9 H H 6 83 nd

aNot determined. bDMSO as solvent. c 10mol% 1.
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cis-Oxazole (>99% ee) is also epimerized to trans-oxazole by treatment with a catalytic
amount of DBU (1) (cis:trans¼ 5 : 95,> 99% ee) [66] (Scheme 3.40).

3.3.14 Metal-Mediated Reaction

3.3.14.1 Cobalt

Ketoiminatocobalt complexes catalysed enantioselective Henry reaction in the presence of
organobase to give b-nitro alcohols have been reported. Although iPr2NEt was the most
suitable amine for this reaction, the use of DBU (1) as base accelerated the reaction but no
enantioselection was observed [67]. Bis(triphenylphophoranylidene)ammonium fluoride
(PPNF) was found to be an effective base co-catalyst in the cobalt (III)–salen complex
catalytic asymmetric addition of carbon dioxide (CO2) to propylene oxide giving propylene
carbonate [68] (Scheme 3.41). DBU (1) or the N-methyl analogue also afford good
enantioselectivities (75 and 72% ee, respectively). Thus, these strong and sterically
hindered organobases can act as co-catalysts in this metal-mediated reaction system.
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Scheme 3.39 DBU (1) catalysed isomerization of spiro system
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Scheme 3.41 Asymmetric addition of CO2 to propylene oxide
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3.3.14.2 Copper

Copper(II) catalysed enantioselective decarboxylative aldol-type addition of malonic acid
hemithioesters to aldehydes in the presence of tartaric acid-derived bisbenzimidazole and
an achiral base was examined. The use of DBU (1) as an achiral base resulted in low
enantioselectivity [69].

3.3.14.3 Iridium

A combination of bis(iridiumcyclooctadienyl chloride) [Ir(COD)Cl]2, a chiral phosphor-
amidite ligand, and DBU (1) as a base in THF effects the iridium (I) catalysed intermolec-
ular allylic amidation of ethyl allyl carbonates with soft nitrogen nucleophiles under
completely salt-free conditions [70]. The reaction is quite general, accommodating a wide
variety of substrates and nucleophiles, and proceeds with excellent regio- and enantios-
electivities to afford the branched N-protected allyl amines.

3.3.14.4 Molybdenum

The reaction of molybdenumcyclopentadienyltricarbonyl chloride [CpMo(CO)3Cl] with
optically active amidines affords separable diastereoisomers of the Cp(CO)2Mo-amidinato
complexes, which could act as chiral catalysts, by fractional recrystallization [71]. The
molybdenum configuration is equilibrated at 70 �C in acetone.

3.3.14.5 Nickel

DBU (1) is screened as base co-catalyst for enantioselective Michael additions of mal-
ononitrile catalysed with the aqueous complex of 4,6-dibenzofurandinyl-2,20-bis(4-phe-
nyloxazoline) and nickel perchlorate hexahydrate [72].

3.3.14.6 Palladium

Phosphorous-containing amidine was prepared through several steps from L-valine and
evaluated as a new ligand for asymmetric palladium (Pd) catalysed allylic alkylation of 1,3-
diphenylprop-2-enyl acetate and pivalate [73]. The results with the nucleophile derived
from dimethyl malonate are summarized in Table 3.5 [73a]. Excellent asymmetric
inductions up to 95% ee were achieved along with an efficient conversion.

A new class of chiral amidine-phosphine and -sulfide hydrid ligands with a variety of
modifications is used for the palladium mediated allylic substitutions of both acyclic and
cyclic compounds [74] (Figure 3.5). High levels of asymmetric inductionwere achieved for
both substrates.

Some ferrocenylphosphine-amidine ligands (Figure 3.6)with central and planer chirality
were prepared and their efficiency and diastereomeric impact in the palladium catalysed
asymmetric allylic substitution were examined [75]. Up to 96% ee with 98% yield was
achieved by the use of a ligand with a methyl-substituted ligand.

DBU (1) is often screened in the utility as co-catalyst (or base) in the palladiummediated
coupling reactions [76].

3.3.14.7 Rhodium

DBN (2) is used as a strong, sterically hindered base in the asymmetric hydrogenation of
acetophenone and styrene by a combination of rhodium (I) complex and chiral ligands
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derived from N-substituted diphenylphosphinoacetamides, in which low to moderate
hydrogenating activity and enantioselectivity were obtained [77].

3.3.14.8 Tin

Chiral allylating reagents, readily generated in situ from tin (II) catecholate [Sn(II)
(O2C6H4)], allyl halides, chiral dialkyl tartarates and DBU (1), react smoothly with

Table 3.5 Asymmetric allyic alkylation catalysed by the palladium complex of amidine
ligand

Ph

OR

Ph Ph

CH(CO2Me)2

Ph

CH2(CO2Me)2 BSA, LiOAc

rt[Pd(η3-C3H5)Cl], ligand

BSA = N,O-bis(trimethylsilyl)acetamide

run R Pd (mol equiv) solvent time (h) yield (%) ee (%)

1 COMe 0.05 DCM 48 85 92 (R)
2 COtBu 0.05 DCM 24 99 93 (R)
3 COtBu 0.05 THF 24 91 91 (R)
4 COtBu 0.025 DCM 24 87 94 (R)

eMolar ratio:
Pd/ligand/substrate/CH2(CO2Me)2/BSA/LiOAc¼1–5 : 4–20 : 100 : 300 : 300 : 5.

N N

R1

R3

R2

PPh3

R1 = iPr, R2 = R3 = Me
R1 = tBu, R2 = R3 = Me
R1 = iPr, R2 + R3 =(CH2)n (n = 4, 5)

N N

iPr

Me

Me S

R

R = H, F, OMe

Figure 3.5 Structures of amidine-phosphine and -sulfide hybrid ligand for palladiummediated
couling reaction

NMe2N

MeMe

Fe

PPh3

Figure 3.6 Structure of ferrocenylphosphine-amidine ligand for palladium coupling reaction
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aldehydes or reactive ketones at�78 �C in the presence of a catalytic amount of copper salts
to afford the corresponding optically active homoallyl alcohols in high yield (81–99%) and
high enantioselectivities (89–94%ee) [78].

3.3.14.9 Ytterbium

Achiral ytterbium Lewis acid was prepared from ytterbium triflate [Yb(OTf)3], (R)-(þ)-
1,10-bis(2-naphthol) (BINOL) and DBU (1), and subjected to aza Diels–Alder reactions of
achiral imines (N-benzylidene-2-hydroxyanilines) and achiral dienophiles [79]. In this
reaction the use of a chiral Lewis acid containing 1,3,5-trimethylpiperidine instead of 1
resulted in a lowering of the enantiomeric excess of adduct. Thus, the phenolic hydrogen of
the imine interacts with DBU (1) in transition state, as shown in Figure 3.7, to increase the
selectivity.

3.3.15 Michael Reaction

Four enantiopure hydroxyamidines were prepared from (S)-pyroglutamic acid by coupling
of an (S)-malic acid derived N-allyliminium ion with b-naphthol, and from an (S)-serine-
derived imide [80] (Figure 3.8). Unfortunately, their application to the catalytic Michael
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Figure 3.7 Supposed transition state without triflate anion
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Figure 3.8 Structures of chiral hydroxyamidines
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addition of cyclohexenonewith thiophenol and methyl vinyl ketonewith 1-carbomethoxy-
2-indanone resulted in low asymmetric induction even though the chemical yield was high.

Sterically hindered chiral DBU/DBN-related molecules designed based on (þ)-
camphor lactam were applied to the Michael addition of b-keto ester with methyl
vinyl ketone. However, disappointedly low asymmetric induction was observed [81]
(Figure 3.9).

DBU (1) catalyses the formation of 2H-1-benzopyran from salicylic aldehydes and
allenic carbonyl compounds [82]. This reaction could be categorized as a tandem reaction
composed of Michael and aldol-type reactions. Wide substrate tolerance on the aldehyde
unit is observed. The introduction of a large phenyl group on R2 and use of allenyl ester
diminishes the yield of benzopyrans (Table 3.6).

3.3.16 Nef Reaction

The conversion of primary or secondary nitroalkanes to aldehydes and ketones is known
as the Nef reaction. Strong acidic conditions are normally necessary for this reaction.
Ballini et al. [83] reported that treatment of secondary nitroalkanes with DBU (1) yielded
the corresponding ketone inmoderate yield (54–80%) (Scheme 3.42). No reaction occurred
in the use of primary nitroalkanes. Lower yields were observed when DBN (2) (50%) and
tetramethylguanidine (25%) were used.

Rearrangement in the aci-nitro form to the hydroxynitroso derivative via N-hydroxyox-
aziridine followed by elimination of hyponitrous acid is proposed as the reaction mecha-
nism (Scheme 3.43).

N

Me Me

N

n

n = 1, 2

Figure 3.9 Camphor-derived amidines

Table 3.6 Synthesis of benzopyrans from salicylic aldehydes and allenylic carbonyl
compounds

R1

OH

CHO

R3

R2

O

DBU (1) 
(0.1 equiv)

DMSO R1

O

OH R2

R3

O

+

Run R1 R2 R3 Yield (%) anti:syn

1 H H Me 99 74 : 25
2 5-Me H Me >99 70 : 30
3 3-MeO H Me >99 81 : 19
4 3,5-Cl2 H Me >99 76 : 23
5 H Ph Me 84 anti
6 H H OEt 59 anti

78 Amidines in Organic Synthesis



3.3.17 Nucleophilic Epoxidation

DBU (1) effectively catalyses the epoxidation of a range of enones derived from tetralone or
related cyclic ketones using poly-L-leucine and urea-hydrogen peroxide (H2O2) in isopro-
pyl acetate [84]. Epoxideswere obtained in 63–85%yield and 59–96% ee [84b] (Table 3.7).
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R2

NO2

MeCN

R1

R2

O

DBU (1)
 (1 equiv)

R1, R2 = alkyl

Scheme 3.42 DBU (1) mediated Nef reaction of nitroalkanes
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Scheme 3.43 Proposed reaction mechanism for DBU (1) mediated Nef reaction

Table 3.7 DBU (1) catalysed asymmetric epoxidation

R

O

n

R

O

n

O

isopropyl acetate (1.6 cm3)

 poly-L-leucine (200 mg)

urea-H2O2, (0.12 mmol)

DBU (1) (0.20 mmol)

(0.24 mmol)

Run R n Time (min) Yield (%) ee (%)

1 Ph 1 90 76 84
2 4-BrC6H4 1 72 81 82
3 Me 1 60 66 92
4 tBu 1 192 63 83
5 H 1 7 64 94
6 Ph 0 48 72 88
7 Ph 2 168 74 59
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3.3.18 Oxidation

Strong Lewis bases such as tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP) and DBU (1)
can catalyse the transformation of cinnamaldehyde to saturated carboxylic acids, whereas
mild bases such as triphenylphosphine or tris(4-methoxyphenyl)phosphine give simple
cyanohydrin products [85]. When quenching the reaction with alcohol and amine, the
corresponding ester and amide are produced, respectively (Scheme 3.44).

3.3.19 Pudovik-phospha-Brook Rearrangement

The addition reaction of hydrogen phosphites to aldehydes and ketones is a well known
method for the synthesis ofa-hydroxyphosphonate (Pudovik reaction) [86].When carbonyl
compounds possessing electron-withdrawing groups at the a position (a-dicarbonyl
compounds, perfluoroalkyl aldehydes and ketones, benzophenones, etc.) are used, rear-
rangement of hydroxyphosphonates to phosphates occurs via base catalysed phospha-
Brook rearrangement. El Kaïm et al. [87] found that DBU (1) catalysed the Pudovik-
phospha-Brook reaction of 2-nitrophenyl, 2-pyridiyl or even 1-naphthyl aldehydes (R3¼
H) to give directly the corresponding phosphates. Although no reaction occurred from
acetophenone,methyl 2-pyridiyl ketone (R2¼ 2-pyridyl, R3¼Me) gives the corresponding
phosphonate in 58% yield (Scheme 3.45).

3.3.20 [1,4]-Silyl Transfer

In the course of total synthesis of (�)-rasfonin, skillful DBU (1) mediated rearrangement of
furanolwith concomitant [1,4]-silyl transferwas used for the preparation of pyranol as a key
synthetic fragment [88] (Scheme 3.46).

R1 R1
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O

CHO
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O

R1

OH

CN

TMSCN

1. Lewis base
2. 1N HCl

R1 = H, o-OMe, p-OMe

+

90% with TTMPP (0.2 equiv)
79% with DBU (0.04 equiv)

X = OMe (67%)
X = NMe2 (81%)

+

on R1 = H

1. DBU (1) (0.05 equiv)
2. MeOH or  Me2NH

Scheme 3.44 Oxidation of a,b-unsaturated arylaldehydes under basic conditions
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3.3.21 Tandem Reaction

Chiral decalin systems could be stereoselectively prepared by tandem oxy Cope-ene
reaction of 1,2-divinylcyclohexenol, derived from (þ)-limonene, under microwave irradi-
ation, which is accelerated by an organobase, including DBU (1), tetramethylethylene-
diamine (TMEDA) and tert-butyltetramethylguanidine (BTMG) [89] (Table 3.8). The ee is

P

O

R2 R3

O
+

DBU (1)
(0.1 equiv)

DMF, 80 °CR1O

R1O
H P

O

R1O

R1O

R3

OH

R2 P

O

R1O

R1O
O

R3

R2

70–92%
R1 = Me or Et
R2 = 2-pyridyl, 2-NO2-C6H4, 1-naphthyl
R3 = H

Scheme 3.45 DBU (1) catalysed Pudovik-phospha-Brook reaction
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Scheme 3.46 DBU (1)-induced [1,4]-silyl transfer with ring expansion

Table 3.8 Tandem oxy Cope-ene reaction with various bases.

base (10 equiv)

microwave

Me

HO

H

R

Me

OH

R

H

Me

Me R

OH

toluene

+

R = Me, ee > 98%
R = Ph, ee > 98%

product A product B

Run Base

Product A: yield (ee)a

R¼Me R¼ Ph

1 DBU (1) 60% (93%) 93% (35%)
2 TMEDA 48% (>98%) 86% (>98%)
3 Et3N 36% (96%) 76% (>98%)
4 pyridine 39% (>98%) 36% (>98%)
5 2,6-di(tert-butyl)pyridine decomp. 65% (>98%)
6 DMAP 28% (97%) 75% (>98%)
7 sparteine 57% (>98%) 91% (>98%)
8 BTMG 46% (96%) 98% (>98%)

aR¼Me: product A/product B¼ 15 : 1, R¼ Ph: product A/product B¼� 25 : 1
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dependent on the base used in the cascade process and the electronic nature of the vinylic
substituent on the starting cyclohexenol. On the other hand, the de of the process is
controlled by the conformational preference of macrocycles at the transition state for the
ene reaction.

A convenient and novel one-pot organocatalytic methodology for the stereoselec-
tive synthesis of highly functionalized nitrocyclopropenes has been developed [90]
(Table 3.9). DBU (1) catalyses the addition of dimethyl chloromalonate to a variety
of nitroolefins to afford a Michael adduct, which cyclizes to form the cyclopropane in
the presence of 1 under carefully controlled reaction conditions with outstanding
diastereoselectivity.

3.4 Amidinium Salts: Design and Synthesis

3.4.1 Catalyst

A novel C2-chiral bis(amidinium) salt can be synthesized from 5-(tert-butyl)isophthalic
acid. The salt [tetrakis(3,5-bistrifluoromethylphenyl)borate (TFPB)] contributes to not
only rate acceleration but also asymmetric induction in the Diels–Alder reaction of 1-vinyl-
3,4-dihydronaphthalene and cylopentendione, owing to hydrogen bond mediated associa-
tion of chiral auxiliary with dienophile [91] (Scheme 3.NaN).

3.4.2 Molecular Recognition

Yashima et al. [92] have designed and synthesized novel artificial double helixes, consisting
of two complementary m-terphenyl-based strands intertwined through chiral amidinium–
carboxylate salt bridges. Due to the chiral substituents on the amidine groups, the double

Table 3.9 DBU (1) catalysed cyclopropanation of nitroolefins

NO2
R

R

MeO2C

NO2

CO2Me

1. CHCl(CO2Me)2 (1 equiv)
     DBU (1) (5 mol%), THF, rt, 24 h

2. HMPA  (0.1 M)
     DBU (1) (1 equiv),  rt, 24 h

Run R Yield (%) de (%)

1 Ph 75 >98
2 4-Br-C6H4 73 >98
3 2-NO2-C6H4 72 >98
4 1-naphthyl 72 >98
5 2-thiopheny 71 >98
6 hexyl 70 >98
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Scheme 3.48 Schematic illustration: (a) supramolecular complementary duplex; (b) artificial
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helices adopted an excess one-handed helical conformation in solution aswell as in the solid
state. By extending this molecular strategy, double helices bearing platinum(II) linkers,
which undergo the double helix-to-double helix transformations through the chemical
reactions of the platinum(II) complex moieties, were synthesized (Scheme 3.48).

Furthermore, optically active double helixes are synthesized through a twist-sense bias
induced by a chiral phosphine ligand on one of the complementarymetallostrands followed
by a ligand exchange reaction with an achiral amidine ligand, which replaces the chiral
ligand, to bridge the two strands [93]. The catalyst can efficiently induce asymmetry in the
cyclopropanation reaction of styrene and ethyl diazoacetate.

3.4.3 Reagent Source

A seven-membered amidinium compound can be synthesized from 2,20-diaminobiphenyl
as a seven-membered heterocyclic carbine precursor [94] (Figure 3.10).

Cyclic imidazolinium salts are prepared from acylic amidines through intramolecular
hydroamidiniumation of alkene. Thus, heating alkenyl amidinium salts, obtained by treating
alkenylamidines with a stoichiometric amount of hydrogen chloride, induces ring closure
regioselectively via exo addition of the nitrogen–hydrogen bond to the pendent carbon-
carbon double bond, to give cyclic imidazolinium salts [95] (Scheme 3.49). This synthetic
method is easily accessible to 4,4-disubstituted imidazolidinium salts, potential precursors
for novel N-heterocyclic carbenes and applicable to the synthesis of cyclic iminium salts.

89%

N N Ar

Me

Ar

R
Cl-

N N Ar
Ar

R

+

+

H

N N ArAr

R

H

N N ArAr

1. BuLi

2. R

Br

HCl

24 h

110 ˚C

ex. Ar = 2,6-diiPrC6H3

80%

Scheme 3.49 Preparation of cyclic imidazolidinium salts from acyclic amidines
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N

N

H

R

R

+

BF4
-

Figure 3.10 Structures of seven-membered amidinum compounds
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3.5 Concluding Remarks

The functionality of amidine compounds is attributable to the formation of stable amidinium
species due to the conjugation of a two-nitrogen framework in the molecules after
protonation. It is possible to structurally modify the amidine skeleton by introduction of
substituents on the nitrogen atoms or incorporation of the amidine unit into cyclic systems.
Thus, more sophisticated molecules with unique function could be designed in the future.
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Guanidines in Organic Synthesis

Tsutomu Ishikawa

Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi, Inage,
Chiba 263-8522, Japan

4.1 Introduction

Guanidines can be categorized as organic superbases [1] due to the resonance stability of
their conjugated acids [2] and, thus, are expected to catalyse various types of base-
participated organic reactions. Among guanidine compounds, 1,1,3,3-tetramethylguani-
dine (or N,N,N0,N0-tetramethylguanidine; TMG) (1) is regarded as a typical and funda-
mental guanidine compound and, in fact, has been used in many kinds of base-catalysed
reaction. Barton et al. [3] reported the preparation of pentaalkylguanidines 2 and their
application to organic synthesis as sterically-hindered organic bases, which are called
�Barton�s bases�. Bicyclic guanidines 3, 1,5,7-triazabicycle[4.4.0]dec-5-ene (TBD) and the
N-methyl analogue (MTBD) were introduced by Schwesinger [4] (Figure 4.1).

Guanidine participating organic reactions could be schematically classified into two
types of reactions: catalytic and stoichiometric, in which a guanidinium salt composed of
guanidine like 2 and either an acid or nucleophile plays an important role as a common
active complex. In the former type of reaction, 2 is repeatedly used as a free base catalyst,
whereas a guanidinium salt is formed in the latter (Figure 4.2).

As expected from a Barton�s base (2), the guanidine skeleton can be widely and easily
modified to a chiral base by introducing chirality into the molecule, in which five chiral
centres can be theoretically incorporated in the three nitrogen atoms, indicating that the
TMG (1) participating organic reactions could be theoretically expanded to asymmetric
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synthesis after modification of the guanidine skeleton to the chiral version according to
concept for the role of modified guanidines as chiral auxiliaries [5].

Preparation and use of supportedTMG(1) as a novel base catalyst is discussed in a review
elsewhere [6]. Heterogeneous guanidines are provided as environmentally friendly base
catalysts and, thus, precise discussion on supported superbases is given in Chapter 6.
Guanidine chemistry has been excellently surveyed in books [7]. This chapter focuses on
the synthetic utility of TMG (1) and its analogues in organic synthesis and application of
modified guanidine to asymmetric reactions.

4.2 Preparation of Chiral Guanidines

Guanidines are classified structurally into three types of compounds dependent upon
whether the guanidinyl function is incorporated into ring systems or not. Thus, in addition to
acyclic guanidines such as 1 and 2, monocyclic 4 and bicyclic guanidines 5 including 3 are
nominated as modified guanidines (Figure 4.3).
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4.2.1 Polysubstituted Acyclic and Monocyclic Guanidines

Schneck, in 1912, reported the synthesis of TMG (1) by the reaction of 1,1,3,3-tetramethyl-
2-methylthioamidinium salt 7, derived from the corresponding thiourea 6, and ammonia [8]
(Scheme 4.1). Later, the original method was improved using alternative reactions of
dimethylamine with cyanogen iodide and of 1,1-dimethyl-2-thiomethylamidine and di-
methylamine [9].

Chiral di-or trisubstituted acyclic guanidines [10] are, in the literature, prepared from the
corresponding amines through thiourea or carbodiimide intermediates (Scheme 4.2a); the
corresponding monocyclic guanidines could be supplied by application of these methods.
The cyano moiety of cyanogen bromide serves as a source of the core of guanidinyl
functions, when reacted with primary or secondary amines. Thus, N-cyanation reaction of
amines with cyanogen bromide was applied to the construction of not only acyclic [11] but
also monocyclic symmetrical systems [10b] (Scheme 4.2b).

Recently, polysubstituted guanidines were prepared in good yield by catalytic bismuth
(only 5mol%)-promoted synthesis through the guanidinylation reaction of N-benzoyl or
N-phenylthioureas with primary and secondary amines [12]. Furthermore, it was found that
half-sandwich rare earth metal complexes, which were prepared from [Ln(CH2Si-
Me3)3(thf)2] (Ln¼Y, Yb, and Lu) and Me2Si(C3Me4H)NHR

0 (R0 ¼ Ph, 2,4,6-Me3C6H2,
tBu), serve as excellent catalyst precursors for the catalytic addition of various primary and
secondary amines to carbodiimides, efficiently yielding a series of guanidines [13]. A
possiblemechanism for catalytic addition of secondary amine to carbodiimides is proposed
as shown in Scheme 4.3.

4.2.2 Monosubstituted Guanidines (Guanidinylation)

Guanidine 8with remote chiral centres, a monosubstituted acyclic guanidine, was prepared
by guanidinylation of an amine function with 3,5-dimethylpyrazole-1-carboxamidine [14]
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Figure 4.3 General structures of monocyclic 4 and bicyclic guanidines 5
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(Scheme 4.4). Other reagents useful for terminal guanidinylation of primary and secondary
amines have been reported, in which S-methylisothiourea [15], protected guanidine [16],
pyrazole-1-carboxamidine [17] and benzotriazole-1-carboxamidine derivatives [18] are
explored. A solid support-linked guanidinylating reagent, consisted of a urethane-protected
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triflyl guanidine attached to the resin via a carbamate linker, allows for rapid synthesis of
guanidines from a variety of amines [19].

N,N0,N00-Tri(Boc)-guanidine and N,N0,N00-tri(Cbz)-guanidine allow for the facile con-
version of alcohols to substituted guanidines under Mitsunobu condition [20].

4.2.3 Bicyclic Guanidines

Bicyclic guanidines [21] are basically prepared according to the method through the
thiourea intermediate shown in Scheme 4.2 (Scheme 4.5).
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C2-Symmetrical (or pseudo-symmetrical) chiral bicyclic guanidines are synthesized
from amino acid derivatives [21b,22]. The typical synthetic route for a 2,7-disubstituted
bicyclic system, (S,S)-2,7-di(hyroxymethyl)-1,5,7-triazabicyclo[4.4.0]dec-1-ene 9, from
asparagine is shown in Scheme 4.6 [22a].

The polycyclic systems with spiro rings such as 10 have been nominated as modified
guanidines [23,24]. Murphy et al. [24a,24c] prepared tetracyclic guanidines (Murphy�s
guanidines) 10 by double sequential intramolecular cyclizations, as shown in Scheme 4.7.

A series of chiral guanidines, either symmetrical or nonsymmetrical, was newly
synthesized from commercial amino alcohols using a concise and efficient aziridine-based
synthetic methodology [25].

4.2.4 Preparation Based on DMC Chemistry

2-Chloro-1,3-dimethylimidazolium chloride (DMC) [26] (R1¼R2¼Me, L¼H in 11,
Scheme 4.8a) not only acts as a powerful dehydration agent but also has unique and
versatile abilities to chlorinate primary alcohols, to oxidize primary and secondary
alcohols and to reduce sulfoxides and so on. In addition, DMC easily reacts with amines to
yield the corresponding guanidines. Thus, methods of preparing monocyclic and bicyclic
systems by application of DMC chemistry in the key steps have been developed [27]: the
reaction of DMC-type chloroamidine compounds with amines for trisubstituted mono-
cyclic guanidines [27a] (Scheme 4.8a), the intramolecular cyclization of thiourea
derivatives after activation with DMC for monosubstituted or disubstituted monocyclic
and bicyclic guanidines [27b] (Scheme 4.8b), and the DMC mediated cyclization of
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2-hydroxyethyl-substituted guanidines to 2-amino-1,3-imidazolidine systems, in which
chlorination of the primary alcohol function followed by intramolecular substitution
reaction occurs, for other types of disubstitutedmonocyclic and bicyclic guanidines [27c]
(Scheme 4.8c).

4.3 Guanidines as Synthetic Tools

There are many reports on the synthetic uses of TMG (1) and its analogues such as Barton�s
base (2). In this section, their synthetic roles in organic synthesis will be discussed
according to their tentative classification into three categories [addition (catalytic reaction),
substitution (stoichiometric reaction) and others] from the view points of a landmark for
guanidine mediated asymmetric synthesis.

4.3.1 Addition

4.3.1.1 Aldol-Type Reaction

Carbonyl Substrate
Alkyl phosphonates are prepared smoothly by TMG (1) catalysed aldol-type addition of
dialkyl phosphites to ketones and imines under mild conditions [28] (Scheme 4.9). Dialkyl
phosphites can also serve as good nucleophiles for Michael addition (phospha-Michael
Reaction).

TBD (3a) and its 7-methyl derivative (3b) were proven to be powerful catalysts, in many
cases superior to TMG (1), in the addition of dialkyl phosphites to a variety of carbonyl
compounds [29]. The polymer-supported (PS) TBD was also proven to be an efficient
catalyst.
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Imine Substrate
TMG (1) catalyses one-pot simultaneous reaction of indole-3-carboxaldehyde, a dialkyl- or
diphenyl phosphite, and a primary amine to give the corresponding a-aminophosphonates
in good yield (60–85%) (Scheme 4.10) [30]. It is known as Kabachnik–Fields reaction.

4.3.1.2 Aza-Henry (Nitro-Mannich) Reaction

The aza-Henry (nitro-Mannich) reaction of N-diphenylphosphinoylimines with nitroalk-
anes under solvent-free conditionswas efficiently catalysedwith TMG (1) to give a series of
b-nitroamines in excellent yields and high diastereoselectivity [31] (Table 4.1).
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Table 4.1 Solvent-free aza-Henry reaction catalysed with TMG (1)

TMG (1) 

R2R3CHNO2

R1

N
P(O)Ph2

R1

N
P(O)Ph2

NO2

R3

R2

H

rt

Run R1 R2 R3 Time (h) Yield (%) anti : syn

1 Ph Et H 2 96 94 : 6
2 4-ClPh Et H 2 95 84 : 16
3 4-(MeO)Ph Et H 24 92 95 : 5
4 2-furanyl Et H 2 90 95 : 5
5 tBu Et H 170 95 >98 : 2
6 Ph Me (CH2)4 H 24 90 >98 : 2
7 Ph Me Me 3 96 —
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TMG (1), TBD (3a) and MTBD (3b) act as effective catalysts for the aza-Henry (nitro-
Mannich) reaction of N-diphenylphosphinoyl ketimines and nitromethane. The addition
product is given in good to high yields [32]. A phophazene ðtBu-P1Þ can be alsoworkable as
a superior base.

4.3.1.3 Baylis–Hillman Reaction

TMG (1) catalyses the Baylis–Hillman reaction [33]. Selected results for the reaction of
aldehydes and methyl acrylate are given in Table 4.2 [33a]. The reactions using aromatic
aldehydes accelerate when either phenol as co-catalyst was added or reaction was
carried out in alcoholic solvent [33b]. The asymmetric version of this reaction remains
unexplored.

4.3.1.4 Concerted-Like Reaction

1,3-Dipolar Addition
A wide range of imines has been reacted with 5-menthyloxyfuranone in acetonitrile
(MeCN) at ambient temperature in a combination of silver acetate with 1,8-diazabicy-
clo[5.4.0]undec-7-ene (DBU) or BTMG (2) to afford 1,3-cycloaddition product in good
yields (71–91%) and high selectivity (de¼�95%) [34] (Scheme 4.11). BTMG (2) is
superior to DBU.

Table 4.2 Selected Baylis–Hillman reaction of methyl acrylate with various aldehydes

TMG (1) / DCM

rt,  6 h

CO2Me

R

OH

R CHO CO2Me

Run R Mol% 1 Yield (%)

1 Ph 12.5 49
2 Me 12.5 46
3 Pr 12.5 85
4 Ph(CH2)3 12.5 46
5 (E,E)-Me(CH¼CH)2 5 85

71-91%

MeCN

R1 N

R2

Ag+ O

OMe-

N

O

HH

O OMen

R1
CO2Me

H
R2

O OMenO

Men =

iPr

Me

AgOAc

N

R2

O

OMe
R1

BTMG (2)

Scheme 4.11 BTMG (2) catalysed 1,3-cycloaddition of imine with 2(5H)-furanone
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Diels–Alder Reaction
A chiral bicyclic guanidine 12 was found to be an excellent catalyst for Diels–Alder
reactions between anthrones and various dienophiles [35]. The catalyst can torelate a range
of substituents and substitution patterns, making several anthrone derivatives suitable for
this reaction. The use of 1.8-dihydroxy-9-anthrone as an anthrone substrate led to the
production of 5-substituted anthrone as a Michael adduct in excellent yields, high
regioselectivities and high enantioselectivities (Scheme 4.12).

4.3.1.5 Cyanosilylation

TMG (1) acts as a highly effective catalyst for the cyanosilylation of various ketones and
aldehydes to the corresponding adduct in high yields. The reaction proceeds smoothly with
0.1mol% catalyst loading at 25 �C without solvent [36].

Treatment of aldehydes and trimethylsilyl cyanide (TMSCN) in toluene at�78 �C in the
presence of the catalytic amount of symmetrical bicyclic guanidine 13 smoothly afforded an
(S)-excess adduct with good tomoderate ee [37]. (Table 4.3) A ketonic 3-phenyl-2-butanone
canworkas an acceptor under the above conditions, but reactivity is low (23%yield, 39%ee).

85% (98% ee)

ROR

OHOHO

HO

N Ar

O

O

N

Ar
O

O

Ar = 2-NO2-C6H4

N

O

O

Ar

R = H

R = OH

87% (97% ee)

+ N
Bn

12

N

N
H

Bn

(10 mol%)

Scheme 4.12 TMG (1) catalysed reaction between anthrone and succinimide

Table 4.3 Asymmetric TMS cyanation of aldehydes catalysed with guanidine 13

R
TMSCN

(1.5 equiv)
+

 -78 ºC

(0.1 equiv)
13

CN

TMSO
H

R-CHO
(1 equiv) toluene

Run R Time (h) Yield (%) ee (%) N N

N

H
Ph

Ph

Ph Ph

13

1 Ph(CH2)2- 6 85 50
2 cyclohexyl 1.5 93 70
3 tBu- 7 92 43
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4.3.1.6 Halolactonization

Three organocatalysts, DMF, DMA and TMG (1), were examined for their catalytic roles
for the bromolactonization of g,d- and d,e-unsaturated carboxylic acids with N-bromo-
succinimide (NBS). TMG (1) was found to be a superior catalyst for this bromination
(1–10mol% loading, 100% conversion after 15min) and to catalyse an intermolecular
bromoacetoxylation of alkenes with acetic acid and NBS. The catalytic cycle is proposed
(Scheme 4.13) [38].

4.3.1.7 Henry (Nitroaldol) Reaction

TMG (1) and TBD derivatives (3), in many cases superior to 1, are proven to be powerful
catalysts for Henry (nitro-aldol) reaction [29,39]. The X-ray structure of the TBD-
phenylnitromethane complex has been reported [39]. Smooth reactions of aldehydes or
ketone with nitroalkanes were observed to afford 2-nitroalkanols under mild conditions
when TMG (1) was used as not only a base but also a solvent [40] (Table 4.4). However,

N Br

O

O

1

Me2N NMe2

NH

Me2N NMe2

N H

O

O

H+

H Br
N

+

RCO2H

Br
O2CR

+

-H+

Scheme 4.13 Proposed catalytic cycle for TMG (1) catalysed bromolactonization

Table 4.4 TMG (1) catalysed Henry reaction for 2-nitroalkanols

R2
TMG (1)

R3CH2NO2

R1

O

R2R1

HO CHNO2

R3

Run R1 R2 R3 Time/temp (h/�C) Yield (%)

1 Ph H H 0.5/0 94
2 4-(NO2)Ph H H 0.25/rt 97
3 4-(MeO)Ph H H 1/0 73
4 Pr H H 1/rt 67
5 4-(NO2)Ph H Me 0.25/0 88
6 4-(MeO)Ph H Me 1/0 74
7 –(CH2)8– Me 48/rt 71
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acetophenone or acyclic ketones do not work as electrophiles because of no reaction or
predominant self condensation, respectively. This method has been applied to Henry
reactions using sugar derivatives [41]. PS-TBD was also proven to be an efficient catalyst.

In 1994, the first guanidine catalysed asymmetric nitroaldol reaction was reported [10a].
Treatment of pivalaldehydewith nitromethane in tetrahydrofuran (THF) afforded an adduct
in 33% yield with 54% ee when N,N-diethyl-N0,N00-bis[(1S)-1-phenylethyl]guanidine (14)
was used. (Scheme 4.14).

TheMurphy�s guanidine 10 (R¼Me inScheme4.7) also catalyses the nitroaldol reaction
of isobutylaldehyde and nitromethane to give an adduct in 52% yield but with low ee (20%)
[24c].

Several enantiopure guanidines were studied as the catalysts for the Henry reaction of
dibenzylamino aldehydes with nitromethane. (R)-1-(1-Naphthyl)ethylamine-derived gua-
nidine catalysed the reactions of L-isoleucine-derived aldehydes with good diastereos-
electivity [42].

Catalytic enantio- and diastereoselective nitroaldol reactions were explored by using
designed guanidine–thiourea bifunctional organocatalysts like 15 (Figure 4.4) under mild
and operationally simple biphasic conditions. These catalytic asymmetric reactions have a
broad substrate generality with respect to the variety of aldehydes and nitroalkanes [43]. On
the basis of studies of structure and catalytic activity relationships, a plausible guanidine–
thiourea cooperative mechanism and a transition state of the catalytic reactions are
proposed.

NO2
R

HO

N

Et

N
Et

N

Ph

Ph

H

MeMe

RCHO

(1 equiv)

CH3NO2

(1.5 equiv)

+

14 (0.1 equiv)

R = iBu: 33% (54% ee)
R = Ph: 31% (33% ee)

THF, -65 ˚C, 9 h

Scheme 4.14 Examples of guanidine catalysed asymmetric nitroaldol reactions

N
+

N
H
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H
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R1

N
H

H
N

H
N

H
N

ArAr

S SR3R3

Cl-

Ar = 3,5-(CF3)2C6H3
15

Figure 4.4 Structure of guanidine–thiourea bifunctional organocatalyst 15
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4.3.1.8 Michael Reaction

Aza-Michael Reaction
Axially chiral guanidineswith an external guanidine unit such as dinaphthoazepineamidine
are effective catalysts for the enantioselective addition of b-oxoesters and a 1,3-diketone to
di-tert-butyl azodicarboxylates to yield a-hydrazino-b-oxoesters and a-hydrazino-b-dike-
tones in 54–99% yields and in 15–98% ee [44]. For example, stirring 2-oxocyclopenta-
necarboxylate and di(tert-butyl) azodicarboxylate in THF in the presence of 0.05mol%
catalyst for four hours at �60� C provides an adduct in quantitative yield and in 97% ee
(Scheme 4.15). The (R)-catalyst was prepared from (R)-2,20-dimethyl-3,30-binaphthalene-
diol ditriflate, 4-methoxyphenylboronic acid and 3.5-di(tert-butyl)phenylboronic acid in
six steps.

Carba-Michael Reaction
In 1962, Nysted and Burtner [45] reported that the TMG (1) catalysed Michael reaction of
methyl acrylate and 17-nitroandrostane derivative (Scheme 4.16) produced adduct in 84%
yield, whereas the use of Triton B or sodium alkoxide in place of 1 led to low conversion.
This may be the first application of TMG (1) to organic synthesis as an organic base. After

100% (97% ee)

+

O

CO2Et
N

N
Boc

Boc

O

Boc
N

N
BocH

CO2EtTHF

G 
(0.05 mol%)

N

NH2

NH

tBu

tBu

tBu

tBu
G =

Scheme 4.15 Axial guanidine catalysed aza-Michael reaction

TMG (1) / benzene

AcO

Me

Me

NO2

H
5 d,  rt AcO

Me

Me

NO2

H

CO2Me

CO2Me

84%

Scheme 4.16 TMG (1) catalysed Michael reaction of 17-nitroandrostane and acrylate
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this, nitroalkanes have been often used as nucleophiles in TMG (1) catalysed Michael
reactions [46].

Of course, BTMG (2) [47] and TBD (3) [48] similarly work in Michael addition as
powerful catalysts. In the synthesis of lactonamycinwith a hexacyclic ring system, the BCD
tricyclic ring system was effectively constructed by BTMG catalysed intramolecular
Michael addition [49] (Scheme 4.17) (see Scheme 7.6).

A C2-symmetrical pentacyclic guanidinium salt like 16 (Figure 4.5) was used for the
conjugate addition of pyrrolidine to g-crotonolactone, in which structural requirement such
as the size of the cavities and substituents on tetrahydropyran rings of the guanidine
catalysts is critical for asymmetric induction [23].

Asymmetric nitro-Michael reactions of methyl vinyl ketone (MVK) in the presence of
bicyclic guanidine with a benzhydryl group led, disappointedly, to low asymmetric
induction (9–12%) [21a] Trials for the reaction of a,b-unsaturated g- or d-lactones with
pyrrolidine in the presence of the conjugate acids of a bicyclic guanidine [50] or the
Murphy�s guanidine [24a] (R¼Me in Scheme 4.7) resulted in the production of racemic
compounds. The latter phase transfer catalyst (PTC) catalyses the nitro-Michael addition of
chalcone but with limited range (70% yield, 23% ee) [24c].

Ma et al. examined guanidine catalysed Michael reaction of tert-butyl glycinate Schiff
basewith ethyl acrylate in THF and observed 30% ee as the asymmetric induction when an
acyclic guanidine (2) was used as a catalyst [10b]. Ishikawa et al. succeeded in greatly
improving the asymmetric induction by the use of guanidine 17a, originally prepared based

O

DCM
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O

OO

MeMe

O

O

OO

MeMe

R

tBuO2C

β-R / α-R = 4 : 6

LDA (28%)
BTMG (2) (96%)

R = H

BTMG (2)  (76%)

R = CO2
tBu

β-R / α-R = 5.9 : 1

R

R = H: E-form
R = CO2

tBu: E / Z mixture

tBuO2C

Scheme 4.17 BTMG (2) catalysed intramolecular Michael addition

N
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OMeMeO

HH

H MeMe H

HH

+

Cl-
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Figure 4.5 The structure of a pentacyclic guanidinium salt 16
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on DMC chemistry, especially under solvent-free condition (Table 4.5). Thus, an
(R)-adduct was given in 85% yield with 97% ee [51]. It is noted that MVK is reactive
enough even in solution [51] and that modification of the phenyl pendant in the guanidine
skeleton 17b to 2-methylphenyl ones accelerates the addition reaction [52]. A bicyclic
network system through two hydrogen bonds and one CH-p interaction in the transition
state is proposed as playing an important role for high asymmetric induction [52].

The same guanidine 17a also works as a catalyst in the Michael reactions of cyclo-
pentenone and benzyl malonate (or a-methylmalonate). However, moderate selectivity was
observed even under solvent-free conditions [53].

An axially chiral and highly hindered binaphthyl-derived guanidine catalyst 18awith an
internal guanidine unit (Figure 4.6) facilitates the highly enantioselective 1,4-addition

Table 4.5 Asymmetric Michael reaction between t-butyl glycinate Schiff base and active
vinyl compounds in the presence of the guanidine 17

NPh +

20 ºC
(1 equiv) (3.6 equiv)

THF or without a solvent

CO2
tBu

Ph

X
NPh CO2

tBu

Ph X
17

(0.2 equiv)

Run 17 X Solvent Time Yield (%) ee (%)

1
�

17a COMe

�
THF 6 d 90 96

2 — 15 h 90 80

3
�

17a CO2Et

�
THF 7 d 15 79

4 — 3 d 85 97

5
�

17b CO2Et

�
THF 7 d 62 90

6 — 5 d 79 97

7
�

17a CN

�
THF 5 d NRa —

8 — 5 d 79 55

N N MeMe

N

Ar Ar

OH

Ph

17a: Ar = Ph
17b: Ar = 2-methylphenyl

aNo reaction.

N
H

H
N

N-R1

tBu

tBu

R2

R2

R2

R2

a: R1 = Me, R2 =

b: R1 = Bu, R2 = tBu

18

Figure 4.6 The structures of representative axial chiral guanidines 18 with an internal
guanidine system
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reaction of 1,3-dicarbonyl compounds with a broad range of conjugated nitroalkanes and
shows extremely high catalytic activity [54]. The catalyst showed high catalytic efficiency
in evaluation by a gram-scaled experiment with low catalyst loading andwas recovered in a
nearly quantitative yield as an hydrochloride salt by acidic work up following column
purification.

A chiral bicyclic guanidine, which corresponded to the tert-butyl analogue of guanidine
12 used in Scheme 4.12, effectively catalysed Michael reactions of dithiomalonates and
b-keto thioesters using a range a of acceptors including maleimides, cyclic enones,
furanone and acyclic 1,4-dicarbonyl butenes [55]. TMG (1) immobilized silica gel was
used as a basic agent for the Michael addition of cyclopentenone and nitromethane.
Addition product was obtained in good yield under mild conditions and the catalysis
activity was maintained after fifteen cycles (98% conversion) [56].

Oxa-Michael Reaction
A 2,2-disubstituted chromane system was asymmetrically constructed by application of
intramolecular oxa-Michael addition reaction through 6-exo-trig mode cyclization [57].
Good asymmetric induction at the quaternary carbon was observed when Z-alkene was
treated with the same guanidine 17 used in asymmetric carba-Michael reaction in Table 4.5
(Scheme 4.18).

Phospha-Michael Reaction
Similar to aldol-type reaction, dialkyl phosphites [28] can also serve as goodnucleophiles in
Michael reactions in the presence of TMG (1) (Scheme 4.19). The reaction proceeds
smoothly under mild conditions and shows tolerance to variety of functional groups.

A highly enantioselective 1,4-addition reaction of nitroalkene with diphenyl phos-
phite was successfully accomplished using an alternative axial guanidine catalyst 18b
with an internal guanidine unit [58] (Figure 4.6). A broad range of nitroalkenes, bearing
not only aromatic but also aliphatic substituents, is applicable to the present enantio-
selective reaction. A chiral bicyclic guanidine, which corresponds to the tert-butyl
analogue shown in the reaction (Scheme 4.12), has been used to catalyse the phospha-
Michael reaction of diarylphosphine oxide to nitroalkenes with high enantioselectiv-
ities, offering a direct methodology to prepare chiral b-aminophosphine oxides and
b-aminophosphines [59].

O
Me

CO2Me
OH

CO2Me

Me

ent-17
(0.2 equiv)

CHCl3

ent-17a: (S)-product in 58% (32% ee) from E-deriv.

ent-17a: (R)-product in 75% (71% ee) from Z-deriv.

ent-17b: (R)-product in 83% (70% ee) from Z-deriv.

rt, 2 d

Scheme 4.18 Guaniodine catalysed intramolecular oxa-Michael addition
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Thio-Michael Reaction
g-Phenylthio-b-nitro alcohols were smoothly prepared by TMG (1) catalysed one-pot
reaction of nitroolefines, thiophenol and aldehydes [60]. During the course of the
synthesis of ecteinascidins [61] (Scheme 7.20), the ten-membered lactone bridge
through the sulfide bond formation, based on Corey�s original method, was achieved
by BTMG (2) promoted intramolecular Michael type addition of thiolate ion to quinone
methides, which were produced by treatment with Tf2O in DMSO followed by H€unig
base (Scheme 4.20).

4.3.1.9 Nucleophilic Epoxidation

Novel guanidine bases supported on silicas and micelle-templated silicas have been
prepared and investigated in the base-catalysed epoxidation of election-deficient alkenes.
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H

R1

O

R2

CN
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Scheme 4.19 TMG (1) catalysed Michael addition with phosphites
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Scheme 4.20 The use of the BTMG (2) catalysed intramolecularMichael addition as a key step
for ecteinascidin synthesis
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Excellent conversions and selectivities were observed both with respect to the alkene and
the primary oxidant [62]. In nitro-Michael reaction it was noted that theMurphy�s PTCdoes
not work as a good chiral catalyst for the Michael reaction of chalcone, but the same PTC
effectively catalyses the epoxidation of chalcones with sodium hypochlorite (NaOCl)
[24c]. Trials for the epoxidation of chalcone in the combination of hydroperoxides and
modified guanidines 19 [27b] resulted in less effective asymmetric induction compared to
the Murphy�s PTC [53] (Scheme 4.21).

4.3.1.10 Strecker Reaction

A diketopiperazine 8 with an external guanidine function is proven to be an effective
catalyst for the Strecker reaction of benzhydrylimine [14]. Corey�s bicyclic guandine 20
[12b], which is the original of 12 (Scheme 4.12), also works well in the same reaction and
the mode of action has been elucidated by density functional theory [63] (Scheme 4.22).

A review elsewhere discusses catalytic Strecker reactions including guanidine
catalysts [64].

(1 equiv)

PhPh

O

99% (93% ee)

PhPh

O

O

NaOCl, PhMe

19 
(0.2 equiv)

90% (70% ee)
70% cumene hydroperoxide

in toluene  (10 equiv)

the Murphy’s PTC
(0.05 equiv)

19

N N HH

N

Ph Ph

Me

Ph

Scheme 4.21 Examples of nucleophilic epoxidation of chalcone
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R CN

80-98% (64-99% ee)R = H, Ph; Ar = aryl

MeOH, -25 ºC, 20 h 

80-99% (50-88% ee)
toluene, -40 ºC, 20 h

20 (0.1 equiv)Ar1 = R = Ph; Ar2 = aryl
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H

Ph
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Scheme 4.22 Guanidine catalysed Strecker reaction
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4.3.2 Substitution

4.3.2.1 Alkylation

C-Alkylation
b-Keto ester has been alkylated in high yield by the use of BTMG (2), whereas the use of
collidine or 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) led to ineffective conversions (col-
lidine: 63%; DBN: 31%) [3] (Scheme 4.23).

Asymmetric alkylation of tert-butyl glycinate Schiff base with a range of alkyl halides
was successfully carried out by use of pentacyclic chiral guanidinium salt 16 and the
conjugate acids of the Murphy�s guanidines (Scheme 4.7) as PTC [24]. Excellent to good
asymmetric inductions were obtained [24b,24c] and selected results using 16 are given in
Table 4.6 [24b].

O-Alkylation (Esterification and Alcoholysis)
Alkylative esterification of carboxylic acids with alkyl halides are effected by action with
TMG (1) [65]. An ester is given by the TMG (1) mediated reaction of g-hydroxy-a,b-
unsaturated carboxylic acid with methyl iodide without lactone formation after isomeriza-
tion [65a]. Barton�s base effectively works in the alkylation of sterically hindered
carboxylic acid [3]. Ethanolysis of the acetate of tertiary alcohol occurred easily in
86% yield in the presence of BTMG (2) [66] (Scheme 4.24).

The kinetic resolution of racemic 1-phenylethyl bromidewas examined in the alkylation
of benzoic acid using trisubstituted monocyclic guanidines as chiral sources [67]. (R)-
Excess ester was obtained in 96%yield evenwith 15%ee, when the reactionwas carried out
in benzene with 1,3-dimethyl-(4S,5S)-diphenyl-2-[(1S)-phenylethylimino]imidazolidines
[27a] (Scheme 4.25).

Me
CO2Et

O

Me
CO2Et

O

Me 80%

BTMG (2)

MeI

Scheme 4.23 Alkylation of b-keto ester in the presence of BTMG (2)

Table 4.6 Selected a symmetric alkylation of tert-butyl glycinate Schiff base with alkyl
halides in the presence of 16

CO2
tBu

guanidinium salt 16
(0.3 equiv)

NPh

Ph

RX (5 equiv)

0 ºC, DCM-KOH

CO2
tBuNPh

Ph R

Run RX Time (h) Yield (%) ee (%)

1 MeI 145 80 76
2 CH2¼C(Me)CH2Br 145 85 81
3 2-(Naphthyl)CH2Br 95 81 90
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4.3.2.2 Azidation

In the kinetic resolution of 1-indanol with diphenylphosphoryl azide in dichloromethane
(DCM) using modified guanidine [68], (R)-excess azide compound was produced in 58%
yield with 30% ee after six hours when a C2-symmetrical bicyclic guanidine 13 [37] was
used as a chiral auxiliary (Scheme 4.26).

TMG (1)

MeI

Me

CO2H

OH

Me Me

71%

Me

CO2Me

OH

Me Me

CO2H CO2
iPr
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91%

(a)

(b)

N=NPhMe

AcO
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86%(c)
BTMG (2)

N=NPhMe

HO

CO2EtEtOH

iPrI

Scheme 4.24 Guanidine mediated esterification and alcoholysis
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guanidine

N N MeMe

N

Ph Ph

Me

Ph

Scheme 4.25 Example of guanidine mediated asymmetric alkylation of carboxylic acid
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(1 equiv)OH

+
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58% (30% ee)

(PhO)2P(O)N3

DCM, rt, 6 h

13 
(1 equiv)

Scheme 4.26 Guanidine 13 mediated asymmetric azidation of 1-indanol
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4.3.2.3 Glycosidation

The zinc chloride (ZnCl2) catalysed glycosidation of para-substituted phenols with 1,2-
anhydro-3,4,6-tri-O-methyl-a-D-glucopyranose gives predominantly the corresponding a-
anomer [69]. Addition of TMG (1) enhances the b-selectivity, even to practical completion
under the conditions of potassium carbonate (K2CO3) and 18-Crown-6, in THF (Table 4.7).

4.3.2.4 Intramolecular Substitution (Cyclopropanation)

TMG (1), as well as benzyltrimethylammonium hydroxide (Triton B) in pyridine and
sodium ethoxide in ethanol, was found to work as base catalyst in the cyclopropanation of
steroid skeletons controlled by intramolecular SN2 reaction [70]. Thus, 6-oxo-3a,5-cyclo-
5a-steroids were given in high yields for the reaction of 3b-tosyloxy (or -chloro)-6-oxo
derivatives (Table 4.8).

4.3.2.5 Silylation of alcohols

A catalytic amount of TMG (1) effectively works for the silylation of primary and
secondary alcohols with the help of reagents such as tert-butyldimethylchlorosilane
(TBDMCS) in acetonitrile in the co-presence of a stoichiometric amount of tertiary amine
as an acid scavenger [71] (Table 4.9). In the reaction of secondary alcohols, DMF is superior
to acetonitrile as solvent.

Guanidine participating kinetic resolution of 1-indanol with chlorosilane reagents,
TBDMCS or triisopropylchlorosilane (TIPCS) was investigated [72] (Table 4.10). An
(R)-excess silyl ether was afforded as a major enantiomer with moderate ee. The bulkiness
of silylating reagent, as expected, affects the asymmetric induction and 70% ee was
observed in the case of 1-tetrahydrodecanol but yield is low.

4.3.2.6 SNAr Reaction

Barton�s bases are used for the formation of diaryl ether by SNAr reactions [73]. In the
comparison of several bases BTMG (2)was found to be an excellent andmild alternative for
promoting SNAr reactions [73a] (Table 4.11).

Table 4.7 Glycosidation of phenols with 1,2-anhydroglucose derivative

conditions
XHO

O

OMe

MeO

OMe

O

O

OMe

MeO

OMe

HO

XO+

Run X Conditions Yield (%) a : b

1 MeO ZnCl2, DCE 62 55 : 45
2 MeO ZnCl2, TMG (1), DCE 73 20 : 80
3 MeO K2CO3, THF, 18-crown-6 73 5 : 95
4 NO2 ZnCl2, DCE 60 78 : 22
5 NO2 ZnCl2, TMG (1), DCE 83 60 : 40
6 NO2 K2CO3, THF, 18-crown-6 60 5 : 95

114 Guanidines in Organic Synthesis



4.3.2.7 Sulfide Formation

Thiol is converted to a nucleophilic thiolate anion, which reacts with an epoxide to give a
ring-opened sulfide, in the presence of TMG (1) [74]. A carbapenem antibiotic carrying a
sulfide function was synthesized practically by the addition–elimination reactions of a thiol
to the enol phosphate of b-keto ester in the presence of TMG (1) as a key step [75]
(Scheme 4.27).

Table 4.8 Base mediated cyclopropanations of steroid compounds

base

X

Me

Me

R

H
O

Me

Me

R

O

Yield (%) by methoda

Run R X A B C

1
�

Me

Me Me
�
TsO 98 90 85

2 Cl 95 93 95

3
�

Me

Me MeOAc

Et OAc

�
TsO 88 85 —

4 Cl 90 80 —

aA: TMG (1), 60 �C, 5min; B: PhCH2Me3N
þOH�, 60 �C, 10min; C: NaOEt/EtOH, reflux, 10min.

Table 4.9 TMG (1) catalysed silylation of alcohols

TBDMCS (1.2 equiv)
Et3N (1.2 equiv)

R-OTBDMS
TMG (1) (0.2 equiv)

R-OH

solvent

Run R Solvent Time (h) Yield (%)

1
�

Ph(CH2)2

�
MeCN 0.3 96

2 DMF 0.3 95

3
�

4-tBu-cyclohexyl
�

MeCN 5 96

4 DMF 0.3 95

5
�

PhCH(Me)
�

MeCN 12 96

6 DMF 1 95
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Table 4.10 Guanidine mediated asymmetric silylation of cyclic secondary alcohols

Silyl-Cl

(1 equiv)

(2 equiv)

guanidine
(1 equiv)

OH

n +

OSilyl

n
DCM, rt

Run n Silyl Guanidine Time (d) Yield (%) ee (%)

1 1 TBDMS
)

R = H

N N RH

N

Ph Ph

Me

Ph
R = H
R = Me

11 34 37
2 1 TBDMS 9 50 39
3 1 TIPS 6 36 59

4 1 TBDMS
)

N N

N

H

Ph Ph

Ph

(
10 78 31

5 1 TIPS 6 79 58
6 2 TIPS 6 15 70

Table 4.11 Effect of base in the SNAr reaction of naphthol and fluoronaphthalene

+

CHOHO

OMe

CHO

F

CHO

OMe

CHO

base

O

Run Conditions Yield (%)

1 NaH, DMSO, 25 �C 49
2 K2CO3, AcNMe2, 150

�C 54
3 DBU, MeCN, 70 �C 46
4 TMG(1),MeCN, 70 �C 59
5 BTMG (2), MeCN, 70 �C 85
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4.3.3 Others

4.3.3.1 Construction of Heterocycles

Benzimidazole
Copper and palladium catalysed intramolecular C–N bond formation between an aryl
halide and a guanidine moiety affords 2-aminobenzimidazoles. Inexpensive copper salts
such as copper iodide (CuI) are generally superior to the use of palladium catalysts [76]
(Table 4.12).

Furan
Effective cyclization of 2-trimethylsilylethynylphenol to a 2-trimethylsilylbenzfuran was
carried out by refluxing in toluene in the presence of TMG (1) (>90%) (Scheme 4.28). The
co-presence of silicon dioxide (SiO2) led to a desilylated benzofuran in one pot [77].

Oxazolidinone and Oxazole
N-Alkylprop-2-ynylamines readily react with carbon dioxide (CO2) in the presence of
catalytic strong bases and undergo intramolecular cyclization to 5-methylene-1,3-oxazo-
lidin-2-ones in good yields [78]. The type and strength of the base is of paramount
importance to the success of the reaction. DBU, TBD, tetra-alkyl- and penta-alkylguani-
dines and phosphazene bases are effective, whereas 1.8-bis(dimethylamine)naphthalene
(proton sponge), carbodiimide and pyridine did not work. The presence of a triple bond and
an amino group, which can react intramolecularly, allow the catalytic incorporation of the
intermediate carbamate into an oxazolidine ring by reaction with the triple bond even
without any metals (Scheme 4.29a).

N

N+

HS

H

O

H
Cl-

H

N
OP(O)(OPh)2

Me

CO2R

Me

O

H H
HO

N-ethylpyrrolidine
1 h,  -60 ˚C

R = CH2Ph(NO2)-4

+

TMG (1)

CO2H

N

Me

CO2R

Me

O

H H
HO

N

N

S

O

H TMGH+

H

CO2
-

Scheme 4.27 TMG (1) assisted substitution reaction for the practical preparation of ertapenem
sodium
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PS-p-toluenesulfonylmethyl isocyanide (TosMIC) reagent, developed by Barrett et al.
was found to be effective for the conversion of a range of aryl aldehydes into highly pure
4-aryl oxazoles in the presence of BTMG (2) [79] (Scheme 4.29b). A typical procedure
involved the reaction of aldehyde with the gel (4 equiv.) in acetonitrile (0.2M sol) and
BTMG (2) (4 equiv.) for 12 h at 65 �C.

Table 4.12 Intramolecular aryl guanidinylation of aryl bromides with Pd(PPh3)4 or CuI

cat. A or cat. Ba

1,10-phenanthroline (10 mol%)

Cs2CO3 (2 equiv)

R4

N

N

R3

R2

N

R1

R4

N
H

N
Br

N
R2

R1

R3

Yield (%) [conversion (%)]

Run R1 NR2R3 R4 cat. A cat. B

1 Bn
N

H 88 (>98) 83 (>98)

2 Ph
N

H 84 (>95) 58 (>95)

3 Bn
NBoc

N
H 93 (>98) 96 (>98)

4 Bn N
H

Me

H � (85) 97 (>98)

5 Bn

N

4-Me 66 (70) 90 (95)

6 Bn
N

6-Br 4-Me 76 (76) 98 (>98)

acat. A: Pd(PPh3)4 (10mol%); cat. B: CuI (5mol%).

NHAc

TMG (1)

SiO2, toluene

OH

MeO2C

Cl

SiMe3

NHAc

MeO2C

Cl

O

SiMe3

NHAc

MeO2C

Cl

O

Scheme 4.28 TMG (1) mediated intramolecular cyclization to furan ring system
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Pyrrole
Pyrrole derivatives were given in 80% yield by treatments of b-nitrostyrene with iso-
cyanoacetate and DBU [80] (Scheme 4.30). The reaction was slightly faster and the yield
better (90%)whenDBUwas replaced byBTMG (2), inwhichMichael addition, cyclization
through internal attack of the nitronate on the isocyano group, elimination of a nitronate ion
through a vinylogous E1CBmechanism after proton exchange and aromatization by a [1.5]-
sigmatropic shift of hydrogen could be successively occurred.

4.3.3.2 Horner–Wadsworth–Emmons Reaction

TMG (1) is used as a base in Horner–Wadsworth–Emmons (HWE) reactions [81]. For
example, the sequential reaction of 1,3-diformylbenzene with different phosphorylglycines

MTBD (3)
(10 mol%)

MeCN
NO Bn

Me

O

Me

N
H

Bn

Me
Me

+ CO2(a)

H

X

O

X

N
O

(b)

1. PS-TosMIC reagent
    BTMG (2)

SO2

NC

Ph
n

2. filtration
3. evaporation

PS-TosMIC
reagent

Scheme 4.29 Guanidine catalysed formation of oxazolidinone and oxazole ring systems

HN

BTMG (2)

OMe

Me

tBuO2C

MeO2N

OMe

tBuO2C

CN

+

Scheme 4.30 BTMG (2) catalysed formation of pyrrole ring system
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affords unsymmetrical product as a single diastereisomer [81a] (Scheme 4.31a). Formyl-
methyl-substituted pyranoses react with phosphorylglycinate at lower temperature (�78 �C)
in the presence of TMG (1) to give products in satisfactory yields [81b] (Scheme 4.31b).

Barrett et al. [82] prepared high-loading polymer phosphonate resins, a related resin used
in oxazole formation (Oxazolidinone and Oxazole), by polymerization, which in combi-

R1 R2 R3 R4

OAc H OAc H

yield (%)

79

OAc H H OAc 85

H OAc OAc H 88

83%

CbzHN

MeO2C

NHBoc

CO2TMSE

TMSE = Me3Si(CH2)2

(EtO)2P

O

CO2Me

NHCbz

CHOOHC CHO

CbzHN

MeO2CTMG (1) / DCM

10 min,  rt
94%

(a)

O

R4

CHO

AcO
R3

R2

R1

OAc
O

R4

AcO
R3

R2

R1

OAc

CO2Me

NHCbz

(MeO)2P

O

CO2Me

NHCbz

TMG (1)

1 h,  -78 ºC

(b)

TMG (1) / DCM

24 h,  rt

(MeO)2P

O

CO2TMSE

NHBoc

Scheme 4.31 Examples of TMG (1) mediated HWE reactions

120 Guanidines in Organic Synthesis



nation with a Barton base allows a general purification-free HWE synthesis of a,b-
unsaturated esters and nitriles from both aromatic and aliphatic aldehydes.

4.3.3.3 Metal Mediated Reaction

Bismuth
TMG (1) assisted alkene transfers from alkenyl bismuth reagents to reactive electrophiles
have been reported [83]. Treatment of b-keto esters, b-diketones and phenols with
alkenyltriarylbismuthonium salts in the presence of TMG (1) smoothly affords a-alkeny-
lated products [83b] (Table 4.13).

Palladium
An organobase including guanidine is often used as co-catalyst (or base) in palladium
coupling reactions [84]. The 2-methylenepropane-1,3-diol diacetate reacts with 7,8-
dihydroquinoline derivative in the presence of palladium acetate [Pd(OAc)2], TMG (1)
and triphenylphosphine (PPh3) to give the methylene bridged compound in 92% yield,
which can be converted to a diamino analogue of huperzine A, an inhibitor of acetylcholine
esterase [84a](Scheme 4.32).

O-Allylic urethanes and carbonates are afforded from amines/alcohols, carbon dioxide
and allylic chlorides by palladium catalysed reaction in the presence of an organobase. The
choice of added base in the generation of carbamates/carbonates was critical for high yields

Table 4.13 TMG (1) assisted a-alkenylation of b-keto esters with bismuth reagents

TMG (1)

PhMe,  -50 ºC to rt

BF4
-

(4-MePh)3Bi+
R3

R1

CO2Et

O

R2

R1

O

R2

R3

CO2Et

Run R1 R2 R3 Yield (%)

1 -(CH2)4- n-C6H13 86
2 -(CH2)3-

)
Ph

( 90
3a Me H 96
4 Me Me 90

a 2 Equiv. of the bismuth salt/TMG (1) were used.

Me

Me
NH2

N

O

H

O
CO2Me

N

OMe

OMeN

HO

CO2Me
Pd (OAc)2, PPh3

92%

OAc

huperzine A

AcO

TMG (1)

Scheme 4.32 TMG (1) catalysed palladium coupling reaction
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of O-allylic products. N-Cyclohexyl-1,1,3,3-tetramethylguanidine (Barton�s base) and
DBUwere found to be optimal for this system. Tertiary allylic sulfones bearing a secondary
aminopropylmoiety afforded a spiro system by palladium(0) catalysed cyclization. The use
of TMG (1) as a companion base is required for high yielding reactions [84c]
(Scheme 4.33).

Thus, trans-3-alkyl-6-(phthalimido)cyclopentenes were prepared in excellent to modest
yields from the corresponding trans-chloroalkene by the palladiumcoupling reaction [84d].
Inexpensive and efficient Pd–TMG systems, Pd(OAc)2–TMG or PdCl2–TMG, have been
developed for the Heck reaction of an olefin with an aryl halide, in which TMG (1) acts as a
ligand [84e]. In the reaction of iodobenzene with butyl acrylate the turnover numbers were
up to 1000 000. TMG (1) was used as a base for the palladium catalysed asymmetric
Wagner–Meerwein shift of nonchiral vinylcyclopropane and cyclobutane derivatives
leading to asymmetric synthesis of cyclobutanones, cyclopentenones, g-butyrolactones
and d-valerolactones [85] (Scheme 4.34). Replacement of TMG (1) with an inorganic bases
such as lithium or cesium carbonate resulted in little effect.

A highly efficient Pd(OA)2/guanidine aqueous system for the room temperature Suzuki
cross coupling reaction was developed. The new water-soluble and air-stable catalyst
from Pd(OA)2 and 2-butyl-1,1,3,3-tetramethlyguanidine was synthesized and character-
ized by X-ray crystallography [86]. The catalyst catalyses reaction of arylboronic acids

Pd (PPh3)4 (10 %)

base

NEt3 (1.1 equiv), 2 h: 64%

Ag2CO3 (2 equiv), 12 h: 50%

TMG (1) (1.1 equiv), 0.5 h: 98%

O

O

S S

OMOM

PMBHN

PhO2S

base, MeCN

O

O

S S

OMOM

PMBN

PMB = p-methoxybenzyl
MOM = methoxymethyl

Scheme 4.33 TMG (1) catalysed cyclization to spiro compound

ligand (0.03 equiv)
Me

(dba)3Pd2
.CHCl3 (0.01 equiv)

MeOC(O)O

OH
MeO

100% (92% ee)toluene

TMG (1)  (0.02 equiv)

rt 3 h

ligand

N N

PhPh

Ph2PPPh2

O O

H H

Scheme 4.34 Asymmetric Wagner–Meerwein shift in the presence of TMG (1)
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with a wide range of aryl halides in aqueous solvent to give the coupling products in good
to excellent yields and high turnover numbers. 1-Iodo-4-nitrobenzene was reacted with
phenylboronic acid to afford biphenyl in 85% and its turnover number was high (up to
850 000). Results for the preliminary screening of the guanidine ligands in the reaction of
1-bromo-4-methoxybenzene and phenylboronic acid are summarized in Scheme 4.35.
Barton�s bases were found to be the best ligands, which gave the coupling product in
nearly quantitative yield.

The Heck reaction of olefins with aryl halides proceeds successfully in the presence of
palladium catalyst supported on TMG (1) modified molecular sieves without solvent. The
TMG–Pd was found to be much more active and stable than the palladium catalyst without
modification with TMG (1) [87]. An ionic liquid, tetramethylguanidinium lactate, was used
as the TMG source.

Zinc
Chiral zinc-guanidine complexes were designed as possible chiral auxiliaries in organic
synthesis [88]. TMG (1) was successfully reacted with diethylzinc (Et2Zn) in a 4 : 3 and a
1 : 1 ratio to yield the corresponding linear [Zn3(m-TMG)4(Et)2] and cyclic [Zn(m-TMG)
(Et)]3 complexes. The cyclic complex was further reacted with alcohol and/or phenol to
give alternative complexes such as 21, which can catalyse the ring-opening polymerization
of lactide into poly-lactide [89] (Scheme 4.36).

4.3.3.4 Oxidation

Tetraphenylbismuth trifluoroacetate under neutral or slightly acidic conditions phenylates
primary alcohol in reasonable yields (65–75%), but gives only moderate yields with
secondary alcohols. In contrast, the reaction of bismuth [Bi(V)] reagents with alcohols
under basic conditions [BTMG (2) or TMG (1)] gives, exclusively, oxidation [90].

Br

MeO (HO)2B
MeO

+

ligand (3-6 mol%)

Pd (OAc)2 (1.5 mol%)

K2CO3 (3 mmol)

(1 mmol) (1.2 mmol) MeCN

NH

N
Me R

N

RMe

R = Me (74%)
R = Et (78%)
R = Bu (81%)

NH

N
Me

Me

n = 1 (83%)
n = 2 (80%)

N

n

NR

N
Me Me

N

MeMe

R = Bu (99%)
R = sBu(100%)
R = tBu (100%)

NBu

N
Me Me

N

(98%)

none (42%)

ligand

Scheme 4.35 Screening of the guanidine ligands on the Suzuki coupling reaction
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4.3.3.5 Proton Transfer (Isomerization)

Tricyclic sulfoxides carrying an iminoester function can isomerize to alternative imines in
the presence of catalytic amidine or guanidine under mild conditions through [1,3]-proton
transfer [91]. Modest asymmetric induction (up to 45% ee) was observed in the use of the
Corey�s guanidine (20) (Table 4.14).

4.3.3.6 Reduction

(5S)-1,3-Diaza-2-imino-3-phenylbicyclo[3.3.0]octane has been successfully employed as
a chiral catalytic source for the borane (BH3�SMe2) mediated asymmetric reduction of
prochiral phenacyl halides to provide the corresponding secondary alcohols up to 89%yield
and 83%ee [92].

O

Me

N
N

Me

Me N
Me

Me

tBu

tBu

O
ZnZn

O

N
N

Me

MeN
Me

Me

O

Me

tBu

tBu

Et

Et

N

Zn

Zn
N

Zn
N

Et NMe2

NMe2

Et

NMe2Me2N

Et

Me2N

NMe2

21

Scheme 4.36 A complex of Et2Zn and TMG (1) for polymerization

Table 4.14 Guanidine catalysed symmetric [1,3]-proton transfer of imines

rt

20
(0.05 equiv)

THF

CO2R2N

O
S

O

R1

CO2R2N

O
S

O

R1

4 h

Run R1 R2 Yield (%) ee (%)

1 Ph Me 63 43
2 iPr Et 95 45
3 Me Et 98 24
4 (CH2)2CO2Me Me 98 0
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4.3.3.7 Tandem Reaction

Michael and Aldol Reactions
TMG (1) is used favourably for tandem reactions of Michael and aldol additions [93,94]
(Scheme 4.37). Bicyclic furanopyran [93a] and a nucleotide derivative [93b] were
synthesized from the corresponding a,b-unsaturated systems in one-pot reaction. A
[3.3.1]bicyclic ring system, leading to huperzine A [94a], a candidate drug for Alzheimer
decease, and its spirocyclopropyl derivative [94b], is efficiently constructed by Robinson-
type annulation from b-keto ester and methacrolein in the presence of TMG (1) [94]
(Scheme 4.37c).

Michael and Displacement Reactions
A bicyclo[3.1.0]hexane system was catalytically prepared by cyclopropanation of cyclo-
pentenone throughMichael addition followed by displacement using TMG (1) as a catalyst
in high yield and high diastereoselectivity [95] (Scheme 4.38). TMG (1) used was
quantitatively recovered as the hydrobromide salt by simple filtration. DBU was found
to react less.

4.3.3.8 Vinyl Halide from Hydrazone

TMG (1) or BTMG (2) participate in the preparation of vinyl halides from hydrazones and
halogen molecules [96]. Examples of the two-step synthesis of vinyl halides from ketones
through hydrazones are shown in Table 4.15 [96a]. This procedure has been frequently
employed in chemical synthesis and often provides alternative access to vinyl iodide
difficult to prepare otherwise.

4.4 Guanidinium Salt

As summarized in Figure 4.2, a reactive guanidinium salt, which is produced from
guanidine and an appropriate electrophile, plays an important role as an active intermediate
for guanidine-participating reactions. In this section, the focus is on an alternative stable
guanidinium salt as a possible synthetic tool, which is expected to be useful contribution to
organic synthesis.

4.4.1 Guanidinium Ylide

Three-membered nitrogen heterocycles, aziridines, are very important molecules not
only as key components of biologically active natural products, but also as reactive
synthetic precursors for a wide variety of nitrogen-containing compounds [97]. Among
them, aziridine-2-carboxylates are versatile precursors for the synthesis of amino acid
derivatives, including unnatural type products [2]. Preparation of aziridine is basically
classified into three types of reactions: intramolecular substitution of b-aminoalcohols
by nucleophilic nitrogens; addition of carbenes to imines; and addition of nitrenes
to olefins. Recently, a new synthetic method was reported for the preparation of
3-arylaziridine-2-carboxylates 25 from guanidinium salts 22 which carry a glycine unit
and aryl (including heterocyclic) aldehydes [98]; guanidinium ylide 23 may be formed
from 22 under basic conditions and acts as a nucleophile and urea 26, useable as a
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Scheme 4.37 Examples of sequential Michael and aldol reactions



TMG (1)  (20 mol%)

K2CO3 (2 equiv)

MeCN aq 89%

O

CO2EtMe2S+

Br-

O

H

EtO2C

H

H

+

Scheme 4.38 TMG (1) catalysed cyclopropanation through tandem Michael-displacement
reactions

Table 4.15 Two-step synthesis of vinyl halides from ketones through hydrazones

step 2

R1

O

R2

R1

X

R2

cat.Sc(OTf)3

H

N N

TBS H

TBS

R1

N

R2

H
N

TBS

Run R1 R2 Step 2 Yield (%)

1 Me

O

Br

Br2, BTMG (2) DCM, 23 �C 90 (X¼Br)

2

MeO

MeO

O

I2, TMG (1) THF, 0 �C 82 (X¼ I)

3 O

O

O

Me

Me
Br2, BTMG (2) DCM, 23 �C 65 (X¼Br)a

4

N

O

OH

OH

O I2, TMG (1) THF, 0 �C 84 (X¼ I)b

5

MeO

Me

O

I2, TMG (1) THF, 0 �C 71 (X¼ I)
c

a gem-Dibromide was formed in 7% yield.
b tetrasub.: trisub.¼57 : 43.
c terminal: inner-E : inner-Z¼ 62 : 21 : 17.
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synthetic precursor of 22, is produced as a co-product of aziridines (Scheme 4.39).
Introduction of chiral centres into the guanidinium template (L¼ Ph) results in effective
asymmetric induction in the aziridine formation. In this unique cycle, aziridines are
generated with excellent to moderate stereoselectivity depending upon the choice of the
aryl aldehydes. In general, trans-aziridines are efficiently obtained with satisfactory
enantioselectivity when aryl aldehydes carrying an electron-donating group (EDG) such
as piperonal are used as electrophiles. Based on stereochemical results a cycle mecha-
nism for the asymmetric induction through spiro intermediates 24 has been postulated as
shown in Scheme 4.39.

Mechanistic approaches to asymmetric aziridine synthesis have been carried out
systematically using a variety of p-substituted benzaldehydes (Table 4.16). Two kinds of
reaction mechanism, controlled by the nature of the p-substituent of aryl aldehydes, are
proposed: an SNi-like mechanism, via cationic-like transition state for the fragmentation of
intermediate adducts to aziridine products (step 2) by intramolecular nucleophilic substi-
tution, when EDG-substituted benzaldehydes are used; and an SN2-like mechanism, where
electron-withdrawing group (EWG) substituted benzaldehydes are used [99].

Reaction of chiral guanidinium ylides with a,b-unsaturated aldehydes also gives
a,b-unsaturated aziridine-2-carboxylates in good to moderate yields with the chirality
of the ylides effectively transferred to the 2 and 3 positions of the aziridine products
(up to 93% de and 98% ee) [100]. The aziridines formed can, easily and stereoselec-
tively, undergo ring-opening reaction with oxygen nucleophiles to afford a-amino-
b-hydroxy esters. Thus, D-erythro-sphingosine was synthesized in good overall yield
with high optical purity starting from both trans-(2R,3S) and cis-(2R,3R)-3-[(E)-
pentadec-1-enyl]aziridine-2-carboxylates obtained from (E)-hexadec-2-enyl aldehyde
(Scheme 4.40).

Furthermore, a spiro imidazolidine–oxazolidine intermediate (e.g. 24 in Scheme 4.39)
was successfully isolated in the reaction of guanidinium ylide participating aziridination
using a-bromocinnamaldehyde, and the stereochemical alignment of new stereogenic
centres in the spiro system was unambiguously determined to be of trans-configuration by
X-ray crystallographic analysis [101]. The proposed role of the spiro compound as an
intermediate for the aziridination reaction was established by its smooth chemical
conversion into aziridine product.

In ylide chemistry, the Wittig reaction is a well known process; a phosphonium ylide
reacts with a carbonyl compound such as an aldehyde or a ketone to give an alkene by C�C
bond formation together with phosphine oxide, in which the phosphorus atom of the ylide
acts as oxygen acceptor from the carbonyl substrate (Scheme 4.41a). In the reaction of
sulfonium ylide with a carbonyl substrate, the product is oxirane in which the oxygen atom
comes from the carbonyl substrate (Scheme 4.41b). However, in the guanidinium ylides
mechanism, the external nitrogen atom, among three ylide nitrogen atoms, is incorporated
into the aziridine and the remaining amidine moiety acts as an oxygen acceptor to be
converted to urea (Scheme 4.41c). Thus, these three types of ylide participating reaction
with aryl aldehydes afford quite comparable profiles in the product formation.

4.4.2 Ionic Liquid

It is known that ionic liquid shows unique physico-chemical character and has been applied
to a wide variety of fields in the chemical industry [102]. The guanidinium salts shown in
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Figure 4.7 have been nominated as guanidine-type ionic liquids [103] and used in
hydrogenation [103a,103d,103f], hydroformylation [103b], the aldol reaction [103c,
103e] and the palladium catalysed Heck reaction [103g]. In the last reaction, 2-butyl-
1,1,3,3-tetremethylguanidinium acetate (27) plays multiple roles in the reaction, such as
solvent, a strong base to facilitateb-elimination and a ligand to stabilize activated palladium
species.

4.4.3 Tetramethylguanidinium Azide (TMGA)

In 1966 tetramethylguanidinium azide (TMGA) (28) was prepared as an hydroscopic
colourless, but stable, crystal by treatment of TMG (1) with hydrogen azide and was
introduced by Papa [104] as a reactive azidation reagent (Table 4.17).

O

H C13H27

N

R

CO2
tBu

Bn

cis: 46% (95% ee)
trans: 41 (97% ee)

1 (S,S)-22
   TMG / THF
    rt, 3 d

2 SiO2 / CHCl 3
    rt, 3 d

CH2OR
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N

O
O

H

CH2OH
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H2N

HO

on transon cis

CO2
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BnN

HO

H

CO2
tBu

C13H27

BnN

HO

H

C13H27

HO

O
RN

O

Scheme 4.40 Asymmetric synthesis of sphingsine from cis- and trans-aziridines obtained by
guanidinium ylide participating aziridination
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Figure 4.7 Structures of guanidine-derived ionic liquids

Table 4.17 Azidation of alkyl halides with TMGA (28)

Me

N N

N+H2

Me Me

Me

N3
-

CHCl3

refulx
R-X R-N3

28

+

Run R X Time (min) Yield (%)

1 Ph(CH2)2 Br 90 100
2 PhCH2 Cl 60 91
3 Me(CH2)5 Cl 240 60
4 EtO2CCH2 Cl 60 89
5 Ph2CH Br 60 81
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On the other hand, Papa reported that TMGA (28) could work as 1,3-dipolarophile in the
tetrazole synthesis [104]. 5-Phenyltetrazole is quantitatively given by heating benzonitrile
with 28 at 125 �C for six hours without solvent (Scheme 4.42).

The reaction of 1-arylsulfonylbicyclobutanes with TMGA (28) in N-methyl-2-pyrroli-
done (NMP) or DMF at 80–90 �C regiospecifically produced cyclobutanes as a separable
mixture of cis and trans isomers in high yield. Selected results are given in Table 4.18 [105].

Reactions using various azidation reagents were compared, among which TMGA (28)
was found to be the most effective reagent for a desired displacement reaction [106]
(Table 4.19).

TMGA (28)will convert to tetramethylguanidinium salt after completion of the azidation
reaction, offering easy isolation of azide product from the reaction mixture by addition of
diethyl ether. TMGA (28) is commercially available, nontoxic and safe to handle [107].
Thus, TMGA (28) participating azidation has been established as a widely applicable and
simple operating method for the introduction of a nitrogen source in a variety of organic
syntheses [108].

Glycosyl halides are reacted with 28 to afford the corresponding glycosyl azides in
quantitative yields; complete inversion at the anomeric centre is observed in this reaction
[107] (Scheme 4.43).

b-Functionalized vinyl azides are prepared through addition of TMGA (28) to acetylenic
and allenic compounds [109]. Examples for the preparation ofb-azido vinyl esters are given
in Table 4.20.

TMGA (28)
PhCN

125 ºC, 6 h

100%

N

NN

N

H

Ph

Scheme 4.42 Preparation of 5-phenyltetrazole

Table 4.18 TMGA (28) mediated regiospecific addition of hydrazic acid to
arylsulfonylbicyclobutanes

solvent

TMGA (28) R2

PhSO2

R1

N3

R2PhSO2

R1

Run R1 R2 Solvent Time (h) trans-S,N/cis-N,S Yield (%)

1 H H NMP 1 1.2 96
2 H Me NMP 2 0.32 89
3 H CO2Me DMF 2 1.5 86

4 H CON NMP 3 5.6 95

5 Me CON NMP 20 2.0 93
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Scheme 4.43 TMG (28) mediated azidation of glycosyl halides

Table 4.19 Azidation under various conditions

reagents

conditions

OTf

OBn

MeO2C N3

OBn

MeO2C

OBn

MeO2C

azide olefin

+

Bn = CH2Ph

Yield (%)

Run Reagent/solvent Azide Olefin

1 NaN3/DMF 56 14
2 NaN3/DMF-MeCN 33 7
3 Zn(N3)2(pyridine)2/DMF no reaction
4 Bn4N

þN3
�/PhH 0 60

5 TMSN3/MeCN complex mixture
6 TMGA (28)/DCM 62 7.5

Table 4.20 TMGA (28) addition to acetylenic esters

 DCM, rt N3

R1

R1
CO2R2CO2R2

TMGA (28)

Run R1 R2 Time (h) E/Z Yield (%)

1 H Et 36 70a/30 54
2 MeCO2 Me 72 0/100 59
3 Ph Et 72 100/0 85
4 Me Me 24 70/30 46

a (E)-Ethyl 3-[1-(4-ethoxycarbonyl)-1,2,3-triazoryl]acrylatewas formed as by-product after the 1,3-dipolar cycloaddition of
(E)-vinyl azide wirh ethyl propiolate.
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2-Butynoate was reacted with TMGA (28) to give b-azido acrylate as a mixture of
geometric isomers. The 1,4-conjugate addition product served as the diene component in
the [4þ 2] annulation reaction after conversion to vinyl carbodiimides by Staudinger-aza-
Wittig condensation with benzylisocyanate [110]. These reactions are key steps in the total
synthesis of batzelladine alkaloids (Scheme 4.44).

For the preparation of acceptor-substituted propargyl azide through substitution of the
propargyl precursors bearing a leaving group, the reaction of halide with TMGA (28)
resulted in the vinyl azide instead of a desired azide, because the presence of the acceptor
substituent causes prototropic isomerization under basic conditions [111]. Expected
displacement was observed when sulfur containing propargyl azide was subjected to the
reaction, and the following oxidation with m-chloroperbenzoic acid (mCPBA) gave the
sulfonyl substituted propargyl azide even in low yield (Scheme 4.45).

CHCl3 N3Me
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OR
H H
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N
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Me N

N

N
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H H
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H2N

PMB = p-methoxybenzyl

Scheme 4.44 Application of TMGA (28) addition to acetylenic ester to batzelladine synthesis
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4.5 Concluding Remarks

Guanidines attract much attention as unique synthetic tools with multiple functions in
organic synthesis, such as organosuperbase catalysts, metal ligands and templates for ionic
liquids. The origin of their functionalities is the conjugated three-nitrogen system of the
guanidinyl moiety, and the easy structural modification can allow the design of newly
functionalized compounds with diverse potential. Thus, it can be reasonably expected that
more extensive studies on guanidine chemistry in the future should result in progressing
organic chemistry.
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5.1 Introduction

Selection of the appropriate base for the reaction to be performed has been one of the
important matters for organic chemists. Although uncharged organic bases are usually
weaker than their inorganic counterparts, such as alkali metal hydroxides, oxides and
alkoxides, organic bases have become standard reagents widely used in organic synthesis
(Figure 5.1).

The use of organic bases has some advantages over the use of ionic bases, such as milder
reaction conditions, better solubility and absence of a coordinating metal ion. Recently,
particular attention has been focussed on the design and preparation of organic superbases.
The cation free strong neutral bases are strong nonionic systems, which allow the
deprotonation of a wide range of weak acids, to form highly reactive �naked� anions. In
this respect, cyclic amidines, guanidines, phosphazenes and phosphatranes have been of
special interest for general and synthetic organic chemistry.

The representative of a phosphazene base was first prepared in the 1970s [1] and,
subsequently, simple, large scale syntheses of tris(dialkylamino)iminophophoranes and
tris(dialkylamino)-N-alkyliminophosphoranes (the P1 phosphazene bases) were developed
[2]. Furthermore, a (dma)3P¼N- unit on phosphorus for synthesizing highly nucleophilic
tris[tris(dimethylamino)phosphinimino]phosphine was employed. The homologation
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concept was used for the construction of a family of extremely strong noncharged organic
bases, P1–P7 phosphazene bases (iminophosphoranes), which are much stronger bases
than the well known diazabicycloundecene (DBU) or triazabicyclodecene (TBD) bases
[3] (Figure 5.2).

The hydrolytically stable phosphazene bases, especially tBu-P4, were found to be useful
in organic synthesis. Besides the highly enhanced basicity, phosphazene bases combine:
high solubility in nonpolar organic solvents; easy handling and easier workup through
cleaner reactions; low sensitivity tomoisture and oxygen; and the possibility of operating at
lower temperature and high selectivity. There are many examples which demonstrate the
superiority of the phosphazene bases and polymer-supported phosphazene reagents over
common inorganic and organic nitrogen bases in organic synthesis.

A simple high yield two-step protocol for the preparation of P1 is known. Reaction of
phosphorus pentachloride with dimethylamine affords the peralkylated cation as tetra-
fluoroborate, which is then demethylated with thiolate. The high basicity of triaminoimi-
nophosphoranes requires drastic conditions [4] (Scheme 5.1).

To further enhance basicity by the same formal homologation, replacement of the
dimethylamino group by modified, potentially stronger electron-donating groups is
considered to allow a tuning of the basicity. The nucleophilicity of the bases should be
effectively controlled by proper choice of the alkyl group on the basic centre. The synthesis
for P2, P3, P4 phosphazenes takes advantage of the P1 building block and HBF4 salts are
usually obtained in high yields by replacement of the chlorine atom on the phosphorus by
the iminophosphorane. The most convenient method for the liberation of P4 phosphazene
was found to be the reaction of the hydrogen tetrafluoroborate (HBF4) salt with potassium
amide (KNH2) in liquid ammonia and separation of the base from inorganic material by
extraction with hexane [5] (Scheme 5.2).

A density functional theory (B3LYP/6-311þG**), ab initio (HF/3-21G*) and semi-
empirical (PM3) study of intrinsic basicities, protonation energies or protonation enthalpies
of phosphazene bases has been reported. The study shows that the organic superbases can
reach the basicity level of the strongest inorganic superbases, such as alkali metal
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hydroxides, hydrides and oxides. The strongest organic phosphazene bases are predicted to
reach the gas phase basicity level of ca. 300 kcal/mol (number of phosphorus atoms in the
system n> 7) [6].

UV photoelectron spectroscopy was used to investigate the electronic structure of
phosphazene bases. The spectral assignment was based on the band intensities, HeI/HeII
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band intensity changes, comparison with the spectra of related compounds and MO
calculations [7]. AUV–Visible spectrophotometric method for the measurement of relative
acidities in heptane was developed and the phosphazene base tBu-P4 was used as the
deprotonating agent. Its protonated form is a good counter ion for the anions of the acids
because it is bulky, has delocalized charge and, therefore, does not have specific interactions
with the anions.

A self-consistent scale of relative acidities in heptane spanning for 3 pKa units was
constructed [8]. A self-consistent spectrophotometric basicity scale of various organic
bases including phosphazenes in acetonitrile was investigated. The span of the scale is
almost 12 pKa units. The scale is anchored to the pKa value of pyridine of 12.33.
Comparison of the basicity data of phenyliminophosphoranes and phenyltetramethylgua-
nidines implies that the P¼N bond in the (arylimino)tris(1-pyrrolidinyl)phosphatranes
involves a contribution from the ylidic (zwitterionic) structure analogous to that found in
phosphorus ylides [9]. A series of RN¼P(Pyrr)3 iminophosphoranes (P1 phosphazene),
where R is amino, a-naphthyl- or substituted phenyl group, was prepared and characterized
by other properties.

The pKa values of 12 different synthesized phosphazenes and C6H5N¼P(NMe2)3 were
determined in acetonitrile relative to the reference bases using 13C NMR spectroscopy. The
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obtained pKa-values were compared with the corresponding values of RNH2 amines. The
pKa values of the synthesized phosphazenes in acetonitrile ranged from 14.6 to 26.8 pKa
units [10]. The UV–Visible spectrophotometric titration method was used to establish the
relative basicity of phenyl-substituted phosphazenes (P1, P3 and P4 bases), and to extend
the ion pair basicity scale for tetrahydrofuran (THF) medium. These measurements gave a
continuous basicity scale in THF ranging from 2.6 (2-MeO-pyridine) to 26.6 (2-Cl-
C6H4P4(pyrr)phosphazene) in pKa units, that is for 24 orders of magnitude and containing
58 compounds (pyridines, anilines, amines, guanidines, amidines, phosphazenes) [11]. The
gas phase basicity (GB) values were determined for 19 strong bases, among them such well
known bases as BEMP (1071.2KJ/mol), Verkade�s methyl-substituted base (1083.8 kJ/
mol), Et–N¼P(NMe2)2–N¼P(NMe2)3 (Et-P2 phosphazene, 1106.9 KJ/mol) and t-Bu-
N¼P(NMe2)3 (t-Bu-P1 phosphazene, 1058.0KJ/mol). The first experimental GB values
were determined for P2 phosphazenes and an important region of the gas phase basicity
scale is now covered with organic bases. The GB values for several superbases were
calculated using density functional theory at the B3LYP/6-311þG** level [12].

A new unique principle for creating novel nonionic superbases has been reported
(Figure 5.3). It is based on attachment of tetraalkylguanidino, 1,3-dimethylimidazolidine-
2-imino or bis(tetraalkylguanidino)carbimino groups to the phosphorus atom of the
iminophosphorane group using tetramethylguanidine or the easily available 1,3-dimethy-
limidazolidine-2-imine. Their base strengths are established in THF solution by means of
spectrophotometric titration and compared with reference superbases designed specially
for this study, P2- and P4-iminophosphoranes. The gas phase basicities of several guanidine
and N0,N0,N0,N0-tetramethylguanidino(tmg) substituted phosphazenes, and of their cyclic
analogues, have been calculated and the crystal structures of (tmg)3P¼N-tBu and
(tmg)3P¼N-tBu HBF4 determined. The enormous basicity-increasing effect of this princi-
ple is experimentally verified for the tetramethylguanidino groups in the THFmedium, and
the basicity increase when moving from (dma)3P¼N-tBu (pKa¼ 18.9) to (tmg)3P¼N-tBu
(pKa¼ 29.1) is 10 orders of magnitude [13].

The gas phase basicities and pKavalues of tris(phosphazeno) substituted azacalix[3](2,6)
pyridine in acetonitrile and some related compounds were examined by the density
functional theory (DFT) computational method. It was shown that the hexakis(phospha-
zeno) derivative of azacalx[3](2,6)pyridine is a hyperstrong neutral base, as evidenced by
the absolute proton affinity of 314.6 kcal/mol and pKa (MeCN) of 37.3 units. It is a
consequence of the very strong bifurcated hydrogen bond (32 kcal/mol) and substantial
cationic resonance effect [14].

A combination of phosphazene base concept and the disubstituted 1,8-naphthalene
spacer was shown and a new bisphosphazene 1,8-bis(hexamethyltriaminophosphazenyl)
naphthalene (HMPN) represents the most basic representative of this class of �proton
sponge�, as evidenced by the theoretically estimated proton affinity PA¼ 274 kcal/mol and
the measured pKBHþ (MeCN) 29.9. HMPN is by nearly 12 orders of magnitude more basic
than Alder�s classical 1,8-bis(dimethylamino)naphthalene (DMAN). The new bispho-
sphazene, HMPN, has been prepared and fully characterized. The spatial structure of
HMPN and its conjugate acid have been determined by X-ray technique and theoretical
DFT calculations. It is found that monoprotonated HMPN has an unsymmetrical intramo-
lecular hydrogen bridge. This cooperative proton chelating effect renders the bispho-
sphazene more basic than P1 phosphazene bases. The density functional calculations are in
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good accordance with the experimental results. They show that the high basicity of HMPN
is a consequence of the high energy content of the base in its initial neutral state and the
intramolecular hydrogen bonding in the resulting conjugate acid with contributions to
proton affinity of 14.1 and 9.5 kcal/mol, respectively [15a]. It is shown by DFT calculation
that HMPN and trisguanidylphosphazene are very powerful neutral organic superbases, as
evidenced by the calculated proton affinities in the gas phase and the corresponding
calculated pKa values in acetonitrile (given within parentheses): 305.4 kcal/mol (44.8) and
287.8 kcal/mol (37.8), respectively [15b].

A chiral example of phosphazene bases was synthesized by treatment of (S)-2-(dialky-
laminomethyl)pyrrolidine derived from 5-oxo-(S)-proline, with phosphorus pentachloride
and subsequent addition of gaseous ammonia. The phosphazenes were isolated as HBF4
salts in high yields and fully characterized by 1H, 13C and 31P NMR spectroscopy, various
1D and 2DNMR experiments andmass spectrometry (EI). The molecular structure and the
absolute configuration of the HBF4 salts were determined by X-ray analysis [16].

5.2 Deprotonative Transformations Using Stoichiometric Phosphazenes

In this section, various transformations promoted by the use of stoichiometric phospha-
zenes are discussed, classified by the types of the phosphazenes P1–P4.

NN

N

N

N

N

N=P(NMe2)3

N=P(NMe2)3

N=P(NMe2)3

N=P(NMe2)3(Me2N)3P=N

(Me2N)3P=N

azacalix[3](2,6)pyridine

P

NR

N

N

N

NMe2

NMe2Me2N

Me2N

Me2N NMe2

guanidinophosphazene

N N
P(NMe2)3(Me2N)3P

superbasic bisphosphazene
 ‘proton sponge’

N

N

N NH2P

R

R

R

BF4

chiral phosphazene

Figure 5.3 Newly designed phosphazenes

150 Phosphazene: Preparation, Reaction and Catalytic Role



5.2.1 Use of P1 Base

5.2.1.1 Alkylation of C-Nucleophile

The catalytic enantioselective alkylation of the benzophenone imine of glycine tert-butyl
esterwas realized by an efficient homogeneous reactionwith alkyl halides, the phosphazene
base (BEMP or BTTP) and chiral quaternary ammonium salts derived from the cinchona
alkaloids. Wang-resin bound derivatives of the glycine Schiff base ester were alkylated in
the presence of quaternary ammonium salts derived from cinchonidine or cinchonine using
phosphazene bases to give either enantiomer of the product a-amino acid derivatives in 51–
89% ee. The enantioselective conjugate addition of Schiff base ester derivatives toMichael
acceptors either in solution (56–89% ee) or in the solid phase (34–82% ee) gave optically
active unnatural a-amino acid derivatives. The reaction was conducted in the presence of
chiral quaternary salts derived from the cinchona alkaloids using phosphazene bases.
Reacting imine derivatives of resin-bound amino acids with a,o-dihaloalkanes provides
highly versatile intermediates to racemic a,a-disubstituted amino acidswithwidevariety of
side-chain functionality. They allow the creation of amino acidswith diverse functionalities
placed at varying chain length from the a-center of the amino acid [17] (Scheme 5.3).

Iminic derivatives of (4R,5S)-1,5-dimethyl-4-phenylimidazolidin-2-one have been dia-
stereoselectively alkylated with activated alkyl halides or electrophilic olefins either under
phase transfer catalysis (PTC) conditions or in the presence of the phosphazene base BEMP
at �20 �C in the presence of lithium chloride (LiCl). Hydrolysis of the alkylated imino
imides gave (S)-a-amino acids with recovery of the imidazolidinone chiral auxiliary [18].

The phenylsulfinyl fluoroacetate can be alkylated with a wide range of alkyl halides and
Michael acceptors. Subsequent thermal elimination of phenyl sulfinic acid leads to
a-fluoro-a,b-unsaturated ethyl carboxylates, an important class of intermediates for
fluorine containing biologically active compounds [19] (Scheme 5.4).

Using a phosphazene base allows unreactive nitroaromatic compounds to condense with
ethyl isocyanoacetate to give C-annelated pyrroles. Stable 2H-isoindoles with electron-
withdrawing groups have been prepared using the reaction of dinitrobenzene derivatives
with isocyanoacetate in the presence of a phosphazene base (BTPP). The structure of an
isoindole was confirmed by X-ray crystallographic analysis, and this substance existed in
the solid phase only as the 2H-isomer. The reaction of 6-nitroquinoline gave a pyridine
fused isoindole [20] (Scheme 5.5).
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5.2.1.2 Alkylation and Arylation of N-Nucleophile

The cyclization associated with the quasi-axial orientation of the carbamate residue
involves complications, not unexpected because of the steric/stereoelectronic conditions.
After a series of inadequately selective reactions with a variety of conventional bases (NaH,
KH, LDA, tBuOK, etc.) the Schwesinger iminophosphorane bases eventually enabled a
breakthrough and gave the desired product in high yield [21] (Scheme 5.6).

The amination of 3-bromoisoxazoles by a nucleophilic aromatic substitution reaction
was facilitated by the use of phosphazene bases. 3-Bromoisoxazoles were found to be inert
to substitution under thermal conditions. However, the use of phosphazene bases under
microwave irradiation facilitates the amination process and allows the corresponding
3-aminoisoxazoles to be isolated in moderate yield [22] (Scheme 5.7).

5.2.1.3 Alkylation of S-Nucleophile

Disaccharides of 1-thioglycosides, an important class of glycomimics, can be synthesized
by S-alkylation in exceptionally high yields when iminophosphorane bases are employed.
The reaction conditions employed appear to be general and stereospecific. Axial and
equatorial 4-triflates and primary tosylates of alkyl pyranosides provided excellent yields of
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thio-dissacharides without substantial elimination product. The iminophosphorane bases
also proved to be useful in solid support-bound coupling of thioglycosides though with
lower efficiency [23] (Scheme 5.8).

5.2.1.4 Amide Formation

a-Amino acids are soluble in acetonitrilewhen treated with phosphazene bases. As a result,
the protection/deprotection events that are usually used for peptide coupling reactions can
be minimized. This is illustrated in the synthesis of the important angiotensin-converting
enzyme (ACE) inhibitor enalapril [24] (Scheme 5.9).

5.2.1.5 Heterocycle Formation

3,6-Dihydro-2H-1,4-oxazin-2-ones act as reactive chiral cyclic alanine equivalents and can
be distereoselectively alkylated using the organic base BEMPwhen using unactivated alkyl
halides. Inmost cases, the diastereoselectivity is excellent although the reactions are always
carried out at room temperature. Hydrolysis of the alkylated oxazinones obtained allows the
preparation of enantiomerically enriched (S)-a-methyl a-amino acids. The organic base
methodology has also been applied to the synthesis of (R)-a-methyl a-amino acids starting
from (R)-alanine. When dihalides are used as electrophiles in the presence of BEMP, a
spontaneous N-alkylation also takes place giving bicyclic oxazinones, which can be
hydrolyzed to an enantiomerically pure heterocyclic compound [25] (Scheme 5.10).
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5.2.1.6 Michael Addition

Michael addition reaction of various b-ketoesters with several Michael acceptors in water
containing 10mol% of N-phenyl-tris(dimethylamino)iminophosphorane results in high
yield conversion to the corresponding adducts [26] (Scheme 5.11).

5.2.1.7 Polymer-Supported Reaction

The polymer bound indolecarboxylate was N-alkylated with 3-cyanobenzyl bromide in the
presence of the strong base BEMP (Scheme 5.12). The replacement of the base by the
weaker base DIPEA did not lead to any alkylation product [27].

Polymer bound acrylic ester is reacted in a Baylis–Hillman reaction with aldehydes to
form 3-hydroxy-2-methylidenepropionic acids or with aldehydes and sulfonamides in a
three-component reaction to form 2-methylidene-3-[(arylsulfonyl)amino]propionic acids.
In order to show the possibility of Michael additions, the synthesis of pyrazolones was
chosen. TheMichael addition was carried out with ethyl acetoacetate and BEMP as base to
form the resin bound b-keto ester. This was then transformed into the hydrazone with
phenylhydrazine hydrochloride in the presence of TMOF and DIPEA [28]. The polymer
bound phenol was readily coupled to a variety of allyl halides by using the P1-tBu to
generate a reactive phenoxide [29].

Polymer-supported reagents have been applied to the synthesis of the natural product
carpanone, resulting in a clean and efficient synthesis without the need for a conventional
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purification technique. The synthesis begins from commercially available sesamol, which
is readily allylated in acetonitrile containing a small quantity of dimethylformamide using
allyl bromide and a polymer-supported phosphazene base (P-BEMP) to give the aryl ether
in 98% yield [30] (Scheme 5.13).

Polymer-supported reagents and other solid sequestering agents can be used to generate
an array of 1,2,3,4-tetrasubstituted pyrrole derivatives without any chromatographic
purification step [31] (Scheme 5.14).

Polymer-supported reagents and sequestering agents may be used to generate an array of
variously substituted amino acid derivatives which were converted to hydroxamic acid
derivatives as potential inhibitors ofmatrixmetalloproteinaseswithout any chromatograph-
ic purification step [32] (Scheme 5.15).

The preparation of a novel polystyrene-supported dehydrating agent and its application
to the synthesis of 1,3,4-oxadiazoles under thermal and microwave conditions has been
reported. An alternative procedure using tosyl chloride and P-BEMP has also been
presented [33] (Scheme 5.16).
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5.2.2 Use of P2 Base

5.2.2.1 Aldol Reaction of Iminoglycinate

It was found that a �naked� enolate can undergo an aldol addition with full conversion
provided that the DpKa between the aldol product and the conjugated acid of the base is
large enough (more than six units stronger). Under such conditions the base being
regenerated can be used in catalytic amounts. When the iminoglycinate is derived from
hydroxypinanone, 83%of the threo-isomer having�98%eewas obtained.WhenEt-P2was
used as a base, the threo/erythro selectivitywas higher aswell as the diasteoselectivity of the
approach of the aldehyde on enolate. The high diastereoselectivity observed at C2 (97% R)
is difficult to rationalize on the basis of product stability but similar R-diastereoselectivity
has been observed during other catalytic Michael additions [34] (Scheme 5.17).

5.2.2.2 Deconjugation of Alkenyl Sulfone

Treatment of vinyl sulfones with 0.1–0.2 equiv. of phosphazene base, Et-P2 in THF at 25 �C
affords the corresponding allyl sulfones in high yield. Et-P2 has shown clear and superiority
to both DBU and KOtBu in these reactions [35] (Scheme 5.18).
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5.2.2.3 Generation of S-Ylide and Reaction

It was found that oxathiane is a very efficient chiral auxiliary that allows the preparation of
various pure trans-diarylepoxides in high yields and with high enantiomeric purities. In an
attempt to improve these results and shorten the reaction time, more reactive �naked�
carbanions were generated by using a phosphazene base, and Et-P2 is potentially able to
provide a high concentration of ylide and could be used in dichloromethane (CH2Cl2). The
percentage of the cis isomer was reduced to 6%. Trans-1-(2-pyridyl)-, trans-1-(3-pyridyl)-,
trans-1-(2-furyl)-, and trans-1-(3-furyl)-2-phenyl epoxides with enantiomeric purities
ranging from 96.8 to 99.8% are obtained in two steps from pure (R,R,R)-oxathiane. It was
also found that trans-aryl-vinyl epoxides could be synthesized with 77–100% conversion
from conjugated aldehydes and chiral sulfonium salts with ee�s ranging from 95 to 100%.
When a conjugated ketone such as methyl vinyl ketonewas used under the same conditions,
the reaction provided the corresponding cyclopropane in good yield and with high enan-
tioselectivity [36] (Scheme 5.19).

Unknown diaryl and alkyl-phenyl N-tosyl aziridines have been successfully synthesized
frompure(R,R,R,S)-(�)-sulfoniumsaltderivedfromEliel�soxathiane, tosylimines,andusing
a phosphazene base Et-P2 to generate the ylide. Both cis and trans aziridines have exception-
allyhighenantiomericpurities(98.7–99.9%ee).TheR-configurationfoundatC2isconsistent
with the model and all previous results, therefore all trans-aziridines and cis-aziridines have
beenassignedthe(2R,3R)-andthe(2R,3S)-configurations,respectively.Thechiralauxiliaryis
used in a stoichiometric amount but is recovered in high yield and reused [37] (Scheme 5.19).

5.2.2.4 Reaction of o-Halobenzyl Sulfone

The synthetic applications of o-halobenzyl sulfones as precursors of 1,3- and 1,5-zwitter
ionic synthons, have been investigated and their sulfonyl carbanions, generated bymeans of
the phosphazene base Et-P2 reacted with different electrophiles, such as alkyl halides and
aldehydes. When the alkylation was performed with ethyl bromoacetate, ortho-substituted
cinnamates were obtained after a subsequent b-elimination of sulfinic acid.When the aldol
reaction was performed with paraform aldehyde, vinyl sulfones were obtained. The
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reaction of the o-halobenzyl sulfones with aliphatic aldehydes at �78 �C gave aldol-type
products and the anti products are the favoured products [38] (Scheme 5.20).

5.2.2.5 Sigmatropic Rearrangement

The phosphazene bases BTPP and tBu-P2 mediate the rearrangement of unactivated
N-alkyl-O-benzoyl hydroxamic acid derivatives to give 2-benzoyl amides. The rate of
reaction was found to be dependent upon the steric nature of the N-alkyl substituent [39a].
Treatment of malonyl derived O-acylhydroxamic acid derivatives with the phosphazene
superbase tBu-P2 gives 2,3-dihydro-4-isoxazole carboxylic ester derivatives. The rate and
yield of the reaction depend upon the O-acyl substituent [36b] (Scheme 5.21).
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5.2.2.6 Sulfide Formation via SNAr Reaction

In the presence of the phosphazene Et-P2 base as well as DBU the coupling of aryl iodides
with arenethiols only requires catalytic amounts of copper(I) bromide (CuBr). Under these
conditions, the reaction can be performed in refluxing toluene to give biaryl thioethers in
excellent yields [40] (Scheme 5.22).

5.2.3 Use of P4 Base

5.2.3.1 Alkylation of C-Nucleophile

It was shown that monoalkylation of 8-phenylmenthyl phenylacetate using lithiated bases
leads to poor or no diastereoselectivities (50/50 to 69/31) and high yields (75–98%) while
alkylation using tBu-P4 leads to high diastereoselectivities (92/8 to 98/2) and high yields
(65–95%) [41] (Scheme 5.23).

It is postulated that, in the case of phenylacetates, the degree of aggregation of the lithium
enolate is responsible of the poor diastereoselectivities. NMR studies revealed that methyl
phenylacetate enolate generated with the tBu-P4 phosphazene base was ‘naked’ or tightly
associated with the tBu-P4Hþ cation depending on very small variations in solvent
composition. Both forms reacted more rapidly than the corresponding lithium enolate in
a model alkylation experiment using dimethyl sulfate.

Supported tBu-P4 enolate chemistry of phenylacetyloxymethyl polystyrene resin was
investigated using high resolution magic angle spinning (HR-MAS) NMR spectroscopy.
Direct analysis of the crude reaction suspension through the use of a diffusion filter allowed
not only rapid selection of the optimal experimental conditions, but also the characteriza-
tion of the enolate on the solid phase. Comparison with solution experiments and literature
data indicated partially the structure of the enolate. HR-MAS NMR spectra of the enolate
revealed also a tight interaction of tBu-P4 base with the polymer matrix [41].

The structurally novel bicyclic oxazinone was prepared based on D-glucopyranose. The
lithium enolates of these compounds undergo highly diastereoselective alkylation reactions
with reactive alkyl halides, in modest yields. Use of the phosphazene P4 base enhanced the
yields of these processes, suggesting that metal enolate aggregation is at least partly

IR HS
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R'
Et-P2, CuBr (cat.)

toluene, reflux
+

Scheme 5.22 Copper catalysed coupling in the presence of P2
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responsible for the depressed yields. The stereochemistry of the products has been
unequivocally ascertained by nuclear Overhauser effect (nOe) measurements and ab initio
calculations [42] (Scheme 5.24).

A synthesis of all four stereoisomers [(1S,2S)-, (1R,2R)-, (1S,2R)- and (1R,2S)-] of
1-amino-2-(hydroxymethyl)cyclobutanecarboxylic acid was presented. The synthesis is
based on the chiral glycine equivalent, employed in both enantiomeric forms. The key step
involves the cyclization of the silyl-protected iodohydrins to the corresponding spiro
derivatives with the aid of the phosphazene base tBu-P4. The final compounds were found
to display moderate potency as ligands for the glycine binding of theN-methyl-D-aspartate
(NMDA) receptor [43] (Scheme 5.25).

Three-membered cyclic sulfones (episulfones) undergo substitution on treatment with
base–electrophile mixtures, such as tBu-P4 phosphazene base–benzyl bromide, to give the
corresponding alkenes following loss of sulfur dioxide (SO2). The formation of the
trisubstituted episulfone was observable but the compound proved unstable to the workup
procedure and rapidly decomposed to the alkene as a mixture of stereoisomers [44]
(Scheme 5.26).

Four cyclotetrapeptides containing one or two chiral amino acids have been C-alkylated
or C-hydroxyalkylated through phosphazenium enolates. The reactions are completely
diastereoselectivewith respect to the newly formed backbone stereogenic centres.With the
tBu-P4 base, all groups are first benzylated and C-benzylation then takes place at a
sarcosine, rather than an N-benzylglycine residue. In contrast to open chain N-benzyl
peptides, the N-benzylated cyclotetrapeptides could not be debenzylated under dissolving-
metal conditions (Na/NH3). Conformational analysis shows that the prevailing species have
cis/trans/cis/trans peptide bonds [45] (Scheme 5.27).

Cyclosporin A can be regioselectively alkylated at the NH of Val-5 with reactive
bromides in the presence of phosphazene base tBu-P4 to yield alkylated products. These
are devoid of immunosuppressive activity in vitro but they have binding affinity for
cyclophilin A and represent a new class of cyclosporin antagonists. 1H-NMR studies have
shown that the compounds exist in a single, all trans conformation [45c].

5.2.3.2 Generation a-Sulfinyl Carbanion

The effect of tBu-P4 on the yield and diastereoselectivity of additions of thus formed
‘naked’ a-sulfinyl carbanions to butyraldehyde has been studied. Condensation of ethyl
benzylsulfone with butyraldehyde gave a mixture of two expected syn and anti diaster-
eomers. It appeared that the anti isomer was favoured and the diastereoselectivity increased
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when tBu-P4 was used as base. A further increase in the diastereoselectivity was observed
when the alcoholate was quenched with trimethylchlorosilane [46] (Table 5.1).

5.2.3.3 Julia–Kocienski Olefination

The reaction between a carbanion derived from alkyl 3,5-bis(trifluoromethyl)phenyl
sulfones and aldehydes affords, with good yields and stereoselectivities, the corresponding
1,2-disubstituted alkene through the Julia–Kocienski olefination reaction. This one-pot
protocol can be performed using the phosphazene base at�78 �C and has been successfully
used in a high yielding and stereoselective synthesis of various stilbenes such as resveratrol
[47] (Scheme 5.28).

5.2.3.4 Benzofuran Cyclization

The hindered nonionic phosphazene base tBu-P4 efficiently deprotonates o-arylmethoxy
benzaldehydes, leading to a direct synthesis of benzofuran derivatives. Strong ionic bases
such as LDA, LTMP and KH failed for this cyclization [48] (Scheme 5.29).
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Scheme 5.26 Alkylation of episulfone in the presence of P4
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Table 5.1 Diastereoselective addition of sulfone to aldehyde

Et
S Ph

O O

Et
S

O O

Ph

Pr

OH

anti

Et
S

O O

Ph

Pr

OH

syn

Pr-CHO

base
+

Base anti syn Yield (%)

BuLi 59 41 100
tBu-P4 72 28 56
tBu-P4/TMSCl 82 18 72
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5.2.3.5 Oxy-Cope Rearrangement

Compounds containing a 1,5-hexadien-3-ol system undergo anionic oxy-Cope rearrange-
mentwhen treatedwith the phosphazene superbase tBu-P4. The sigmatropic rearrangement
occurs in hexane as well as in THF. The weaker phophazene base Et-P2 failed to induce
rearrangement. This is the first example of the use of a metal-free base to induce anionic
oxy-Cope rearrangement [49] (Scheme 5.30).

5.2.3.6 Ether Formation via SNAr Reaction

In the presence of tBu-P4 base and copper(I) bromide, aryl halides couple with phenols to
give biaryl ethers at about 100 �C, while the use of DBU as a base for this coupling reaction
is not effective [50] (Scheme 5.31).
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Scheme 5.30 Anionic oxy-Cope rearrangement
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Scheme 5.31 Copper catalysed coupling in the presence of P4
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Scheme 5.28 Julia–Kocienski olefination
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5.2.3.7 Reaction of Heteroaryl Carbanion

A novel type of deprotonative functionalization of aromatics was achieved with unique
regioselectivities and excellent chemoselectivity using tBu-P4 base and zinc iodide (ZnI2)
in the presence of an electrophile [51] (Scheme 5.32).

5.2.4 Use of P5 Base

Pyrido[1,2-a]azepinone was deprotonated from the pyridine unit by lithium diisopropy-
lamide affording lithium salts, which were trapped by electrophiles like deuterium oxide
(D2O), benzoyl chloride and aldehyde. In the latter case, subsequent intramolecular attack
of the intermediate alkoxide to the lactam moiety leads to [7] (2,6)pyridinophanes. On
reaction with a lithium free phophazene base tBu-P5 deprotonation takes place at the
a-carbonyl position of the azepinone ring affording the enolate [52] (Scheme 5.33).

5.3 Transformation Using Phosphazene Catalyst

5.3.1 Addition of Nucleophiles to Alkyne

The addition ofO- andN-nucleophiles to alkynes catalysed by a phosphazene base, tBu-P4
base was investigated. Alkynes were easily transformed to enol ethers and enamines in
dimethyl sulfoxide (DMSO) by the addition of nucleophiles. When phenylacetylene was
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Scheme 5.32 Deprotonative functionalization of aromatic compounds
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reacted with diisopropylamine, a unique head-to-head dimerization of phenylacetylene
was observed to give the enyne derivative [53] (Scheme 5.34).

5.3.2 Catalytic Activation of Silylated Nucleophiles

Trialkylsilyl groups have played a very important role as effective protecting groups in
organic synthesis. The activation of the nucleophile–silicon bond is important for the
generation of a reactive anion to achieve a new bond formation. A novel catalytic activation
of variousO-,N-, andC-nucleophile-silicon bonds using a tBu-P4 base has been investigated
to perform reactions with various elecrophiles [54] (Figure 5.4).

5.3.2.1 Arylation of Silylated O-Nucleophile

The strong affinity of a tBu-P4 base for a proton is regarded as synthetically useful.
However, the ability of a tBu-P4 base to activate silylated nucleophiles has not been known.
Recently, many important aryloxylations of aryl halides have been reported using transition
metal catalysed reactions; however, the transition metal free nucleophilic substitution
reaction promoted by an organobase is also considered to be an attractive process. The
reaction of TMS-OPhwith 2-fluoronitrobenzenewas carried out in the presence of 10mol%
tBu-P4 base and the reaction proceeded smoothly at room temperature to give the biaryl
ether in quantitatively yield (Table 5.2, run 2). When phenol was reacted under the same
reaction conditions with 2-fluoronitrobenzene, the yield of the biaryl ether was only 1.6%.
TBDMS-OPh also showed high reactivity in spite of the steric hindrance of the TBDMS
group and the desired biaryl was obtained in 96% yield (run 3). TBDMS ethers of other
phenol derivatives were used as substrates (runs 5–8), and 2-t-butyl, 2-bromo and 2-iodo
derivatives gave excellent results in spite of the steric bulkiness of the nucleophile. The
tolerance of the bromo or iodo group is very attractive for the subsequent transformation; the
conventional metal catalysed reactions do not allow this kind of selectivity. When tetra-
butylammonium fluoride (TBAF)was employed as a catalyst, the reactionwas very sluggish
and only a trace amount of product was obtained [54] (run 9).

Substitutedaryl fluorides reactedwithTBDMS-OC6H4OMe-p in thepresenceof10mol%
tBu-P4 base (Table 5.3). Ethyl p-fluorobenzoate reacted at 80 �C to give the biaryl ether in

Ph R + Nu H
tBu-P4

DMSO Ph

H H

Nu

Scheme 5.34 P4 catalysed addition of nuclephiles to alkyne

SiR'3nucleophile
electrophile (E)

Enucleophile
tBu-P4 (cat.)

Figure 5.4 Activation of silylated nucleophiles by tBu-P4 base
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92% yield (run 1). Other bases, such as BEMP or DBU, were found almost inactive as a
promoter (runs 2, 3). p-Fluorobenzonitrile reacted at 100 �C to give the desired product in
92%yield (run 4).p-Fluorobenzotrifluoride also reacted at 100 �C togive the desired product
in 93% yield (run 5). When the reaction of o-fluorobromobenzenewas carried out at 100 �C
in DMF, the substitution occurred only at the fluorine substituted position to give the bromo
biaryl ether exclusively in 85% yield (run 6). The reaction of o-iodofluorobenzene was also
examined and the iodophenyl aryl ether was obtained in 43% yield (run 7). The reverse and
complimentary regioselectivity to transition metal catalysed reactions is attractive for
selective functionalization of aromatic compounds [54].

Table 5.2 P4 catalysed nucleophilic aromatic substitution

F

NO2

Nu

NO2
catalyst, solvent, rt, time

Nu R

Run Nu R Catalyst (mol%) Solvent
Time
(h)

Yield
(%)

1 PhO H tBu-P4 base (10) DMF 1 1.6
2 PhO TMS tBu-P4 base (10) DMF 6 quant
3 PhO TBDMS tBu-P4 base (10) DMF 1 96
4 PhO TBDMS tBu-P4 base (10) DMSO 1 96
5 2-tBu-C6H4O TBDMS tBu-P4 base (10) DMSO 1 99
6 2-Br-C6H4O TBDMS tBu-P4 base (10) DMSO 6 95
7 2-I-C6H4O TBDMS tBu-P4 base (10) DMSO 8 87
8 4-MeOC6H4O TBDMS tBu-P4 base (10) DMSO 1 98
9 PhO TBDMS TBAF (10) DMF 1 trace
10 n-HexO TBDMS tBu-P4 base (10) DMSO 24 72

Table 5.3 Synthesis of diaryl ether

F O

OMecatalyst (10 mol%)

solvent, temp, time 

p-MeOC6H4OTBDMS

XY XY

Run X Y Catalyst Solvent Temp (�C) Time (h) Yield (%)

1 H COOEt tBu-P4 base DMSO 80 2 92
2 H COOEt BEMP DMSO 80 2 1
3 H COOEt DBU DMSO 80 2 0
4 H CN tBu-P4 base DMSO 100 4 92
5 H CF3

tBu-P4 base DMSO 100 10 93
6 Br H tBu-P4 base DMF 100 48 85
7 I H tBu-P4 base DMF 100 48 43
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As above described, tBu-P4 base was found to catalyse the coupling reaction of aryl
fluorides with silyl ethers. The use of silyl ether was required for these reactions, and direct
arylation of unsilylated alcohols using superbase catalysed coupling reactions has been a
challenge. Therefore, the combination of triethylsilyl hydride (Et3SiH) and catalytic
tBu-P4 is considered to represent an attractive hydride generating system with which to
carry out sequential deprotonation and SNAr reaction [55] (Figure 5.5).

The reaction of 2-fluoronitrobenzene with n-hexanol was carried out in the presence of
Et3SiH and 10mol% of tBu-P4 at 100 �C for 2 h (Table 5.4, run 1). The arylation reaction
proceeded to give the ether quantitatively. The reaction with n-butanol also proceeded
smoothly. Secondary alcohols, such as 2-phenylethylalcohol and 2-butanol, were arylated
under the same reaction conditions to give ethers in excellent yields (runs 3 and 4). Aryl
fluorides with weaker electron-withdrawing groups were then examined. 4-Fluorobenzo-
nitrile and 4-fluorobenzotrifluoride were found to be good substrates [55] (runs 5, 6).

p-Methoxyphenol was used as a representative phenol substrate and the SNAr reaction
usingEt3SiH/cat.

tBu-P4was examined. The reaction of 2-fluoronitrobenzene proceeded at
room temperature to give the diaryl ether in 76% yield [55] (Scheme 5.35).

5.3.2.2 Benzofuran Natural Product

Dictyomedins A and B from Dictyostelium cellular slime moulds were recently discovered
by Oshima and co-workers as physiologically active substances which inhibit their own

Et3SiH / tBu-P4 (cat)

Nu-H
H- Ar F

Ar-Nu

Et3SiFH2

Nu-SiHEt3

Nu   + Si⊕ Et
–

Figure 5.5 In situ silylation of nucleophiles

Table 5.4 Nucleophilic substitution of fluoroarenes with alcohols

F
t Bu-P4 (10 mol%)

HSiEt3, DMSO

OR'

+

100 oC, time

R R'OH R

Run R R0OH Time (h) Yield (%)

1 o-NO2
nhexanol 2 100

2 o-NO2
nBuOH 2 97

3 o-NO2 PhMeCHOH 2 92
4 o-NO2 EtMeCHOH 18 71
5 p-CN nBuOH 13 98
6 p-CF3

nBuOH 13 58

Transformation Using Phosphazene Catalyst 167



development. Although they showed attractive biological activities in a preliminary biologi-
cal evaluation, the isolated sample amount was not sufficient enough for various biological
screening tests, because only a trace amount of dictyomedins can be isolated from a large
amount of a dried fruit body extract of Dictyostelium. So the synthetic supply of these
compounds was strongly desirable from the biological interest. Dictyomedins also have the
unique structural feature of a 4-aryldibenzofuran structure. Diaryl ether synthesis is consid-
ered to be one of the most important reactions in the synthetic plans [56] (Figure 5.6).

The syntheses of dictyomedins A and B were started with the coupling of ethyl 3-bromo-
4-fluorobenzoate and 3-benzyloxy-4-methoxyphenol. The reaction of the fluorobenzoate
with the phenol derivative proceeded smoothly at room temperature in the presence of two
equivalents of TMSNEt2 as an additive and 10mol% of tBu-P4 base to give the diaryl ether
in 94% yield. Subsequently, Suzuki–Miyaura coupling was carried out using two types of
boronic acid derivatives. 4-Benzyloxy-3-methoxyphenylboronic acid pinacolate and
4-benzyloxy phenylboronic acid pinacolate were easily prepared from vanillin or
4-bromophenol, respectively. The Suzuki coupling of the bromide with boronates was
carried out at 100 �C for 24 h using PdCl2(dppf) and the desired arylated products were
obtained in high yields. In order to form dibenzofuran ring system using palladium catalysed
cyclization, the halogenation was first examined. The diaryl ethers were treated with NBS in
DMF at room temperature and the desired monobrominated products were obtained. Then,
palladiumcatalysed intramolecular biaryl formationwas investigated and the bromideswere
treated with Pd(OAc)2 and PCy3 in the presence of potassium carbonate (K2CO3) at 100

�C
for one hour under irradiation ofmicrowave. The use ofmicrowave dramatically accelerated
the cyclization and the irradiation was critical to obtain the products in high yields in a
shorter reaction time. The deprotection of benzyl groups was carried out by hydrogen (H2),
10% Pd/C and the consequent hydrolysis of the ethoxycarbonyl group afforded dictyome-
dins A and B in 98 and 86% yields, respectively [56] (Scheme 5.36).

F tBu-P4 (10 mol%)

Et3SiH, DMF
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+

rt, 33h
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Scheme 5.35 Nucleophilic substitution using phenol derivative
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Figure 5.6 Diarylether intermediate for dictyomedin synthesis
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5.3.2.3 Generation of Aryl anion from Arylsilane

Aryltrimethylsilanes have been used as important synthons and various desilylative
functionalizations have been investigated. Among these, anion mediated generation of
aryl anions is one of themost importantmethods for selective bond formation. However, the
reaction has been limited to aryltrimethylsilanes with strong electron-withdrawing groups
on the aromatic rings. It was found that tBu-P4 base could be used as an excellent catalyst to
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OMe
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rt, 3 h, 94%
Br
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Me
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O
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O
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Scheme 5.36 Synthesis of dictyomedins
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activate organosilicon compounds and the selective conversions of aryltrimethylsilanes
catalysed by tBu-P4 base have been investigated [57].

The reaction of 1-trimethylsilylnaphthalenewith pivaldehyde in the presence of 20mol%
tBu-P4 base proceeded smoothly at room temperature to give the alcohol in 91% yield.
Other phosphazene baseswithweaker basicities, such as tBu-P2base andBEMP, showed no
catalytic activity. As one of the conventional strong organic bases, DBU was found to be
inactive. Caesium fluoride (CsF) was then examined as a fluoride anion donor, but no
carbon–silicon bond cleavage was observed. Reactions with other aldehydes have been
examined; that with benzaldehyde was found to proceed somewhat slowly at room
temperature. Other aryl aldehydes with electron-donating groups were also employed as
electrophiles and the reactions proceeded smoothly at room temperature [57] (Table 5.5).

The reactions of other aryltrimethylsilanes have been examined. 2-Trimethylsilyl-
naphthalene reacted with pivalaldehyde in the presence of t-Bu-P4 base at room tempera-
ture to give the alcohol in 68% yield. 4-Fluorophenyltrimethylsilane and 4-bromophenyl-
trimethylsilane gave the corresponding alcohols in 64 and 73% yields respectively.
Similarly, 4-trifluoromethylphenyltrimethylsilane and 2-trifluoromethylphenyltrimethyl-
silane reacted smoothly to give the alcohols in 69 and 73% yields respectively.
4-Methoxycarbonylphenyltrimethylsilane reacted to give the alcohol in 46% yield. The
reactions of heteroaryltrimethylsilanes were then examined. 2-Pyridyltrimethylsilane and
3-pyridyltrimethylsilane reacted smoothly to give the alcohols in 67 and 80%. 2-Thienyl-
trimethylsilane also reacted to give the alcohol in 81% yield [57] (Table 5.6).

2-Trimethylsilylated benzamide was reacted with benzaldehyde to give the 1,2-adduct,
which was treated with AcOH-toluene to give the phthalide in 76% yield. Phthalides have
been used as precursors for the synthesis of anthraquinones [57] (Scheme 5.37).

5.3.2.4 Peterson Olefination

Condensation of a-silylalkyl compounds with carbonyl compounds to form alkenes has been
known as the Peterson olefination reaction. Usually an a-silanyl carbanion generated in situ

Table 5.5 Selective functionalization of arylsilane

R-CHO
base (20 mol%)

TMS HO R

DMF, temp., time

Run Base R Temp. (�C) Time (h) Yield (%)

1 tBu-P4 tBu rt 1 91
2 tBu-P2 tBu rt 24 0
3 BEMP tBu rt 24 0
4 DBU tBu rt 24 0
5 CsF tBu rt 24 0
6 tBu-P4 Ph 80 6 61
7 tBu-P4 4-MeOC6H4 rt 1 78
8 tBu-P4 2-MeOC6H4 rt 1 68
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using a stoichiometricmetallic base such as LDA has been used for the reaction. The reaction
hasbeenwidely employedasan importantmethod for alkene synthesis, becauseof the simpler
workup and purification procedure than the Wittig reaction. This condensation reaction is
considered tobemorevaluable if the transformationcanbeaccomplishedwithacatalyticbase.

When the reaction of benzophenone and ethyl trimethylsilylacetate in THF in the
presence of 10mol% tBu-P4 base was carried out at �78 �C, the condensation reaction
proceeded smoothly and the unsaturated ester was isolated in 94% yield (Table 5.7, run 1).
Other phophazene bases with weaker basicity, such as a tBu-P2 base and BEMP, showed no
effect on the condensation under the same reaction conditions (runs 2, 3). DBUalso showed
no catalytic effect on the condensation (run 4). When TBAF was used for the reaction, the
1,2-adduct was isolated in 38% yield, but no formation of alkenewas observed [58] (run 5).

It was found that tBu-P4 base is an excellent catalyst for the condensation, and the further
scope and limitations were investigated (Table 5.8). As another trimethylsilylalkyl sub-
strate, N,N-diethyltrimethylsilylacetamide was reacted with benzophenone to give the
unsaturated amide in 87% yield (run 1) and the reaction of trimethylsilylacetonitrile with
benzophenone was also successful, giving the arylacryronitorile in 78% yield (run 2).
Benzaldehyde was then used as a carbonyl compound and ethyl cinnamate was obtained in
89% yield using ethyl trimehylsilylacetate (run 3). Condensation of other arylaldehydes
with ethyl trimethylsilylacetate proceeded smoothly and the corresponding arylacrylates

Table 5.6 Transformation of functionalized arylsilane

tBuCHO, 
tBu-P4 (20 mol%)

DMF, rt., time
Ar-TMS Ar

OH

tBu

Run Ar Time (h) Yield (%)

1 2-Naphthyl 3 68
2 4-FC6H4 1 64
3 4-BrC6H4 1 73
4 4-CF3C6H4 2 69
5 2-CF3C6H4 1 73
6 4-MeOOCC6H4 1 46
7 2-Pyridyl 1 67
8 3-Pyridyl 1 80
9 2-Thienyl 1 81

TMS

O

NEt2 O

O

Ph

 1) tBu-P4 base (10 mol%)
Ph-CHO, THF, rt, 24 h

2) AcOH-toluene, 100 oC

76%

Scheme 5.37 Synthesis of phthalide
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were obtained in good yields (runs 4–6). The double bonds of the products from
arylaldehydes were E geometry. When acetophenone was used as a carbonyl compound,
the reaction with trimethylsilylacetonitrile proceeded smoothly to give the alkene in 63%
yield as amixture ofE and Z isomers (E : Z¼ 89 : 11) (run 7). The reaction of chalconewith
trimethylsilylacetate gave the diene in 81% yield (E : Z¼ 100 : 0) (run 8). Similarly, the
condensation of chalcone with trimethylsilylacetonitrile also gave the corresponding diene
in 80%yield (E :Z¼ 50 : 50) (run 9). As an example of aliphatic aldehyde, hexanalwas used
as a substrate and the desired unsaturated ester was obtained in 35% yield [58] (run 10).

Compared to ketones or aldehydes, the reactivities of formamides to nucleophiles were
considered to be lower and the investigation was started with the reaction at room
temperature (Table 5.9). When N-methylformanilide was reacted with ethyl trimethylsi-
lylacetate in THF at room temperature, the condensation proceeded smoothly and the
enaminoester was obtained in 90% yield (run 1). Similarly, trimethylsilylacetonitrile was

Table 5.7 Condensation of silylacetate with benzophenone

Ph Ph

O

Ph Ph

O

OEtbase (10 mol%)

THF, -78 oC, time

TMSCH2CO2Et

Run Base Time (h) Yield (%)

1 tBu-P4 base 6 94
2 tBu-P2 base 24 0
3 BEMP 24 0
4 DBU 24 0
5 TBAF 6 0

Table 5.8 Peterson reaction in the presence of P4

R1 R2

O

R1 R2

EWGtBu-P4 base (10 mol%)

THF, -78 oC, time

TMSCH2EWG

Run R1 R2 EWG Time (h) Yield (%)

1 Ph Ph CONEt2 12 87
2 Ph Ph CN 6 78
3 Ph H CO2Et 6 89
4 4-MeC6H4 H CO2Et 6 91
5 4-MeOC6H4 H CO2Et 6 69
6 2-furyl H CO2Et 6 85
7 Ph Me CN 13 63
8 Ph CH¼CHPh(E) CO2Et 6 81
9 Ph CH¼CHPh(E) CN 13 80
10 n-Pentyl H CO2Et 6 35
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condensed with N-methylformanilide to give the enaminonitrile in 78% (run 3). Various
substituents on the aromatic ring of the formanilides were compatible and the tolerance of
alkokycarbonyl and cyano groups during the condensation is considered to be synthetically
important (runs 4–9). N-Allyl and N-benzyl formanilides were also reacted to give the
corresponding enamines [58] (runs 10–13).

5.3.2.5 Promotion of Halogen–Zinc Exchange Reaction

The strong affinity of a tBu-P4 base for protons is regarded as synthetically useful. However,
the ability of a tBu-P4 base to activate organometallic compounds is largely undocumented.
Control of the reactivities of organometallic compounds is the key to the success of selective
bond formation, and the catalytic promotion of organometallics by the tBu-P4 base is an
important subject. In recent years, organozinc compounds have been widely used in organic
synthesis.One of themost powerfulmethods for the preparation of functionalized organozinc
derivatives is the halogen–zinc exchange reaction, and the promotion of the exchange
reaction by a catalytic tBu-P4 base has been investigated [59] (Table 5.10).

When the reaction of 4-iodobenzoate and diethylzinc in THF in the presence of 30mol
% tBu-P4 base was carried out at room temperature, the halogen–zinc exchange reaction
proceeded smoothly. In the absence of tBu-P4 base, the exchange reaction was very slow
and only a trace of de-iodinated product was detected. Other phophazene bases with
weaker basicity, such as tBu-P2 base and tBu-P1, showed less or no effect on the halogen–
zinc exchange reaction. DBU also showed no promotive reactivity on the exchange
reaction.When the amount of tBu-P4 basewas reduced to 10mol%, the exchange reaction
became significantly slower in THF. In order to optimize the reaction conditions further,

Table 5.9 Synthesis of enamine using the Peterson reaction

X

N

R

CHO

X

N

R

EWGtBu-P4 base (10 mol%)

THF, rt, time

TMSCH2EWG

Run X R EWG Time (h) Yield (%)

1 H Me CO2Et 24 90
2 H Me CO2Et 24 92a

3 H Me CN 24 78a

4 Me Me CO2Et 48 74
5 OMe Me CO2Et 48 47
6 CO2Et Me CO2Et 24 85
7 CO2Et Me CN 48 87
8 CN Me CO2Et 20 80
9 CN Me CN 48 80
10 H CH2CH¼CH2 CO2Et 24 83a

11 H CH2CH¼CH2 CN 24 42a

12 H CH2Ph CO2Et 24 99a

13 H CH2Ph CN 24 88a

aWithout solvent.
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the solvent was switched from THF to DMF. In DMF, 5mol% of tBu-P4 base was
sufficient for activation of the exchange reaction. In the absence of tBu-P4 base, the
exchange reaction in DMF was quite slow and it was found that tBu-P4 base apparently
functions as an activator.

Using this exchange reaction, some functionalizations of aryl halides were examined. As
an example of 1,2-addition to a carbonyl group, the arylzinc prepared from 4-iodobenzoate
and diethylzinc in the presence of tBu-P4 base in THF was reacted with benzaldehyde to
give the benzhydrol derivative in 78% yield. As for the 1,4-addition reaction, the arylzinc
prepared similarly in THF was reacted with chalcone and the 1,4-adduct was obtained in
71% yield under copper-free reaction conditions. Allylation was also carried out in the
absence of copper additive, and allylbenzoate was obtained in 98% yield. It has been
reported that arylzinc compounds are inert to 1,4-addition and allylation reaction in the
absence of additives and conventionally the employment of copper species has been widely
used. However, in this case the tBu-P4 base is considered to promote the reactivity of
arylzinc compounds toward electrophiles [59] (Scheme 5.38).

The arylzinc compounds prepared in DMF can also be used in the palladium catalysed
Negishi coupling reaction and the reaction of the arylzinc with iodobenzene in the presence
of palladium catalyst gave the corresponding biarylcarboxylated in 53% yield [59]
(Scheme 5.39).

5.3.2.6 SNAr Reaction of C-Nucleophile

Introduction ofO-nucleophiles to aromatics has been well investigated for SNAr reactions,
but there are limited successful examples for the arylation of carbanions by SNAr reaction.
Highly activated aryl fluorides have been the only successful substrates for the SNAr
reactions using malonates as nucleophiles. Diethyl methylmalonate was reacted with

Table 5.10 Halogen–zinc exchange reaction in the presence of P4

I

CO2Et CO2Et

H
1) ZnEt2, base, rt
   solvent, time

2) H3O+

Run Base (mol%) Solvent ZnEt2 (mol%) Time (h) Yield (%)

1 tBu-P4 (30) THF 240 11 quant.
2 — THF 240 21 3a

3 P2 (30) THF 240 12 33
4 P1 (30) THF 240 12 0
5 DBU (30) THF 240 11 0
6 tBu-P4 (10) THF 200 11 56
7 tBu-P4 (10) DMF 200 11 quant.
8 tBu-P4 (10) NMP 200 11 quant.
9 tBu-P4 (1) DMF 200 11 91

a The reaction was carried out at 60 �C.
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2-fluoronitrobenzene using Et3SiH/cat.
tBu-P4 at 80 �C for 1 h, and the arylation was found

to proceed smoothly to give the arylmalonate in 99% yield (Table 5.11, run 1). The reaction
with diethyl malonate was found to be slower and the arylmalonate was obtained in 56%
yield after reacting for 22 h (run 2). Other a-substituted malonates also reacted with
2-fluoronitrobenzene to give arylmalonates (runs 3, 4). a-Substituted cyanoacetate and
a-substituted malononitrile were also found to be excellent C-nucleophiles (runs 5, 6).
4-Fluoronitrobenzene reacted with methylmalonate to give the arylmalonate in 97% yield
(run 7). The less reactive 2-fluoro- and 4-fluorobenzonitrile also reacted with methylma-
lonate to give the corresponding arylmalonates in 46% and 66% yield, respectively (runs
8, 9). Conventionally, aryl fluorides with weak electron-withdrawing groups have not been
used for SNAr reaction with these C-nucleophiles, and the method provides a new and
highly effective SNAr reaction protocol [55].

CO2Et

1) ZnEt2, DMF, rt, 5 h
      tBu-P4 base (5 mol%)

2) allyl bromide, rt, 20 h

98%

OH

CO2Et2) PhCHO, -40 ˚C to rt, 17 h

78%

1) ZnEt2, THF, rt, 5 h
     tBu-P4 base (30 mol%)

I

CO2Et

Ph

O
O

CO2Et

0 ˚C to rt , 10 h

2)

 71%

1) ZnEt2, THF, rt, 5 h
     tBu-P4 base (30 mol%)

Ph
PhPh

Ph

Scheme 5.38 Functionalization of arylzinc derivatives

EtO2C

53%

2) PhI, Pd(Ph3P)4, rt, 7 h

1) ZnEt2, DMF, rt, 5 h
     tBu-P4 base (5 mol%)

PhI

EtO2C

Scheme 5.39 Negishi coupling of arylzinc compound
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5.4 Proazaphosphatrane Base (Verkade�s Base)

5.4.1 Properties of Proazaphosphatrane

Proazaphosphatranes are bicyclic, nonionic bases in which the phosphorus atom functions
as the site of electron pair donation. In contrast to phosphazene bases, which are protonated
on a nitrogen atom, proazaphosphatranes are protonated on the bridgehead phosphorus
atom with a transannulation to form the corresponding azaphosphatranes [60] (Figure 5.7).
The basicity of Verkade�s superbase in acetonitrile solution is shown in that the corre-
sponding pKa value is 29.0. Hence, its basicity is comparable or higher than that of some
other P1 phosphazenes, but it is lower than the basicity of P2 phosphazenes. Structural
characteristics of Verkade�s superbase and its conjugate acid, as well as the origin of its
basicity, have also been examined [61].

5.4.2 Synthesis Using Proazaphosphatrane

5.4.2.1 Activation of Allylsilane

Preparation of homoallylic alcohols was achieved by reacting aromatic aldehydes with
allyltrimethylsilane in the presence of 20mol% iPr-proazaphosphatarene base. Lower

Table 5.11 Aromatic nucleophilic substitution using malonates

tBu-P4 (10 mol%)

Et3SiH, DMF, 80 oC

+

F

R

EWG1

EWG2

R'
EWG1

EWG2H

R'
R

Run R1 R2 EWG1 EWG2 Time (h) Yield (%)

1 2-NO2 Me CO2Et CO2Et 1 99
2 2-NO2 H CO2Et CO2Et 22 56
3 2-NO2

nhexyl CO2Et CO2Et 24 76
4 2-NO2 allyl CO2Et CO2Et 2 95
5 2-NO2 allyl CO2Et CN 3 89
6 2-NO2 allyl CN CN 3 89
7 4-NO2 Me CO2Et CO2Et 2 97
8 2-CN Me CO2Et CO2Et 24 46
9 4-CN Me CO2Et CO2Et 24 66

PN N N

N

R R R

PN N N

N

R R R

R = Me,  iPr, iBu, Piv

H
H+

+

Figure 5.7 Protonation of proazaphosphatranes
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yieldswere observed for aldehydes bearing electron-donating groups. For reasons not clear,
the less sterically hindered CH3-proazaphosphotrane proved to be ineffective for this
transformation. The reaction is assumed to proceed via activation of the allylsilane by attack
of the phosphorus atom of iPr-proazaphosphatrane at the allylic silicon atom to form a
phosphonium ion, with formation of an allylic anion that then adds to the aldehydes [62]
(Scheme 5.40).

5.4.2.2 Activation of Trimethylsilyl Cyanide

The proazaphosphatrane base promotes the trimethylsilylcyanation of aryl and alkyl alde-
hydes and ketones in moderate to high yields at room temperature. 29Si-NMR spectra
suggested that a phosphorus–silicon adduct is formed as an intermediate [63] (Scheme 5.41).

5.4.2.3 1,4-Addition of Nucleophiles

The 1,4-addition of primary alcohols, higher nitroalkanes and a Schiff�s base of an a-amino
ester to a,b-unsaturated substrates produces the corresponding products in moderate to
excellent yields in the presence of catalytic amounts of the nonionic strong bases
P(RNCH2CH2)3N in isobutyronitrile. Diasteroselectivity for the anti form of the product
is higher than in the case of the Schiff�s base in the absence of lithium ion [64]
(Scheme 5.42).

5.4.2.4 a-Arylation of Alkanenitriles

A new catalyst system for the synthesis of a-aryl substituted nitriles has been reported. The
iBu-proazaphosphatrane serves as an efficient and versatile ligand for the palladium

RCHO +
TMS

P
N

N

N
N

iPr
iPr

iPr

(20 mol%)

R

OTMS

THF

Scheme 5.40 1,2-Addition of allylsilane

P
N

N

N
N

Me
Me

Me

RCOR' + TMSCN
(10 mol%) CN

CR OTMS

R'

Scheme 5.41 1,2-Addition of trimethylsilylcyanide
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catalysed direct a-arylation of nitriles with aryl bromides. Using the base, ethyl cyanoa-
cetate and primary aswell as secondary nitriles are efficiently coupledwith awidevariety of
aryl bromides possessing electron rich, electron poor, electron neutral and sterically
hindered groups [65] (Scheme 5.43).

5.4.2.5 Dimerization of Allylsulfone

In the presence of CH3-proazaphosphatrane catalyst, allyl phenyl sulfone readily dimerizes
to give the product shown, for which only incomplete and inconclusive data exist in the
literature. The dimer was shown from 1H NMR spectral considerations to have the E
configuration [66] (Scheme 5.44).
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Pd(OAc)2

LiN(TMS)2, toluene
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CN

R1 R2

R1 R1

Scheme 5.43 Arylation of substituted acetonitriles
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Scheme 5.44 Dimerization of allyl phenyl sulfone
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Scheme 5.42 1,4-Addition catalysed by proazaphosphatrane
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5.4.2.6 Formation of Diaryl Epoxide

In contrast to its acyclic analogue P(NMe2)3, which in benzene at room temperature reacts
with two aryl aldehyde molecules bearing electron-withdrawing groups to give the
corresponding diaryl epoxides as an isomeric mixture (trans/cis ratio 72/28 – 51/49),
P(MeNCH2CH2)3N under the same reaction conditions is found to be a highly selective
reagent that provides epoxides with trans/cis ratios as high as 99/1. These reactions are
faster with the proazaphosphatrane because its phosphorus atom is apparently more
nucleophilic than that in P(NMe2)3 [67] (Scheme 5.45).

5.4.2.7 b-Hydroxynitrile Synthesis

The successful synthesis of b-hydroxynitriles was reported in good to excellent yields from
aldehydes and ketones in a simple reaction that is promoted by proazaphosphatrane bases.
The reaction occurs in the presence of magnesium salts, which activate the carbonyl group
and stabilize the enolate thus produced [68] (Scheme 5.46).

5.4.2.8 Stille Reaction

Proazaphosphatrane bases were used for palladium catalysed Stille reactions of aryl
chlorides. These bases efficiently catalyse the coupling of electronically diverse aryl
chlorides with an array of organotin reagents. The catalyst system based on benzyl (Bn)-
proazaphosphatrane is active for the synthesis of sterically hindered biaryls. The use of the
proazaphosphatrane allows room temperature coupling of aryl bromides and it also permits
aryl triflates and vinyl chlorides to participate in Stille coupling [69] (Scheme 5.47).

5.4.2.9 Palladium Catalysed Amination of Aryl Halides

The proazaphosphatrane bases serve as an effective ligand for the palladium catalysed
amination of a wide array of bromides and iodides. Other bicyclic or acyclic triaminopho-
sphines, even those of similar basicity and/or bulk, were inferior. The palladium catalysed

2 Ar-CHO +

P
N

N

N
N

Me
Me

Me

O

ArAr

+

P
N

N

N
N

Me
Me

Me

O

rt

benzene

Scheme 5.45 Diaryl epoxide formation from aryl aldehyde
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amination reaction of aryl chlorides with amines also proceeded in the presence of the iBu-
proazaphosphatrane to afford the corresponding arylamines in good to excellent yields.
Electron poor, electron neutral and electron rich aryl chlorides all participated with equal
ease [70] (Scheme 5.48).

5.4.2.10 Reduction with Silane

The CH3-proazaphosphatrane base can activate Si�H bonds in polymethylhydrosiloxane
(PMHS) to reduce carbonyl compounds. Aldehydes and ketones are reduced under mild
conditions by PMHS in the presence of the proazaphosphatrane, giving the corresponding
alcohols in high yield. A variety of aromatic aldehydes were smoothly reduced to the
corresponding alcohols in high yields with survival of the aromatic chloro, nitro, cyano and
methoxy substituents. Conjugated as well as isolated double bonds also remained intact
during regioselective reduction of the carbonyl groups [71] (Scheme 5.49).
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5.5 Concluding Remarks

In the last two decades, nonionic nitrogen bases such as phosphazene bases and
proazaphosphatrane bases have been found useful in organic synthesis. Various reactions
previously restricted to ionic bases such as LDA and KOtBu have been carried out by
employing these nonionic bases. These bases are now closing the gap between ionic and
nonionic bases in stoichiometric applications because of the extraordinary basicity and
weak nucleophilicity of nonionic bases. The protonated bulky cations are formed in the
deprotonation process, and consequently produced anions are essentially close to naked
and highly reactive. Many attractive catalytic transformations have also been developed
and most of the reactions show excellent efficacy and selectivity. The history of these
nonionic bases as organic catalysts is still short at present and further exploration is
required to develop sophisticated catalytic transformations for organic synthesis using
these nonionic bases.
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6.1 Introduction

The immobilization of reagents or molecular catalysts in a polymeric form generally offers
several advantages in organic synthesis. These include: the ease of handling without the
need for special equipment or an inert atmosphere; the simplicity of separating the products
from complex reaction mixtures; the ease of recovering and recycling the reagents; and the
adaptability to continuous-flow synthetic processes. Accordingly, there have been a wide
variety of investigations to discover new efficient polymer-supported reagents, and great
achievements have beenmade in recent years, especially in the fields of pharmaceutical and
agrochemical research, and combinatorial chemistry [1–9].

In many cases, polymer-supported organic base reagents can be synthesized by the direct
attachment of a suitable strong base core on a polymeric backbone through a covalent bond
linkage. Typically, 1,1,3,3-tetramethylguanidine (TMG, pKa¼ 23.7) [10], 1,5,7-triazabi-
cyclo[4.4.0]dec-5-ene (TBD, pKa¼ 26.2) [10], 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU,
pKa¼ 23.9) [10], the Schwesinger�s phosphazene base, that is, 2-tert-butylimino-2-diethy-
lamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP, pKa¼ 27.6) [11], and the
Verkade�s proazaphosphatrane base (PAPT, pKa¼ 32.9) [12], can be used as nonionic
strong bases (Figure 6.1).

The synthetic study of polymer-supported superbase reagents has grown from the
pioneering work from Tomoi�s laboratory [13–15]. There it was showed that N-alkylation

Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts
Edited by Tsutomu Ishikawa © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-51800-7



ofDBUupon treatmentwith chloromethylated oro-bromoalkylated polystyrene resinswas
highly reliable and gave the desired family of molecules. The synthesis of other reagents of
this type is normally based on this strategy [11,16,17], and some of these polymer-
supported superbase reagents are now available commercially (Figure 6.2).

In this chapter, recent advances in polymer-supported superbase reagents or catalysts in
several organic transformations will be outlined.

6.2 Acylation Reactions

Acylation of hydroxyl or amino compounds is important in protective chemistry, and hence
several useful methods have been developed using polymer-supported superbases, relying
primarily on their nature as acid scavengers. In an early stage (1996) of this chemistry,
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alkylguanidine attached to polystyrene was used in the transesterification of triglycerides
[18]. Thereafter, similarworks have appeared in the literature [19–23], andTBDanchored on
the mesoporous molecular sieve, MCM-41, has also been developed for the transesterifica-
tion of b-ketoesters [24].

On the other hand, Kim andLe reported that the use of PS-BEMPwas very convenient for
the N-acylation of several weakly nucleophilic heterocyclic amines with acyl chloride
(Scheme 6.1) [25]. In this example, treatment with polymer-based trisamine after comple-
tion of the reactionwith PS-BEMPwas convenient for removing excess acyl chloride. Thus,
the correspondingN-acylated compounds could be obtained in good yields and high purities
by simple filtration. The utility of PS-BEMP as an acid scavenger has also been established
in other types of transformations to make free amines from their salts [26].

Similarly, Ilankumaran and Verkade reported that PS-NPAPTworked well as a catalyst
(10mol%) for the acetylation of a variety of primary alcohols using vinyl acetate as an
effective acetylating agent even in the presence of acid labile groups within the molecule
[27]. This catalyst could be used three times without a significant loss of reactivity, but after
that it tended to decompose to a fine powder. Interestingly, this chemistry was recently
extended to the green chemical production of biodiesel from soybean oil via transester-
ification inmethanol using PS-N3PAPTas a catalyst at room temperature [28]. It was shown
that the catalyst could be recycled 11 times, although its activity decreased gradually with
time. Despite the extensive efforts to find clean and selective methods for the synthesis of
carbamates and unsymmetrical alkyl carbonates from diethyl carbonate, there are few
reports on the use of the mesoporous silica-supported TBD as a basic catalyst [29].
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Due to the importance of aryl triflates and related compounds in modern organic
chemistry, including metal catalysed cross-coupling reactions, an efficient procedure for
the triflation or nonaflation of phenols has been developed by the combination of PS-TBD
(3 equiv.) and a perfluoroalkanesulfonyl transfer reagent (3 equiv.) such as p-nitrophenyl
triflate or nonaflate [30] (Scheme 6.2). In this case, the free PS-TBD reagent could be
recovered by washing successively with diluted acid, base, water and organic solvents, and
almost comparable results were obtained with use of the recycled catalyst.

6.3 Alkylation Reactions

The solid base character of polymer-supported superbase reagents can be conveniently
applied to important carbon–carbon bond forming reactions. For example, PS-TBD has
been shown to be an efficient promoter to realize the addition reaction of nitroalkanes to
aldehydes and alicyclic ketones, that is, the Henry reaction [31] (Scheme 6.3).
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Scheme 6.3 Henry reactions of nitroalkanes with aldehydes or ketones
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This method is of great value in terms of its simplicity for purification as well as mild
reaction conditions and fast reactions. As a related example, a new type of polymer-
supported ylide base was found to be effective for the Henry reaction, the C-alkylation of
a-amino acid derivatives, Wittig-olefination, and the N-alkylation of amide derivative
[32,33] (Scheme 6.4).

Fetterley et al. have been very active in determining the utility of strongly basic PAPT-
type reagents in organic synthesis, and have reported that a-aminonitrile compounds could
be efficiently synthesized by the Strecker condensation of aldehydes, amines, and
trimethylsilyl cyanide (TMSCN) in the presence of a nitrate salt of PS-PAPT as a
catalyst [34] (Scheme 6.5). In this work, the reusability of the catalyst was also established,
and the catalyst activitywas ascribed to the participation of a nitrate ion of the catalyst acted
as a �proton shuttle.�

TheMichael addition reaction is one of the most important carbon–carbon bond forming
reactions in organic synthesis, and several examples using polymer-supported reagents
have been reported. For example, Bensa et al. found that the Michael addition reaction of
1,3-dicarbonyl compounds with activated olefins as aMichael acceptor could be efficiently
catalysed by PS-BEMP [35] (Scheme 6.6). The procedure does not require dry solvents or
an inert atmosphere, and filtration of the catalyst gives substantially pure products. It is also

P(NMe2)3

O

PhN

OEt

Ph

MeI in THFO

PhN

OEt

Ph

Me

84%

CHO

NO2

CH3CH2NO2 in THF

Me

OH

NO2
O2N

Me

OH

NO2
O2N

+

70% (1.3 : 1)

Me
POPh2

NNMe2

NO2OHC

Me

NNMe2

NO2
65%

Scheme 6.4 C�C bond forming reactions using polymer-supported phosphorus ylide
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known that mesoporous silica materials or polymer-supported TBD could catalyse the
similar type of Michael addition reactions under remarkably mild conditions [36–38].

Surprisingly, there have been only few synthetic studies on polymer-supported
�asymmetric� superbase reagents. Recently, Wannaporn and Ishikawa prepared a new chiral
guanidine based polymer catalyst and applied it to the asymmetricMichael addition reaction
of iminoacetate with methyl vinyl ketone [39] (Scheme 6.7). Although the catalyst shows
only moderate levels of reactivity and enantioselectivity, the result demonstrates the
possibility of expanding an exciting field of asymmetric synthesis using polymer-supported
chiral superbase catalysts.

+

20 mol% PS-PAPT+ NO3
–

MeCN, rt(1.2 equiv)

R1CHO TMSCN+ HN
R3

R2

R1
CN

NR2R3

99% (12 h) 99% (12 h) 99% (8 h)

90% (25 h)

CN

N
H

Ph

CN

N
H

Ph

CN

N

O

CN

N
H

Ph
Me

99% (15 h)

CN

N
H

Ph

Cl

Scheme 6.5 Strecker-type condensation of aldehydes with amines and TMSCN

+
5 mol% PS-BEMP

THF, rt

> 98% (8 h) 87% (24 h) > 98% (23 h) > 98% (4 h)

O

R1

O

R2
X

(1.1 equiv)

O

R1

O

XR2

CHO

COOMe

O

COOMe

O O

COCH3

O O

COOMeMeOOC

O
O

CN

COCH3

O

77% (72 h)

Scheme 6.6 Michael addition reactions of 1,3-dicarbonyl compounds
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Very recently, Pilling et al. explored a new methodology using a combination of
PS-BEMP (10%) and Amberlyst A15 (200%) to facilitate the Michael-initiated N-acyl
iminium ion cyclization cascade starting from b-ketoamide substrates, thus providing a
unique entry to a variety of complex heterocyclic molecules [40] (Scheme 6.8).

In addition, it has been shown that the catalytic use of PS-N3PAPT (10mol%) was very
effective forMichael addition reactions of a variety ofMichael donors such as b-ketoesters,
a-nitroketones and nitroalkanes with activated olefins such as methyl acrylate and methyl
vinyl ketone [41] (Scheme 6.9). The recyclability of the catalyst was established after it had
been used 12 times. When diethyl malonate or ethyl cyanoacetate was used as the Michael
donor substrate, the expected disubstituted adducts were obtained in moderate to good
yields.

In their extensive efforts to devise a new strong nonionic base, Verkade and coworkers
found that a highly basic dendrimer containing a PAPT base fragment could act as an
efficient catalyst for Michael addition reactions, nitroaldol (Henry) reactions and aryl
isocyanate trimerization reactions [42] (Figure 6.3). In view of the characteristic nature of
this dendrimer, which has sixteen catalytic sites per molecule, the attachment of other
superbase functionalities might also be attractive.

The utility of polymer-supported superbase catalysts has been established in the
Michael-type conjugate addition using hetero-atom nucleophiles such as amines and thiols
[34,37,41]. For example, a variety of primary/secondary/aliphatic/aromatic amines and
aliphatic/aromatic thiols could smoothly react with activated olefins in the presence of
10mol% of a nitrate salt of PS-PAPT or PS-N3PAPT [34] (Scheme 6.10).

N
Ph

Ph
+

OCOOtBu

NMeN

N
OH

Ph

Ph

THF, rt, 21 days

N
Ph

Ph
COOtBu

O

(3.5 equiv)

45% yield, 48% ee

cat.

Scheme 6.7 Chiral guanidine catalysed asymmetric Michael addition reaction of t-butyl
diphenyliminoacetate with methyl vinyl ketone
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Polymer- ormesoporous silica-supported TBD reagents have also been shown to catalyse
efficiently Knoevenagel condensations and, in some cases, be feasible for continuous-flow
synthesis in a microreactor [36,37,43,44].

Due to the strong basicity, high steric hindrance and low quaternizability of polymer-
supported superbase reagents, several types of O- and N-alkylation reactions have been
reported, with the goal of contributing to combinatorial chemistry [45–58]. For example,

97% (dr 3 : 1)

78% (dr 1 : 1)

57% (dr 3 : 1)

83% (dr 1 : 1)

+

10% PS-BEMP

200% Amberlyst A15

CH2Cl2, rt, 24 h
R2

R1

O

N

O

R3

(1.2 equiv)

NuH

H

R4

O

R1

O

N

O
R2

R3

R4
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EtOOC
N

O

Me N
H

Me

O

N

O

O

Et N
H

NN

O

O

Me

N

O

O

Me

NBoc

Scheme 6.8 Tandem Michael cyclization of b-ketoamide derivatives

+
10 mol% PS-N3PAPT

THF, rt

84% (10 h) 76% (16 h) 94% (16 h)

R2R1 R3
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(1.5 equiv)
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O

Me
NO2

O O

R2

R1 Z

R3

COOMeNO2

96% (14 h)

O

NO2

Me Me

87% (14 h)

CN

COOEt

O

Scheme 6.9 Michael addition reaction of active methine or methylene compounds
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Xu et al. reported that a variety of phenols could be smoothly alkylated with alkyl halides
or activated aromatic fluorides in the presence of 1.8–3.0 equiv. of PS-TBD [45]
(Scheme 6.11).

The role of PS-TBD can be easily understood if it is considered that it works not only as a
base to deprotonate phenols, but also as a scavenger to trap unreacted excess starting
phenols. In addition, also established was a convenient strategy for performing multi-step
conversions in one-pot operation as represented by Scheme 6.12 [47].

Thus, the procedure consists of the following sequential treatments to derive the desired
double alkylated compounds: the first alkylation on a piperidine ring using R1X in the
presence of weakly basic PS-NMe2 followed by addition of PS-NH2 to sequester the
remaining excessR1X; the second alkylation on a pyrazole ring usingR2X in the presence of
strongly basic PS-BEMP followed by addition of PS-NH2; and, finally, filtration and
concentration.

OH

+
 PS-TBD (1.8-3.0 equiv)

MeCN, 25 °C
R1 R2 X

O

R1
R2

92% (64 h) 79% (22 h) 65% (168 h)

64% (24 h)

O

NO2

Cl Br

O

CN

O

Me

COMe

COOEt

Me

Me Me

Me

O
O O

Cl

N

75% (1 h)

Cl

F

F

Cl

Scheme 6.11 Alkylation of phenols with alkyl halides
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An interesting application in this field is thework reported byHabermann et al.: a bicyclic
7-aza[2.2.1]heptane system, which has a mother skeleton of epibatidine, was efficiently
constructed via PS-BEMP promoted intramolecular N-alkylation [59] (Scheme 6.13).

The synthetic utility of PS-TBDas a strong base has also been confirmed byother types of
aromatic amination [60] or intramolecular alkoxyalkylation based on the nucleophilic
aromatic substitution (SNAr) of aryl fluorides [61].

As a relatively unusual reaction, it has been reported that the ring opening reaction of
carbolinium salts with a variety of thiols was facilitated by the use of PS-TBD as a strong
base [62] (Scheme 6.14).

6.4 Heterocyclization

With the increasing importance of the need to discover new drugs, considerable effort has
been directed to identify a convenient method for rapidly preparing a large number of
diverse molecules. To satisfy such keen demand, polymer-supported synthesis offers
tremendous utility, and several methods have been developed to derive heterocyclic
compounds based on a heterocyclization strategy. For example, Habermann et al. described
a convenient method for preparing 2-amino-1,3-thiazole derivatives from a-bromoketone
precursors by direct treatment with thiourea in refluxing THF in the presence of PS-TBD
[63] (Scheme 6.15).

Similarly, for the construction of a central imidazolinone core skeleton of rhopaladin
D, a marine alkaloid, the PS-BEMP promoted aza-Wittig reaction followed by intramo-
lecular cyclization was used [64], and a tetrasubstituted pyrazole ring of sildenafil

OMs

NCl
NH2

1. PS-BEMP, MeCN, Δ, 4 h

2. polymeric trisamine
    CH2Cl2, Δ, 6 h

H
N

N

Cl

(±)-epibatidine

71%

Scheme 6.13 Synthesis of a 7-aza-bicyclo[2.2.1]heptane system of epibatidine

N
H

N+

R2

R3

R1 +

PS-TBD (2 equiv)

Dioxane / DMF (5 : 1)

50 °C, 48 h

R4SH

N
H

R1

SR4

N
R2

R3

up to 95% yield

(2 equiv)

Scheme 6.14 Nucleophilic ring opening reactions of carbolinium salts with thiols
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(Viagra) was built up by the PS-BEMP promoted intramolecular alkylation of nitriles
[49].

Graybill et al. discovered a new expeditious method for preparing a variety of 3-thio-
1,2,4-triazole derivatives starting from acyl hydrazides and isothiocyanates via PS-BEMP
mediated multi-step transformations: the so-called �catch-cyclize-release� methodology
[65] (Scheme 6.16). In this sequence, PS-BEMP was successfully used for both the
deprotonation of acyl hydrazides and N-alkylation of weakly acidic triazoles. Using the
conceptually analogous cyclodehydration strategy, a variety of 2-amino-1,3,4-oxadiazole
derivatives, an important class of heterocycles in medicinal chemistry, were also prepared
by the PS-BEMP promoted cyclization of diacyl hydrazides and related compounds [66–
68]. In some cases, the use of microwave irradiation was extremely useful for facilitating
rapid access to the desired products [68].

A convenient �catch and release� methodology based on the PS-BEMP mediated
sequestration was explored for the synthesis of 2-alkylthio-pyrimidinone derivatives

+
PS-TBD

THF
reflux, 0.5 h

R2

R3

R1

O

Br NH2H2N

S

R2

R3

S
N

R1

NH2

47-95% yield

Scheme 6.15 Preparation of 2-amino-4-aryl-1,3-thiazoles via condensation of a-bromo-
acetophenones with thiourea

+
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H

NH2

O

S=C=N R2

1. PS-BEMP (1 equiv)
    DMF, rt, 1 h, then 45 °C, 1 h

2. wash resin
    dioxane / H2O (1 : 1)

R1 N
H

N

O

N
R2

S

BEMP+H

1. dioxane / H2O (1 : 1)
    85 °C, 16 h
2. wash resin
    MeCN (2 times)

N N

N
R1

R2

HSBEMP+H

N N

N
R1

R2

R3S
R3X (0.65 equiv)

MeCN, rt to 50 °C, 2 h
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cyclize

release

58-97% yield

-

-

Scheme 6.16 PS-BEMP mediated �catch-cyclize-release� preparation of 3-thio-1,2,4-triazole
derivatives
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[69]. On the other hand, 1,2,4-oxadiazole derivatives could be prepared efficiently by the
condensation of amidoximes with carboxylic acids in the presence of one equivalent of
O-(benzotriazol-1-yl)-N,N,N0,N0-tetramethyluronium hexafluorophosphate (HBTU) and
three equivalents of PS-BEMP under microwave irradiation [70] (Scheme 6.17). This
method is highly desirable in an automated format where most of the reagents can be added
through liquid-delivery lines, and the PS-BEMP reagent can be easily removed by filtration
upon completion of the reaction.

For the rapid on-demand synthesis of 4,5-disubstituted oxazole libraries, a flow reaction
system equipped with two columns containing PS-BEMP and QP-BZA (QuadraPure
benzylamine, a primary amine functionalized resin), respectively, was developed by Ley
et al. [71,72] (Scheme6.18). This system is very valuable from theviewpoint of rapid access
to 25 different oxazoles in yields between 83 and 99%, the easewithwhich the reactions can
be scaled-up to 10 g and the ability to recycle the PS-BEMP containing columns between
runs.

6.5 Miscellaneous

In the molecular engineering of carbohydrates, glycosyl trichloroacetimidates play an
important role as effective glycosyl donor molecules; they are generally prepared by
trapping anomeric alcohols by treatment with trichloroacetonitrile in the presence of a
strong base [73]. However, purification is sometimes diminished by the acid lability of
trichloroacetimidate functionalities. To reduce such an inconvenience to remove trace

+

HBTU (1 equiv)
PS-BEMP (3 equiv)

MW, MeCN
160 °C, 15 min

ArH2N

NOH

RCOOH
NO

NR Ar

NO

N

BnO

NO2

NO

N

BnO

CF3

89% 81%

NO

N

Me
87%

Scheme 6.17 Preparation of 1,2,4-oxadiazoles via condensation of amidoximes with
carboxylic acids under the irradiation of microwave
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amounts of base, polymer-supported superbase reagents such as PS-TBD, PS-DBU and
PS-BEMP have been developed. Clearly, this constitutes one of the most powerful
glycosylation methods in synthetic glycochemistry [74–76] (Scheme 6.19). In addition,
an advantage of the method is that the polymer-supported reagents can be regenerated and
reused.

Dondoni et al. further extended this chemistry to the highly sophisticated synthesis of
trisaccharides by iterative glycosidation using a standard trichloroacetyl isocyanate-based
sequestering technique [77] (Scheme 6.NaN). In this sequence, PS-BEMPplayed a key role
in removing impurities arising from excess unreacted glycosyl acceptors in its trichlor-
oacetyl urethane form, to provide a chromatography-free purification technique for
obtaining a variety of oligosaccharides with high purities.

The PS-TBD catalyst has been shown to be effective for epoxide ring opening reactions
with several nucleophiles such as thiols under solvent free conditions [37,78] (Scheme
6.21). In this case, the reusability of the catalyst was also established without a significant
loss of reactivity and selectivity. As a related work, the utility of mesoporous silica-
supported TBD catalysts was demonstrated in the reaction of propylene oxide with carbon
dioxide to prepare the corresponding carbonate derivative under the ultrasonic activation
[79].

+

RCOCl

88% 89% 92%

NEWG
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PS-BEMP QP-BZAin MeCN
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N COOEt

OMe

Me

Scheme 6.18 Automated flow synthesis of 4,5-disubstituted oxazoles
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Scheme 6.19 Preparation of glycosyl trichloroacetimidates
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In general, polymer-supported superbases are quite convenient as scavengers for
removing acidic by-products by simple filtration [80–83]. Storer et al. are actively working
in this field, and in their own multi-step organic synthesis they introduced a �catch and
release� technique that required neither aqueous work-up nor chromatographic purification
[82] (Scheme 6.22).

+
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30 °C
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S
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S

0.5 h, 90%
(80 : 20)

0.5 h, 90%
(> 99 : 1)

S
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HO

0.017 h, 77%
(> 99 : 1)

S

OH

Scheme 6.21 PS-TBD catalysed thiolysis of 1,2-epoxides
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Scheme 6.22 TBS protection of alcohols with t-butyldimethylsilyl chloride in conjunction
with PS-TBD
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It was found that the use of a triflate salt of PS-PAPT (0.1 equiv.) in conjunction with
sodium hydride (2.5 equiv.) could be a remarkably effective method for achieving
dehydrohalogenation of RX or debromination of vicinal dibromides to the corresponding
olefins [84] (Scheme 6.23). In this case, deprotonation of a triflate salt of PS-PAPT with
sodium hydride may have generated the actual strong base species, since sodium hydride
itself did not work well or at all under the same reaction conditions.

Recently, PS-TBD was found to be basic enough to cause hydrogen/deuterium (H/D)
exchange reactions with acidic substrates such as methyl ketones and terminal alkynes in
CDCl3 as a deuterium source as well as a solvent [85] (Scheme 6.24). An advantage of this
method is that the conditions are compatible with other sensitive functional groups and
aqueous work-up can be avoided, providing a convenient technique for incorporating
deuterium into the acidic substrates.

It has alsobeen reported that theuseofPS-TBDasa sequesteringagent inperiodinatemediated
oxidations was convenient for removing by-products and excess starting reagents [86].

For other works on the use of poly(aminophosphazene) catalysts or mesoporous silica-
supported TBD reagents, only references are shown for convenience [87,88].

6.6 Concluding Remarks

The research area of organic synthesis using polymer-supported superbase reagents or
catalysts has grown rapidly after reports of combinatorial chemistry appeared in the
literature. Accordingly, this method provides a new frontier in the rapid production of a
large number of chemical libraries that consist of structurally diverse molecules, and
particularly with the use of automation or parallel flow systems in multi-step sequence.
Furthermore, thismethodmay bevery useful in synthetic chemistry because of its significant
ability to cleanly separate undesired by-products, unreacted starting materials and excess
reagents from the desired products.

Despite these fascinating properties, there have beenvery few studies on the development
of asymmetric organobase catalysts [31,39,89], compared with the dramatic progress in
polymer-supported chiral lithium amide based asymmetric transformations [90]. It can be
expected that new effective polymer-supported chiral superbase reagentswill be discovered
in the near future.
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7

Application of Organosuperbases
to Total Synthesis

Kazuo Nagasawa

Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho,
Koganei, Tokyo 184-8588, Japan

7.1 Introduction

Organic amidine, guanidine and phosphazene type superbases are typical strong �nonionic�
bases and show good solubility in most organic solvents, even at low temperature. These
bases have been applied to a variety of critical reaction steps in the total syntheses of natural
products. Moreover, they have many characteristic reactivities and reaction enhancing
effects. In this chapter, applications of amidine, guanidine and phosphazene superbases to
natural product synthesis are discussed. The structures of the superbases described in this
chapter are summarized in Figure 7.1.

7.2 Carbon–Carbon Bond Forming Reactions

7.2.1 Aldol Reaction

Many examples of guanidine base-promoted nitro aldol reactions [1] and their application
to the synthesis of natural products have been reported. Ishikawa et al. synthesized (þ)-
cyclophellitol (14), an a-glucosidase inhibitor and also a potential inhibitor of HIV, via the
intramolecular 1,3-dipolar cycloaddition reaction of silylnitronate 13. In this synthesis,
nitroalcohol 12 was prepared by the reaction of aldehyde 11 with nitromethane in the
presence of TMG (3) as a 2 : 1 diastereomeric mixture [2] (Scheme 7.1).

Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts
Edited by Tsutomu Ishikawa © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-51800-7



N

N

DBU (1)
P4-t-Bu (9)

N P

N

N

Nt-Bu

P(NMe2)3

P(NMe2)3

(Me2N)3P

i-Pr2N Ni-Pr2

Ni-Pr

BEMP (10)

P
NN

Me Me
Et2N Nt-Bu

Me2N NMe2

Nt-Bu

Me2N NMe2

NH

TMG (3) guanidinium nitrate (4)

DBN (2)

TBD (7)

N

N

N
H

N

N

N

Me

MTBD (8)

N

N

H2N NH2

NH2 NO3

Barton's base

5 6

Figure 7.1 Structures of superbases

CHO

OBn

BnO

BnO

CH3NO2THF, rt

OBn

BnO

BnO OH

NO2

2 : 1

1. TMSCl
    Et3N

2. TsOH, rt

OBn

BnO

BnO OH

N

O

O

HO

HO

OH

OH

(+)-cyclophellitol (14)

OBn

BnO

BnO OH

N
OTMS

O

OBn

BnO

BnO OH

N

O

OTMS

11

TMG (3)

12

13

55%

> 60%

Scheme 7.1 Synthesis of (þ)-cyclophellitol (14)

212 Application of Organosuperbases to Total Synthesis



The double Henry reaction was examined by Luzzio and Fitch for the synthesis of a key
intermediate 21 of perhydrohistrionicotoxin (22) [3]. Reaction of nitroalkane 15 and
glutaraldehyde 16 using TMG (3) in dry tetrahydrofuran (THF) proceeded via a double
nitroaldol reaction to give meso-17 in 80–87% yield. After conversion of the diol to meso
lactamdiacetate 19, esterasemediated hydrolysis gave optically active 20 in 87% yield with
93%ee (Scheme 7.2). This hydroxyacetatewas successfully led to theKishi lactam (21) [4],
a key intermediate for 22.

Madin et al. reported a synthesis of gelsemine (28) [5] in which a DBU promoted
skeletal rearrangement reaction was applied. Treatment of 23 with DBU in refluxing
toluene proceeded through a retro aldol–aldol reaction process with epimerization at C3,
and the resulting axial alcohol 25 cyclized at the nitrile group to generate lactone 27 after
hydrolysis of the imidate 26. The lactone 27 was successfully converted to gelsemine (28)
(Scheme 7.3).
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The benzofuran skeleton is common in natural products. A direct synthesis from
o-arylmethoxybenzaldehyde by base promoted condensation reaction was reported by
Kraus et al. [6] The reaction of o-arylmethoxybenzaldehyde 29 with 1.1 equiv. of
phosphazene 9 in benzene or pivalonitrile at 90–100 �C gave 30 in moderate yield
(Scheme 7.4). Strong ionic bases, such as LDA, LiTMP and KH, were ineffective for this
cyclization reaction.
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7.2.2 Michael Reaction

Conjugate addition reaction is also promoted by superbases. Novikov et al. reported that the
intramolecular Michael addition of a,b-unsaturated ester 31, which was obtained from
vinyl diazoacetate in the presence of rhodium acetate [Rh2(OAc)4], proceededwith DBU to
give the spirocyclic indole skeleton 32 in 90% yield [7] (Scheme 7.5). This structure can be
seen in intriguing, complex natural products, such as marcfortines 33 and 34.

The intramolecular Michael addition reaction of ketone enolate to b-alkoxyacrylate
proceeded selectively (in a ratio of 5.9 : 1) with Barton�s base (5) to give tetrahydrofuran 36
[8]. In amodel study, LDAwasmuch less effective than Barton�s base (28–45% versus 96%
yield). The diester 36was converted into 38, which corresponds to the A-D ring system for
lactonamycin (39) (Scheme 7.6).

In a synthesis of the tricyclic skeleton of FR901483 (45), Bonjoch and Solé reported a
TMG (3) promoted conjugate addition reaction of nitroalkane to methyl acrylate. Reaction
of methyl acrylate (40) and nitro acetal 41 [9,10], obtained from Diels–Alder reaction
between nitroethylene and 2-(trimethylsilyloxy)-1,3-butadiene, gave nitro ester 42 in 71%
yield. The ester 42 was further converted to the spiro compound 43, and a palladium
promoted cyclization reaction led to the azatricyclic skeleton 44 (Scheme 7.7).

Conjugate addition–elimination reaction of nitromethane with b-trifloxy acrylate in the
presence of TMG (3) was reported by Chung et al. [11]. Treatment of enol triflate 46 with
nitromethane and DMPU as a co-solvent in the presence of TMG (3) gave allyl nitro
compound 47 in 60–70% yield via a conjugate addition–elimination process. In this
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reaction, low temperature is required for a good yield. Triethylamine is not effective as a
base. palladium catalysed substitution reaction of 47 with naphthosultam 48 took place to
give naphthosultammethyl carbapenem 49, a key intermediate for the anti-MRS agent
L-786,392 (50) (Scheme 7.8).

7.2.3 Pericyclic Reaction

The oxy-Cope rearrangement reaction provides useful synthetic intermediates for natural
products. Since the oxy-Cope rearrangement is known to be greatly accelerated when the
alkoxide is used instead of the corresponding alcohol,metal-free superbaseswere applied to
the reaction byMamdani andHartley [12]. Reaction of the alcohol 51with phosphazene 9 at
room temperature gave the rearranged product 52 in 53% yield (Scheme 7.9).

Corey and Kania reported an enantioselective Claisen rearrangement reaction of
macrocyclic lactone for the synthesis of (þ)-dollabellatrienone (56) [13]. Reaction of the
lactone 53 with chiral (S,S)-diazaborolidine L2BBr 54 and Barton�s base (6) resulted in
Claisen rearrangement to give carboxylic acid 55 in 86% yield with >98% ee (diastereos-
electivity; >98 : 2) (Scheme 7.10). In this reaction, rapid deprotonation by sterically
hindered guanidine base is the key to suppress side reactions.

[2,3]-Sigmatropic rearrangement of allylic ammonium ylides mediated by the combi-
nation ofLewis acid–nonionic phosphazene basewas reported byBlid andSomfai [14]. The
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allyl amines 57 were reacted with born tribromide (BBr3) and phosphazene base 9 in
toluene at low temperature (�78 to�20 �C), and the rearrangement reaction proceeded to
give 58 (Scheme 7.11). In this reaction, neither LDA nor KHMDS was effective. The
(E)-substrate of allyl amines gave excellent diastereoselectivity, whereas that of the (Z)-
substrate was low (6 : 5).
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Me
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Schuster et al. reported the accelerating effect of the amidinium ion on the Diels–Alder
reaction [15]. Reaction of the diene 59 and diketone 60a or 60b in the presence of lipophilic
amidinium ion 63 (1 equiv.) gave 61 and 62 (2.5� 3.2 : 1), with a 100-fold rate increase
compared to the uncatalysed conditions.When the reactionwas run in the presence of chiral
amidinium compound 64, 61 and 62 were obtained in 70� 94% yield (ca 3 : 1) with
11� 50% ee. The Diels–Alder adduct 61b is a key intermediate for synthesis of (�)-
norgestrel (Scheme 7.12). The reaction enhancement effect of amidinium ion can be
explained in terms of the hydrogen bond mediated interaction with diketone.

7.2.4 Wittig Reaction

Organic superbases effectively generate carbonyl-stabilized ylides to promote Wittig
reactions. In the synthesis of (�)-mycalolide A (68) by Panek and Liu, construction of
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the C19-C20 olefin was troublesome under the regular Wittig reaction conditions, that is,
n-Bu3P-LDA, n-Bu3P-LHMDS, Et3P-

tBuOK, nor was the Horner–Wadsworth–Emmons
(HWE) olefination protocol effective. Since the bromide 66 has an electron-deficient
heteroaromatic moiety, Et3P-DBU in DMF at 0 �C was employed, and 67 obtained as a
single olefin isomer in 86% yield [16] (Scheme 7.13). This advanced intermediate was
converted to 68 through the Yamaguchi–Yonemitsu macrolactonization.

The intramolecularHWEreaction in the presence ofDBUwas employed for the synthesis
of (þ)-rhizoxin D (71) by Jiang et al. [17]. Reaction of the aldehyde 69 with DBU-LiCl
(Masamune–Roush conditions) [18] in acetonitrile at room temperature under high dilution
conditions constructed the C2�C3 bond to form the macrolactone 70 (Scheme 7.14).
Further elongation of the C20�C21 bond achieved the total synthesis of 71.

A guanidine base has also been used for intramolecular HWE reaction. Nicolaou et al.
reported a synthetic study of the originally proposed structure of diazonamide A (74) [19],
employing themodifiedMasamune–Roush conditions [18]. Thus, reaction of aldehyde 72with
TMG (3)-LiCl in DMF at 70 �C generated 73 as a single atropisomer in 55–60% yield. Under
other reaction conditions, for example, LHMDS in THF or DBU-LiCl in acetonitrile, 73 was
obtained inonly0� 35%yield (Scheme7.15).Unfortunately, this advanced intermediate could
not be transformed to the final product 74, because theC29–30 olefinwas resistant to oxidation.

Enamide ester, which is a useful synthetic intermediate for avariety ofa-amino acids, can
be prepared by means of the HWE reaction in the presence of TMG (3) or DBU [20,21]. In
the synthesis of teicoplanin aglycon (80) reported by Evans et al. [22], one of the
phenylalanine derivatives 79 was synthesized from the aldehyde 75. HWE reaction of
aldehyde 75with phosphonate 76 using TMG (3) in THF gave (Z)-enamide ester 77 in 99%
yield. Asymmetric hydrogenation of 77 catalysed by rhodium(I) complex 78 (1mol%) gave
the phenylalanine ester 79 in 96% with 94% ee (Scheme 7.16).

Since the above methodology provides easy access to a variety of a-amino acid
derivatives, many applications for the synthesis of natural products have been reported
[23–25]. The HWE reaction of the sterically hindered aldehyde 81 with phosphonate 82
using TMG (3) proceeded to give (Z)-enamide 83 in 80% yield from the alcohol (2-step
yield) [26]. The resulting enamide 83 was submitted to the asymmetric hydrogenation
reaction using Burk�s rhodium(I) catalyst [27] to give 84 in 85% yield as the sole product
(Scheme 7.17). The a-amino acid ester 84 was successfully converted to neodysiherbaine
A (85).

Davis et al. reported synthetic studies of martefragin A (91) [28]. For the construction of
the asymmetric centre next to the oxazole, HWE reaction of the aldehyde and subsequent
asymmetric hydrogenation were applied. The HWE reaction of chiral aldehyde 86 with
phosphonate 87 in the presence of DBU gave (Z)-enamide ester 88, although epimeriza-
tion was observed (75% ee). When the reaction was conducted using TMG (3),
epimerization was suppressed (95% ee). Enamide ester was converted to the potential
precursor 90 for 91 through the a-amino acid ester 89 via asymmetric hydrogenation
(Scheme 7.18).

Enamide ester synthesiswas applied for the synthesis of a complex indole natural product
by Okano et al. [29]. (Z)-Enamide ester 94 was obtained by HWE reaction of aldehyde 92
with phosphonate 93 in the presence of TMG (3), in 84% yield. Treatment of the resulting
ester with copper iodide (CuI) and CsOAc provided dihydropyrroloindole 95, which was
efficiently converted to yatakemycin (96) (Scheme 7.NaN).
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7.3 Deprotection

Guanidine/guanidinium nitrate is a selective O-deacetylation reagent in the presence of
base labile protective groups [30]. Endo et al. reported the use of selectiveO-deacetylation
in the synthesis of ecteinascidin 743 (99) [24] (Scheme 7.20). The twoO-acetates in 97were
cleanly deprotected in the presence of the N-Troc group by using guanidinium nitrate in
methanol.

In the synthesis of the C1–25 fragment of amphidinol 102, selectiveO-deacetylation was
performed in the presence of carbonate under the same conditions [31] (Scheme 7.21).

7.4 Elimination

The b-elimination reaction of carbonyl compounds having a leaving group at the b-position
is promoted by superbases via an E1cB process. Allin et al. described a synthesis of
deplacheine (107) [32], in which the b-methanesulfonyloxycarbonyl compound 105
obtained from the aldol reaction of 104 and acetaldehyde was selectively converted into
the desired E-isomer 106 by the use of DBN in THF. This enone 106was successfully led to
the natural product 107 (Scheme 7.22).

Tanino and Kuwajima used a guanidine base promoted elimination reaction in the
synthesis of ingenol (110) [33]. Reaction of ketone 108 with MTBD resulted in an
elimination reaction and subsequent isomerization to give conjugated diene 109, which
was efficiently led to ingenol (110) (Scheme 7.23).

The DBUpromoted epoxide opening reaction through an E1cB process has been applied
to natural product synthesis. Trudeau andMorken reported a synthesis of fraxinellone (113)
[34] (Scheme 7.24). Treatment of epoxide 111 with DBU in benzene gave allylic alcohol
112, which was led to the natural product by oxidation of the resulting alcohol with TPAP.
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Futagami et al. synthesized ent-ravidomycin (115) [35]. In the final stage of the
synthesis, DBN was used for the simultaneous removal of acetate protection of a phenolic
hydroxyl group and elimination of mesylate to give 115 (Scheme 7.25).

Hughes et al. achieved a synthesis of amythiamicin D (121) using a biosynthesis inspired
hetero Diels–Alder reaction as a key step [36]. Synthesis of the key 1-alkoxy-2-azadiene
118 was conducted by coupling of the imidate 116 and amine hydrochloride 117 and
subsequent elimination of the acetate with DBU [37]. The hetero Diels–Alder reaction of
the azadiene 118 and enamide 119 proceeded under microwave conditions to give the
pyridine 120, which was effectively converted into the natural product 121 (Scheme 7.26).

Synthesis of oxazoles and thiazoles from corresponding oxazolines and thiazolines by
dehydrogenation using the bromotrichloromethane (BrCCl3)-DBU systemwas reported by
Williams et al. [38]. This transformation was applied to synthesize many natural products.
Doi and Takahashi reported the synthesis of telomestatin (124) [39], which has a
macrocyclic polyoxazole structure. Reaction of oxazoline 122 with BrCCl3-DBU gave
trisoxazole 123 (Scheme 7.27). This left-hand segment was employed for the synthesis of
telomestatin 124.

Vinyl halide is a useful synthetic intermediate for natural products. Knapp et al. reported
the synthesis of griseolic acid B (130) via intramolecular radical cyclization of vinyl iodide
[40]. Aldehyde 125 was reacted with hydrazine to give hydrazone 126, which was further
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reacted with iodine in the presence of TMG (3) to give gem-diiodide. This diiodide was
treated with DBU to afford the vinyl iodide 127 [41]. After conversion of 127 to the maleate
derivative 128, radical cyclization afforded 129, which was led to the natural product
griseolic acid B 130 (Scheme 7.28).
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Similar vinyl iodide formation (131 to 132) was employed by Paquette et al. in synthetic
studies on dumsin (133) [42]. In this synthesis, palladium catalysed Stille coupling was
conducted using the vinyl iodide 132 (Scheme 7.29).

Synthetically useful alkynes can be obtained from 1,2-dibromoalkanes using a variety of
bases. Ohgiya et al. developed the DBU promoted elimination reaction of 1,2-dibromoalk-
anes having an oxygen functional group at C3 [43]. Reaction of 1,2-dibromide 134 having
PMB ether at C3 with DBU in DMF gave alkyne 135 in 73% yield. This intermediate was
employed for the synthesis of sapinofuranone B (136) (Scheme 7.30).

Wenderet al. achieved a synthesis of phorbol (140) [44], inwhich theBC-ring system 139
was efficiently constructed by transannular [5þ 2] cycloaddition reaction. Thus, reaction of
acetoxypyranone 137 with DBU in acetonitrile generated the oxidopyrylium intermediate
138 by elimination of the acetoxy group and enolization, and this intermediate smoothly
reacted with alkene to give 139 in 79% yield. This BC-ring system was successfully
converted to phorbol (140) (Scheme 7.31).

Biosynthesis of the polycyclic diterpene intricarene (144) may occur from the natural
product bipinnatin J (141) through transannular [5þ 2] cycloaddition reaction. Based upon
this proposed biosynthetic route, Tang et al. examined a synthesis of 144 [45]. Synthetic 141
was treated with VO(acac)2 and tert-butyl hydroperoxide, followed by acetic anhydride to
give acetoxypyranone 142, whichwas subsequently heated in acetonitrile in the presence of
DBU to give intricarene (144) (Scheme 7.32).

7.5 Ether Synthesis

Ether synthesis by alkylation of alcohol using an inorganic base is sometimes troublesome.
In such cases, soluble organic superbases are often effective. Knapp et al. performed the
alkylation of 145 with isopropyl bromoacetate using the strong soluble base BEMP,
achieving 95% yield [46]. Intramolecular ester enolate alkylation of 147 with LDA took
place to give 148, which was effectively led to the natural product octosyl acid A (149)
(Scheme 7.33).
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Hanessian et al. reported a synthesis of manassantins [47]. In this synthesis, the phenolic
hydroxyl groups of 150were alkylated with triflate ester 151 using BEMP to give 152with
complete inversion of the stereochemistry. The combination of caesium phenolate and
mesylate of ethyl lactate induced partial racemization. The ester 152 was efficiently
converted into manassantin A (154) (Scheme 7.34).

Intramolecular alkylation of alcohol is also feasible with superbases. Kusama et al.
synthesized the oxetane 156, containing the D-ring of taxol (157), from hydroxychloride
155 using DBU in toluene at reflux in 86% yield [48] (Scheme 7.35).

Copper mediated Ullman reaction, usually requires harsh conditions. Wipf and Lynch
reported a relativelymild biaryl ether synthesis via anSNAr (nucleophilic aromatic substitution)
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reaction promoted by guanidine base. Reaction of activated aryl fluoride 158 and naphthol 159
usingBarton�s base5provideddinaphthyl ether160 in85%yield [49].Thearyl ether underwent
oxidative spirocyclizationwith PhI(OAc)2 to give 161, which represents themother skeleton of
palmarumycin CP1 (162) and diepoxin s (163) (Scheme 7.36).

A phosphazene base catalysed SNAr reaction for biaryl ether synthesis was reported by
Ebisawa et al. [50]. Reaction of activated fluorobenzoate 164 and functionalized phenol
165 with TMSNEt2 and a catalytic amount of phosphazene of P4-tBu (10mol %) gave
biaryl ether 166 in 94% yield. The biaryl ether was efficiently led to dictyomedin A (167)
and B (168) (Scheme 7.37).

The aziridine ring opening reaction with phenol derivatives using copper(I) acetate
(CuOAc)-DBU was reported by Li et al. [51]. Reaction of ethynyl nosyl-aziridine 170 and
b-hydroxytyrosine derivative 169 in the presence of DBU (2 equiv.) and a catalytic amount
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of copper(I) acetate (2.5mol%) gave alkyl-aryl ether 171 in 90% yield. In this reaction, a
quaternary b-substituted a-amino function was stereoselectively generated. The aziridine
ring opening product 171 was efficiently led to ustiloxin D (172) (Scheme 7.38).

Recently, Forbeck et al. improved the aziridine ring opening reaction [52]. With the new
protocol, using the guanidine base of TBD (2 equiv.), a range of functionalized phenol
derivatives can be used to generate the aziridine ring opened product 175 in high yield
(Table 7.1).

7.6 Heteroatom Conjugate Addition

Heteroatom conjugate addition reactions are promoted by superbases. Draper et al.
described the synthesis of the estrogen antagonist Sch 57050 (179) [53]. Knoevenagel
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followed by DBU treatment promoted oxy-Michael reaction to give chromanone 178,
which was further transformed into Sch 57 050 (179) (Scheme 7.39).

Conjugate addition reaction of a thiol group to unsaturated ketonewas efficiently applied
to a synthesis of ecteinascidin 743 (99) by Corey et al. [54]. Conjugate addition of the
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cysteine thiol group to the orthoquinone methide 181, which was generated from the
a-hydroxy ketone 180, took place to give the 10-membered lactone 182 by the use of
Barton�s base (5) (Scheme 7.40).

Conjugate addition of hydroperoxide to unsaturated carbonyl compounds generates
epoxide in the presence of superbases. Wood et al. conducted the epoxidation reaction of
183 by treatment with tert-butyl-hydroperoxide, using a catalytic amount of DBU [55]. The
resulting epoxide 184 was converted to (�)-epoxysorbicillinol (185) (Scheme 7.41).

Genki et al. reported the epoxidation reaction of dienone using a combination of tert-
butyl-hydroperoxide and a guanidine base [56]. Applying this methodology, they achieved
a synthesis of (�)-preussomerin L (188) [56]. Reaction of dienone 186 with tert-butyl
hydroperoxide and TBD in toluene gave bis-a,b-epoxyketone 187 in 91%yield. The ketone
187 was efficiently led to the natural product 188 (Scheme 7.42).
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7.7 Isomerization

Baros et al. reported a quantitative isomerization of exo-olefin 189 to the thermodynami-
cally stable a,b-unsaturated ketone 190 in the presence a catalytic amount of DBN at room
temperature in quantitative yield [57]. The two TBS groups were smoothly deprotected to
give (�)-eutypoxide B (191) (Scheme 7.43).
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Table 7.1 Aziridine ring opening reaction with phenols in the presence of TBD (7)
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Corey and Kania reported a synthesis of (þ)-dolabellatrienone (56) [13], in which
spontaneous cyclization of 192 occurred via the acid chloride to give a mixture of 193 and
194. This mixture was subsequently converted to 56 exclusively by treatment with DBU
(Scheme 7.44).

The cyathane diterpenoids have a characteristic 5-6-7membered tricyclic skeleton. Piers
et al. reported the synthesis of one of the cyathane diterpenoids, (�)-sarcodonin G (198)
[58]. In this synthesis, a mixture of 196 and 197 (30 : 1) obtained from selenide 195 by
oxidation, cleanly isomerized to give thermodynamically favoured 197 in the reaction with
DBN in refluxing benzene (Scheme 7.45).

Similar conditions, that is, DBU in benzene at 75 �C, were effectively applied to the
synthesis of scabronine G 201 by Waters et al. [59] (Scheme 7.46).

Corey et al. reported the reaction of singlet oxygenwith conjugated diene 203, whichwas
obtained from the isomerization reaction of a,b-unsaturated lactone 202 using a catalytic
amount of DBN. The resulting peroxide intermediate 204 was converted to (�)-folskolin
(205) [60] (Scheme 7.47).

Renneberg et al. reported a synthesis of (þ)-coraxeniolide A (208) [61]. In this synthesis,
isomerization at the a-position (C4) was achieved by the use of TBD. Thus, alkylation of
206 at C4 was conducted with LDA and 1-bromo-4-methylpent-2-ene to give a mixture of
coraxeniolide A (208) and its C4 epimer 207 in a ratio of 1 : 5.7 (Scheme 7.48). TBD
treatment of the mixture caused epimerization at C4, changing the product ratio to 3 : 1.

An isomerization reaction at an a-position with superbase was also applied in the
synthesis of taxol (157) by Kusama et al. [48]. C10a-Acetate 210, obtained from the enol
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formation of 209 with LDA, followed by oxidation with MoOPH and successive acetyla-
tion, was cleanly epimerized to the desired C10b-acetate 211 by treatment with DBN in
refluxing toluene in 68% yield with 92% conversion (Scheme 7.49).

Clark et al. reported an efficient synthesis of the A-E fragment of ciguatoxin CTX3C
(216) [62]. Based upon a two-directional and iterative ring closing metathesis (RCM)
strategy, the A-D ring system 212 of CTX3C was obtained. Allylation of the ketone 212
proceeded to give amixture of 213 and 214 in a ratio of 4 : 1. The desired 214was generated
as the major product (1 : 4) by an isomerization reaction with Barton�s base 5. This
intermediate 214 was successfully converted into the A-E fragment 216 of ciguatoxin
CTX3C via RCM reaction of 215 (Scheme 7.50).
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Scheme 7.50 Synthesis of CTX3C A-E fragment 216
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7.8 Concluding Remarks

In this chapter, applications of amidine, guanidine and phosphazene superbases to the
synthesis of natural products have been discussed. Many structurally complex natural
products have been synthesized efficiently and elegantly by making use of the reactions
described. Currently, much attention is focussed on the development of chiral superbases
and their application to asymmetric reactions. Such catalytic asymmetric reactions are
expected to offer exciting and efficient new approaches to the synthesis of natural products
and biologically active compounds.
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51. Li, P., Evans, C.D. and Joullié, M.M. (2005) A convergent total synthesis of ustiloxin D via an
unprecedented copper-catalysed ethynyl aziridine ring-opening by phenol derivatives. Organic
Letters, 7, 5325–5327.

52. Forbeck, E.M., Evans, C.D., Gilleran, J.A. et al. (2007) A regio- and stereoselective approach to
quaternary centers from chiral trisubstituted aziridines. Journal of the American Chemical
Society, 129, 14463–14469.

References 249



53. Draper, R.W., Hu, B., Iyer, R.V. et al. (2000) An efficient process for the synthesis of trans-2,3-
disubstituted-2,3-dihydro-4H-1-benzopyran-4-ones (Chroman-4-ones).Tetrahedron,56, 1811–1817.

54. Corey, E.J., Gin, D.Y. and Kania, R.S. (1996) Enantioselective total synthesis of ecteinascidin
743. Journal of the American Chemical Society, 118, 9202–9203.

55. Wood, J.L., Thompson, B.D., Yusuff, N. et al. (2001) Total synthesis of (�)-epoxysorbicillinol.
Journal of the American Chemical Society, 123, 2097–2098.

56. Genski, T., Macdonald, G., Wei, X. et al. (1999) Epoxidation of electron deficient alkenes using
tert-butyl hydroperoxide and 1,5,7-triazabicyclo[4.4.0]dec-5-ene and its derivatives. Synlett,
795–797;Genski, T. and Taylor, R.J.K. (2002) The synthesis of epi-epoxydon utilising the
Baylis–Hillman reaction. Tetrahedron Letters, 43, 3573–3576; Quesada, E., Stockley, M. and
Taylor, R.J.K. (2004) The first total syntheses of (�)-preussomerins K and L using 2-arylacetal
anion technology. Tetrahedron Letters, 45, 4877–4881.

57. Barros, M.T., Maycock, C.D. and Ventura, M.R. (1997) Enantioselective total synthesis of (þ)-
eutypoxide B. The Journal of Organic Chemistry, 62, 3984–3988. The reaction in the presence of
DBU (1 equiv.) was also reported; Takano, S., Moriya, M. and Ogasawara, K. (1993). Concise
enantiodivergent synthesis of eutypoxide B. Journal of the Chemical Society – Chemical
Communications, 614–615.

58. Piers, E., Gilbert, M. and Cook, K.L. (2000) Total synthesis of the cyathane diterpenoid (�)-
sarcodonin G. Organic Letters, 2, 1407–1410.

59. Waters, S.P., Tian, Y., Li, Y.-M. and Danishefsky, S.J. (2005) Total synthesis of (�)-scabronine
G, an inducer of neurotrophic factor production. Journal of the American Chemical Society, 127,
13514–13515.

60. Corey, E.J., Jardin, P.A.S. and Rohloff, J.C. (1988) Total synthesis of (�)-forskolin. Journal of
the American Chemical Society, 110, 3672–3673.

61. Renneberg, D., Pfander, H. and Leumann, C.J. (2000) Total synthesis of coraxeniolide-A. The
Journal of Organic Chemistry, 65, 9069–9079.

62. Clark, J.S., Conroy, J. and Blake, A.J. (2007) Rapid synthesis of the A-E fragment of ciguatoxin
CTX3C. Organic Letters, 9, 2091–2094.

250 Application of Organosuperbases to Total Synthesis



8

Related Organocatalysts (1):
A Proton Sponge

Kazuo Nagasawa

Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho,
Koganei, Tokyo 184-8588, Japan

8.1 Introduction

1,8-Bis(dimethylamino)naphthalene, known as Proton Sponge (1), shows unusually high
basicity [1]. Its pKa value was reported to be 12.3, so it is more than seven orders of
magnitude more basic than related aromatic amines, such as aniline (pKa 4.6), N,
N-dimethylaniline (pKa 5.1) and 1,8-diaminonaphthalene (pKa 4.6). The strong basicity
of 1 is considered to arise from the formation, upon monoprotonation, of a strong
[N�H� � �N]þ hydrogen bond as shown in 2 [2] (Figure 8.1). The protonated 2 is highly
stabilized because of the release of the unfavourable interaction of the nitrogen lone pairs
of 1. Therefore, the deprotonation reaction rate of 2 is extremely low. Owing to its
characteristic strong basicity, Proton Sponge (1) has found many applications in the field
of synthetic organic chemistry, together with other superbases. In this chapter, organic
reactions using Proton Sponge (1) as a hindered, less nucleophilic and nonionic strong
base are described.

Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts
Edited by Tsutomu Ishikawa © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-51800-7



8.2 Alkylation and Hetero Michael Reaction

8.2.1 Amine Synthesis by N-Alkylation

N-Alkylation with an alkylating agent and Proton Sponge (1) has been reported (Scheme
8.1). Reaction of a pyrrolidine derivative and 3-butenyl triflate using Proton Sponge (1)
gave a tertiary amine in 75% yield [3]. N-Methylation of aziridine was conducted using
dimethyl sulfate and Proton Sponge (1) [4].

Dealkylation of a tertiary amine was firstly reported by Olofson et al. [5]. In this
reaction, Ratz et al. reported the effective use of Proton Sponge (1) for carbamate
formation [6]. Thus, the reaction of the tertiary amine with 2,2,2-trichloroethyl chlor-
oformate (ACE–Cl) and Proton Sponge (1), and subsequent hydrolysis of the resulting
carbamate with sodium hydroxide (NaOH) gave amine in 75% yield without loss of optical
purity (Scheme 8.2).

8.2.2 Ether Synthesis by O-Alkylation

Several mild and efficient alcohol alkylation (alkoxylation) methods are known, including
the classic Williamson reaction, alkyl halide and silver oxide in combination, and alkyl
triflate and 2,6-di-tert-butyl-4-methylpyridine. However, for sterically hindered or opti-
cally labile alcohols, alternative powerful and mild methodology is required.

Diem et al. reported amild alkoxylation reaction using trialkyloxonium tetrafluoroborate
(Meerwein�s salt) [7]. In this reaction, Proton Sponge (1) was found to be an effective base,
as well as H€unig�s base (diisopropylethylamine) (Table 8.1). The reaction of (R)-(þ)-1-
phenylethyl alcohol with Meerwein�s trimethyloxonium tetrafluoroborate (2.1 equiv.) and
Proton Sponge (1) (2.1 equiv.) in dichloromethane at room temperature gavemethyl ether in
69% yield without loss of optical purity (Table 8.1, run 1). (S)-(�)-2-Methyl-1-butanol was
also methylated in 57% yield (run 3).

Evans et al. used the same reaction conditions for ether formation in the synthesis of
lonomycinA [8]. The hindered alcohol in a cyclic polyetherwas efficientlymethylatedwith
trimethyloxonium tetrafluoroborate and Proton Sponge (1) (5 equiv. each, 0 �C) to give the
desired ether alongwith 16% recovery of the startingmaterial (Scheme 8.3). In this reaction,
other methylation conditions examined were ineffective, and elevated temperature caused
the decomposition of the starting polyether. De Brabander et al. reported the selective
formation of anisole derivative from phenol usingMeerwein�s salt and Proton Sponge (1) in
combination, without formation of isocoumarin by-products [9,10] (Scheme 8.3).

Me2N NMe2 Me2N NMe2
H

Proton Sponge™ (1)
(1,8-bis(dimethylamino)naphthalene)

2

Figure 8.1 Structure of Proton Sponge (1)
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The drastic effect of molecular sieves of 4A
�
(4A

�
MS) was reported by Ireland et al. [11].

Although, methylation of alcohol with Meerwein�s salt and Proton Sponge (1) in combina-
tion took placemuch faster than in the alternative protocol, the reaction stopped at about 50%
conversion in the case of alcohol, and decomposition of the spiroketal moiety was observed

Proton Sponge™ (1)
N

Me

Me

O

MeS

Cl3C O Cl

O

toluene, 70 °C

N

Me

O

MeS

O

O CCl3

1. NaOH, DMSO

75% (3 steps)

2. HCl, EtOAc

N
H

O

MeS

Me

Scheme 8.2 Dealkylation of tertiary amine

Table 8.1 Alkoxylation of alcohol using Meerwein�s salt in the presence of Proton
Sponge (1)

Run Alcohol Oxonium Salt/Amine Ether Product Yield (%)

1
9>>>>>>=
>>>>>>;

Ph OH

Me
8>>>>>><
>>>>>>:

Me3OBF4 (2.1 equiv)
Proton Sponge
(1) (2.1 equiv.) Ph OMe

Me
69

2
Et3OBF4 (1.5 equiv)
iPr2NEt (3.0 equiv.) Ph OEt

Me
65

3
9>>>>>>=
>>>>>>;

Me OH

Me 8>>>>>><
>>>>>>:

Me3OBF4 (1.0 equiv)
Proton Sponge
(1) (1.2 equiv.) Me OMe

Me
57

4
Et3OBF4 (1.0 equiv)
iPr2NEt (1.2 equiv.) Me OEt

Me
89
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due to the Lewis acidic nature ofMeerwein�s salt. In this reaction, addition of 4A
�
molecular

sieves was found to greatly improve the reactivity of methylation with Meerwein�s salt and
Proton Sponge (1) in combination and gave desired ether in 95% yield (Scheme 8.4).

Similar effects of 4A
�
molecular sieves were reported by Shea et al. and Hansen et al., as

depicted in Scheme 8.5 [12,13].
For the synthesis of various ethers from alcohols, the combination of alkyl triflate and

Proton Sponge (1) is available. TheO-alkylation reaction of symmetrical alcohol proceeds
in high yieldwith octyl triflate in the presence of Proton Sponge (1) as a base (Scheme 8.6a).
Low yields were obtained with triethylamine or DMAP instead of Proton Sponge (1) [14].
Octadecenyl triflatewas also effectively alkylatedwith the alcohol in the presence of Proton
Sponge (1) in 66% yield [15] (Scheme 8.6b).

Proton Sponge (1) is effective for the ether-type alcohol protection reaction. Reaction
of hindered tertiary and secondary alcohols in a modified triol system with benzyl
chloromethyl ether (BOM–Cl) and Proton Sponge (1) in the presence of sodium iodide
(NaI) gave bis-BOM ether in 84% yield [16] (Scheme 8.7a). Perhydroxylated hexane
derivative was also protected as the bis-BOM ether without generating the acyl
migration product [17] (Scheme 8.7b). Allyl alcohol was protected with (trichlor-
oethoxy)methyl ether using (2,2,2-trichloroethoxy)methyl bromide and Proton Sponge
(1) in 70% yield [18] (Scheme 8.7c). Triisopropylsilyl (TIPS) ether formation of the
secondary alcohol with TIPS triflate and Proton Sponge (1) was observed with an
excellent yield, although other bases, such as 2,6-lutidine and H€unig�s base were not
effective [19] (Scheme 8.7d).

8.2.2.1 Thioether Synthesis by Hetero Michael Reaction

Kanemasa et al. reported an asymmetric conjugate addition reaction of thiol to N-crotonyl
oxazolidinone in the presence of Ni(II)-DBFOX/Ph catalyst [20] (Table 8.2). In this
reaction, Proton Sponge (1) is indispensable for high enantioselectivity, and thioether was
obtained in 84–99% yield with 91–94% ee.

8.3 Amide Formation

Sigurdsson et al. developed the synthesis of isocyanates from aliphatic amines [21]. Thus,
the reaction of an aliphatic amine with trichloromethyl chloroformate (diphosgene) in the
presence of Proton Sponge (1) (2 equiv.) at 0 �C gave isocyanate in 81% yield. Azide
isocyanate was synthesized from azide amine by means of a similar procedure by Keyes
et al. [22] (Scheme 8.8).

Benzoyl quinidine (BQ) (3) catalysed b-lactam synthesis from acid chloride and tosyl
imine, as reported by Taggi et al. [23]. In this reaction, ketene generated from the acid
chloride with BQ (3) via dehydrohalogenation reacted with imine to give cis-b-lactam
selectively with quite high ee (Table 8.3). The BQ (3)–HCl was regenerated to BQ (3) with
Proton Sponge (1).

b-Amino acid synthesis was achieved via BQ (3) catalysed alcoholysis of b-lactam
obtained from the N-benzoyl-a-chloroglycine and acid chlorides in the presence of Proton
Sponge (1) with high selectivity [24] (Table 8.4).
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Proton Sponge™ (1)

OtBu

CbzHN

HO

O

O

Me

O
CH2Cl2, rt

OtBu

CbzHN

MeO

O

O

Me

O

NaH, MeI: 0%

LHMDS, Me2SO4: 0%

Ag2O, MeI: 0%

2,6-tert-butyl-4-methylpyridine, MeOTf: trace

Other conditions

N

CO2Me

SEMO
OBn

H

H

OH
CH2Cl2, rt

N

CO2Me

SEMO
OBn

H

H

OMe

Me3OBF4

4Å MS

Me3OBF4

4Å MS

nBuLi, MeOTf: complex mixture

Other conditions:

Proton Sponge™ (1)

77%

97%

Scheme 8.5 Effect of 4A
�
molecular sieves on ether synthesis – II

Proton Sponge™ (1)

NBSO

O O

ONBS

NBS: 3-nitrobenzenesulfonyl

OH HO

14 CHCl3, 60 °C

TfO (CH2)6Me NBSO

O O

ONBS

O O

14

Me(CH2)6 (CH2)6Me

OMPMTBSO

OH

CH2Cl2, reflux

TfO
Me

68

OMPMTBSO

O Me
67

Proton Sponge™ (1)

(a)

(b)

66%

83%

Scheme 8.6 O-Alkylation reaction with alkyl triflate in the presence of Proton Sponge (1)
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Recently, Weatherwax et al. reported a highly selective trans-disubstituted b-lactam
synthesis using an imidazoline catalyst in the presence of Proton Sponge (1) as a
stoichiometric base [25] (Table 8.5).

8.4 Carbon–Carbon Bond Forming Reaction

8.4.1 Alkylation and Nitro Aldol Reaction

The condensation reaction of b-dicarbonyl compounds with a-haloketones to generate
hydroxydihydrofuran is known as an interrupted Feist–B�enary reaction. Calter et al.
reported an enantioselective version of this reaction [26]. The aldol reaction of diketone
with a-bromo-a-ketoester followed by cyclization proceeded in the presence of
dimeric cinchona alkaloid catalyst to give cyclized product in high yield with high ee

Proton Sponge™ (1)

Me
OCOtBu

OH

MeHO BnOCH2Cl (BOM–Cl),  NaI

DMF, rt

Me
OCOtBu

OBOM

MeBOMO

OH

OAcMPMO

OBn

BnO OH

BnOCH2Cl (BOM–Cl), n Bu4NBr

MeCN, rt to 55 °C

OBOM

OAcMPMO

OBn

BnO OBOM

OMe

MeO

CO2Me

NO O

O

Bn

HO

CH2Cl2, 95%

TIPSOTf

OMe

MeO

CO2Me

NO O

O

Bn

TIPSO

Ph

OH

NHBoc
Br O CCl3

Ph

O

NHBoc

O CCl3

Proton Sponge™ (1)

Proton Sponge™ (1)

Proton Sponge™ (1)

84%

(a)

(b)

(c)

70%MeCN

(d)

Scheme 8.7 Protection of hydroxyl group with ethers
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(Table 8.6). In this synthesis, a slight excess of Proton Sponge (1) is indispensable for high
selectivity.

Enantioselective nitroaldol reaction (Henry reaction) of simple trifluoromethyl
ketone was reported by Tur and Sa�a [27] (Table 8.7). Reaction of trifluoromethyl
ketones with nitromethane in the presence of lanthanum (III) triflate salt complex and
Proton Sponge (1) (0.25 equiv. each) gave tertiary nitroaldols in 50–93% yields with
67–98% ee.

Table 8.2 Asymmetric conjugate addition reaction of thiol

R-SH

(R,R)-DBFOX/Ph -Ni(ClO4)26H2O
 (10 mol%)

NO

O

Me

O

NO

O

Me

O S
R

0 °C, CH2Cl2-THF

Proton Sponge™ (1)
(10 mol%)

R yield (%) ee (%)

phenyl 84 94 O

N
O

Ph Ph

(R,R)-DBFOX/Ph

N
O

o-tolyl 99 95
2-naphthyl 89 91

Me

NH2 Cl OCCl3

O

CH2Cl2, 0 °C

Me

N
C

O

81%

Cl OCCl3

O

CH2Cl2,rt

N3

N
C

O

88%

N3

NH2

Proton Sponge™ (1)
(2 equiv.)

Proton Sponge™ (1)
(2 equiv.)

Scheme 8.8 Synthesis of isocyanates
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8.4.2 Pericyclic Reaction

Some applications of Proton Sponge (1) for pericyclic reactions have been reported.
Intramolecular Diels–Alder (IMDA) reaction of triene proceeded under thermal conditions
to give bicyclic compound. In this reaction, the yield of the IMDA reaction for the Lewis
acid labile substratewas significantly improved to 57% in the presence of a catalytic amount
of Proton Sponge (1) (0.3 equiv.) [28] (Scheme 8.9). A similar effect was observed in the
IMDA reaction of ester derivative.Whitney et al. conducted the IMDA reaction of acrylate

Table 8.3 BQ (3) catalysed b-lactam synthesis

Proton Sponge™ (1)
R1

ClO N

EtO2C H

Ts

toluene, -78 °C

3  (10 mol%)
N

OTs

EtO2C R1

R1 yield (%) cis/trans ee (%)

Ph 65 99/1 96 N

N

OMe

BzO

3

Bn 60 33/1 96
BnO 65 99/1 96
Et 57 99/1 99
CH¼CH2 58 99/1 98
N3 47 25/1 98

Table 8.4 BQ (3) catalysed b-amino acid synthesis

Proton Sponge™ (1)

R1

ClO
N

EtO2C H

COPh

toluene, -78 °C

R1

Ph

PhO

p-MeOC6H4

p-ClC6H4

yield (%)

62

63

62

60

cis/trans  

12/1

14/1

10/1

12/1

ee (%)

95

95

94

94

N

EtO2C Cl

COPhH

3

MeOH

reflux EtO2C
CO2Me

R1

NH
PhOC

3  (10 mol%)
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in a sealed tube in toluene, obtaining a bicyclic system in 74% yield [29]. The yield of this
reaction was also improved by addition of Proton Sponge (1) and 2,6-di-tert-butyl-4-
methylphenol (BHT) (each 0.5 equiv.), and provided the product with complete regio-
chemical selection.

Table 8.5 Synthesis of trans-disubstituted b-lactam

Proton Sponge™ (1)

N
OTs

EtO2C RR

ClO
N

EtO2C H

Ts

toluene, 0 °C

catalyst  (10 mol%)

R yield (%) cis/trans

Ph 50 1/37

NN Ph

SO3

NR4
+

catalyst

p-OMePh 70 1/13
o-OMePh 51 1/50
PhS 35 1/14
2-thiophenyl 69 1/5

Table 8.6 Asymmetric interrupted Feist–B�enary reaction

Br
CO2Et

R

O

+

O

O
Proton Sponge™ (1)

(1.1 equiv)
nBu4NBr (0.5 equiv)
THF, -78 °C, 10 min

catalyst (10 mol%)
O

O
R

EtO2C OH O

O
R

EtO2C OH

a b

+

R yield (%) a : b ee (%)

Me 95 98 : 2 94
N

N

O

OMe

N

N

O

N

N

OMe

Ph

catalyst

npentyl 96 96 : 4 93
tBu 94 97 : 3 96
Ph 94 96 : 4 93
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Enantioselective decarboxylative allylic amidation of allylic benzyl imidodicarbamates
using iridium (I) catalyst was reported by Singh and Han [30]. Reaction of imidodicarbo-
nates in the presence of iridium (I) and chiral phosphoramidite ligand gave secondary allyl
amine in 80–92% yield with high ee. This reaction requires a base for generating the active

Table 8.7 Enantioselective nitroaldol reaction

R CF3

O catalyst (0.25 equiv)

CH3NO2

MeCN, -40 °C, 96 h

R

F3C OH
NO2

Proton Sponge™ (1)
(0.25 equiv)

R yield (%) ee (%)

Et 55 85

OO
N

Et
Et

H N
Et

Et
H

O
O

N
Et
EtH

N
Et

Et

H

O
O

N
Et

Et

H

N
Et
Et

H

Ln

catalyst: [(Δ,S,S,S)-Binolam]3-Ln(OTf)3

3+

3[OTf]-

Bn 93 92
Ph 78 96
3-CF3C6H4 55 67
4-tBuC6H4 50 98

Proton Sponge™ (1)
(0.3 equiv)

OSi

O

Me

Br
Me

Me

toluene, 185 °C

74%

OSi

Me

Br

O

Me

Me

O xylene, reflux

57% O

Proton Sponge™ (1)
(0.5 equiv)

BHT (0.5 equiv)

Scheme 8.9 Intramolecular Diels–Alder reaction in the presence of Proton Sponge (1)
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catalyst, and both DBU and Proton Sponge (1) were found to be vital for high yield and
enantioselectivity (Table 8.8).

Reaction of an aniline derivative and ethylmethylthioacetate in the presence of sulfuryl
chloride and Proton Sponge (1) generated an azasulfonium salt, which showed [2,3]-
rearrangement under basic conditions to give oxindole (modified Gassman oxindole
synthesis [31]) [32]. In this reaction, Proton Sponge (1) plays a role as a hydrogen chloride
scavenger. When the reaction was carried out with tert-butyl methylthioacetate,
o-aminophenylacetic acid derivative was obtained [33] (Scheme 8.10).

8.5 Palladium Catalysed Reaction

Proton Sponge (1) sometimes drastically affects the enantiomeric excess and yield in the
asymmetric palladium catalysed Heck reaction.

Ozawa et al. reported the Pd(OAc)2-BINAP catalysed asymmetric intermolecular Heck
reaction of aryl triflate and 2,3-dihydrofuran in the presence of a base [34]. In this reaction,
the enantiomeric excess was significantly affected by the base, and Proton Sponge (1) gave
the best results among the various bases, such as triethylamine, diisopropylethylamine,
pyridine derivatives and inorganic bases (Table 8.9).

In the case of intermolecular Heck alkenylation of vinyl triflate and 2,2-disubstituted-
2,3-dihydrofuran, Proton Sponge (1) gave higher chemical yield and enantioselectivity
compared to the trialkylamines [35] (Table 8.10).

Kiely and Guiry reported an asymmetric version of the intramolecular Heck reaction of
aryl triflate [36]. In this reaction, Proton Sponge (1) also greatly improved the reactivity,

Table 8.8 Enantioselective decarboxylative allylic amidation

R

O

O

N
H

Cbz
[Ir(COD)Cl]2 (2 mol %)

ligand (4 mol %)

DBU (1 equiv), THF, rt

R

HN
Cbz

R

P
O

O
N

Me

Me

OMe

OMe

Me

Me

yield (%)

92
 

80

80

ee (%)

94
 

92

> 99

Proton Sponge™ (1)
(1 equiv)

ligand
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affording cyclized product in 71% yield with 82% ee (regioselectivity; >99 : 1)
(Table 8.11).

Dounary et al. also investigated the intramolecular Heck reaction [37]. In this reaction,
Proton Sponge (1) minimizes the double bond isomerization of oxindole caused by
palladium (II) hydride species and spiro-oxindole is obtained in 88% yield with 60% ee
(Scheme 8.11a). The intramolecular Heck reaction onto a tetrasubstituted olefin was
reported by Frey et al. [38]. Sterically hindered highly substituted olefin was cyclized in the
presence of palladium (0) catalyst with Proton Sponge (1) in refluxing toluene to give
cyclized product in 57% yield along with recovered starting material (15%) (Scheme
8.11b).

80% (3 steps)

1. Et3N
2. AcOH

OMe

OMe

NH

O

MeS

Et3N

NH2

CO2Bn

SMe

CO2
tBu

85%
(2 steps)

Raney-Ni

OMe

OMe

NH

O

Proton Sponge™ (1)OMe

SO2Cl2OMe

NH2

OMe

OMe

NH
S+

Me

EtO2C

MeSCH2CO2Et

NH2

CO2Bn

N
H

CO2Bn

S+

Me

CO2
tBu

Proton Sponge™ (1)

SO2Cl2
MeSCH2CO2Et

NH2

CO2Bn

CO2
tBu

96%

Raney-Ni

Scheme 8.10 Modified Gassman oxindole synthesis in the presence of Proton Sponge (1)
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Table 8.9 Asymmetric intermolecular Heck reaction of aryl triflate

Proton Sponge™ (1)O
ArOTf

Pd(OAc)2, (R)-BINAP

O
Ar

benzene, 40 °C

+

Ar Yield (%) a : b ee of a (%)

Ph 100b 98 : 2 >96
Pha 100b 71 : 29 75
m-ClC6H4 88c 72 : 28 >96
o-ClC6H4 78c 72 : 27 92
p-NCC6H4 78c 66 : 34 >96

a Et3N was used instead of proton sponge.
bDetermined by GLC.
c Isolated yield.

Table 8.10 Asymmetric intermolecular Heck reaction of vinyl triflate

O

Me

Me
+

base
benzene, 40 °C

O

Me

Me
OTf Pd2(dba)3, ligand

base yield (%) ee (%)

Proton SpongeTM (1) 68 97

PPh2 N

O

tBu

ligand

iPr2NEt 60 40
Et3N 26 38

Table 8.11 Asymmetric intramolecular Heck reaction of aryl triflate

O

N
Me

OTf

Pd2(dba)3 (5 mol%)

ligand (10 mol%)

base

toluene, 80 °C, 168 h

N

O Me

2
3

4

base yield (%) F2,3 : F3,4 ee (%)

Proton SpongeTM (1) 71 >99 : 1 82 Fe PPh2

N

O

tBu

ligand

iPr2NEt 55 98 : 2 57
PMPa 71 >99 : 1 53

a PMP¼ 1,2,2,6,6-pentamethylpiperidine.



Arranz and Boons introduced the 2-(allyloxy)phenylacetyl (APAC) group as a protecting
group for oligosaccharide synthesis [39] (Table 8.12). This protectivegroup can be removed
by the combination of Pd(PPh3)4 with Proton Sponge (1) (run 3).

The APAC group in disaccharides could be removed in good yield under optimized
conditions without loss of the benzoyl and/or acetyl group (Scheme 8.12).

Pd(OAc)2 (40 mol%)

(R)-BINAP (80 mol%)

THF, 80 °C

N

O

88%, 60% ee

OTf

N

O
OMe

N

Me Me

O

Me
Bn

N

Me Me

O

Me

Me OMe

N

O

TBSO

O Br

MeO

O
H

Pd(Ph3)4

toluene, reflux

N

O

TBSO

O

O
H

MeO

57% (15% recovered)

Proton Sponge™ (1)

Proton Sponge™ (1)
(4 equiv)

(a)

(b)

Scheme 8.11 Intramolecular Heck reaction in the presence of Proton Sponge (1)

Table 8.12 Trials for cleavage of APAC protective group

O

OMe

BnO BnO

O

OBn

APAC

conditions O

OMe

BnO BnO

OH

OBn

O

OMe

BnO BnO

O

OBn

O

OH

alcohol ester

run conditions alcohol (%) ester (%)

1 PdCl2, MeOH, 60 �C 59 11

O

O

APAC
2 Pd(PPh3)4, Et3N 70 25

EtOH-H2O, reflux
3 Pd(PPh3)4 89 —

Proton SpongeTM (1)
EtOH-H2O, reflux
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8.6 Concluding Remarks

In this chapter, the synthetic utility of Proton Sponge (1) was reviewed. This superbase,
although not a main player, is indispensable for various mild and selective transformations
in organic synthesis. Despite the unique characteristics of superbases, their exploitation is
still limited. Recently, various types of proton sponges, including chiral ones, have been
developed, and are likely to have a wide range of applications in organic and asymmetric
synthesis.
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Related Organocatalysts (2):
Urea Derivatives

Waka Nakanishi

Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi,
Inage, Chiba 263-8522, Japan

9.1 Introduction

Activity in a living organism could be, in a chemical sense, managed by a variety of catalytic
reactions [1]. A typical example is an enzyme-participating reaction, in which a highly
controlled hydrogen bonding network plays an important role. In general, an enzyme
specifically recognizes a substrate (in some cases, also a reactant) and then catalyses avariety
of reactions (Figure 9.1a). A metal catalysed reaction is artificially developed in which a
metal ion serves as a Lewis acid catalyst (Figure 9.1b). On the other hand, urea, thiourea and
guanidine have been shown to serve as metal-free organocatalysts through double hydrogen
bonding [2,3] (Figure 9.1c), in which they could act as either Lewis acids (type I) or proton
donors in chelation binding (type II). Phosphate and nitro groups are activated in the latter
bidentate fashion. In Figure 9.1c, highly asymmetric induction could be expected when the
substrate is fixed under an effective chiral environment after tuning of its side chains.

A vast number of valuable metal catalysed reactions has been developed to date.
However,metal-free organocatalysis attractsmuch attention due not only to green chemical
but also to economic demands. An organosuperbase has generally a highly conjugated
system stabilized in the protonated form, and the resultant conjugated acid could act as a
Brønsted acid and/or a Lewis acid catalyst in organic synthesis. In fact, the Lewis acid type
of catalysis activation has been reported in reactions in which guanidine or amidine
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participate. Furthermore, structurally related urea and thiourea compounds are now well
developed as alternative organocatalysts [2–5]. In this chapter, reactions catalysed by urea
and thiourea will be discussed, mainly focusing on molecular recognition through double
hydrogen bonding.

9.2 Bisphenol as an Organoacid Catalyst

9.2.1 Role of Phenol as Hydrogen Donor

Hine et al. [6] approached the complex structures of bisphenol (dibenzocyclobutane-1,8-
diol) and sp2 oxygen bearing partners using X-ray crystallographic analysis; the two

(b) Chemical reaction:
metal catalysis
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MLn

MLn = metal catalyst

Lewis acid
activation

S R
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H

N

H H
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(c) Chemical reaction: metal-free catalysis

X = O (urea), S (thiourea), NR3 (guanidine); 
Y = hetero atom R1, R2, R3 =H, alkyl, or aryl

double hydrogen bonding

R1 R2

Lewis acid like activation recognition and activation

Figure 9.1 Schematic paths of catalytic reactions
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molecules interact through a double hydrogen bond (Figure 9.2). The two components are
almost coplanar, suitable for ideal hydrogen bonding. The O�H�O distances are 2.545
A
�
and 2.548A

�
, and the angles are 177� and 174� for the complex with 1,2,6-trimethyl-4-

pyridone (TMP), 2.601A
�
and 2.613A

�
and 168� and 172� for the complex with hexam-

ethylphosphoric triamide (HMPA), and 2.585A
�
and 2.589A

�
and 176� and 178� for that with

pyrone. In all the three cases, the O�H�O angle is near 180�, which is favourable for
hydrogen bonding, and the bond length is smaller than van der Waals radii (3.00A

�
for

O�H�O) by 0.3A
�
, which clearly confirms the existence of strong hydrogen bonding [7].

Later, the same group reported the synthesis of a more acidic 4,6-dinitrodibenzocyclo-
butane-1,8-diol [8] and examined equilibrium constants for hydrogen bonding with various
bases [9] (Table 9.1). Binding affinity of dinitro substituted bisphenol to TMP was 40-fold
higher compared to that of unsubstituted one (run 1). Similar but moderate effects were
observed with respect to other hydrogen acceptors, HMPA, 2,6-dimethyl-g-pyrone (DMP),
tetramethylenesulfoxide (TMSO), and dimethyl sulfoxide (DMSO) (runs 2–5). Thus, the

O O

H H

O

NMe

Me

Me

O O

H H

P

O

Me2N NMe2

NMe2
O

O

O O

H H2.545 2.548 2.601 2.613 2.585 2.589

Figure 9.2 Phenol assisted double hydrogen bonding

Table 9.1 Equilibrium of base and 1,8-dihydroxydibenzocyclobutane

OH OH

R R

base + complex

CHCl3, 25 oC

Equilibrium constants (10�3M�1)

Run Base R¼H (pKa¼ 8.31) R¼NO2 (pKa¼ 5.90)

1 TMP 49 1910
2 HMPA 42 470
3 DMP 1.04 4.3
4 TMSO 1.85 2.3
5 DMSO 1.03 1.60
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binding affinity of bisphenols, as expected, becomes stronger in the presence of the
electron-withdrawing nitro substituent.

9.2.2 Bisphenol Catalysed Reaction

Choy el al. [10] reported that asymmetric Diels–Alder reaction between a-hydroxy vinyl
ketone and cyclopentadiene proceeded smoothly with excellent diastereoselectivity, in
which the formation of a rigid five-membered chelate structure through hydrogen bonding
effectively freezes the free rotation, thus making the two diastereotopic faces of the enone
system highly distinguishable (Scheme 9.1). This intramolecular hydrogen bonding causes
endo selectivity eight times higher than exo selectivity, resulting in 99%diastereoselectivity
of the endo product.

Epoxide is effectively opened with diethylamine in the presence of dibenzocyclobutane-
1,8-diol, in which the rate is accelerated withmore than 10-fold comparedwith in the use of
phenol. The acceleration could be explained by intermolecular double hydrogen bonding
between the epoxide and diphenol in the fashion of type I in Figure 9.1c [11] (Scheme 9.2).

Kelly et al. [12] applied these hydrogen bonding systems to control not only endo/exo
selectivity but also reaction rate in the Diels–Alder reaction of methyl vinyl ketone (MVK)
and cyclopentadiene (Scheme 9.3). The presence of dibenzocyclobutane-1,8-diol leads to a
90%yield of the endo adduct, whereas the same adduct is given only in 3%yieldwithout the

O
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+

O

tBu

OH
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endo / exo = 8 / 1

O

O
H

tBu

H

intramolecular
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O

tBu OH

exo

+

> 99% dr

Scheme 9.1 Diels–Alder reaction of a-hydroxy vinyl ketone and cyclopentadiene
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activation of epoxide by 
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Scheme 9.2 Phenol assisted ring opening reaction of epoxide
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catalyst, suggesting that MVK could be activated through double hydrogen bonding with
the bisphenol in the fashion of type I in Figure 9.1c.

9.3 Urea and Thiourea as Achiral Catalysts

9.3.1 Role of Urea and Thiourea as Hydrogen Donors

Three types of urea-participating binding models with heteroatoms through double
hydrogen bonding have been recognised by X-ray crystallographic analysis [13]. Intro-
ducting a nitro group at the meta position of the aryl ring results in effective
co-crystallization with weak hydrogen acceptors such as ester and ether. In addition,
possible intramolecular CH�O interaction between urea oxygen and acidic hydrogen
adjacent to the nitro group may stabilize the complexation, causing reduction of self-
complexation (Figure 9.3).

Thiophenol has greater acidity than phenol by 10.7 kcal/mol in dimethyl sulfoxide
(DMSO); the difference is explained by unfavourable lone pair–lone pair interactions in the
larger thiolate ion (PhS�) ion [14]. Thus, thioureas are, as expected, more acidic than the
corresponding urea derivatives (Figure 9.4) [15]. The ability of thiourea as a hydrogen
donor was shown by Wilcox et al. [16] who systematically analysed substituent effects in
the binding of arylurea with a zwitter ion in chloroform (CHCl3) and correlated the acidity
of substituted phenols with the binding constants.

It is shown from X-ray crystallography that urea and thiourea can make complexes with
various kinds of functionality in the solid state [13]. In solution, the binding affinity of
functional groups with alkyl- and arylureas is determined to be in the following order:
PhOPO3

2�> PhPO3
2�> PhCO2

�> PhP(OH)O2
�> PhOPO3

�> PhSO3
�> lactone, and

no evidence for hydrogen bonding of nitrobenzene with urea is detected in either CDC13
or DMSO-d6 [17] (Table 9.2). The inertness of the nitro group to urea is one of reasons for
the wide use of nitro-substituted substrates.

In the complex formation with the carboxylate anion, although 1,3-dimethylthiourea
shows a 10-fold increase in stability over urea, the alkylguanidinium ion (pKa¼ 14) is found
to be the strongest proton donor [18] (Table 9.3).

O

Me +

COMe

90%
(3% without catalyst)

OO

HH

OHOH

NO2 NO2

nPrnPr

O

Me

rt 10 min

NO2NO2

nPr nPr

Scheme 9.3 Phenol assisted Diels–Alder reaction
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On the other hand, inverse affinity between thiourea and urea is reported in the
complexation with sulfonate, in which great improvement in the affinity is also observed
in the nitro-substituted arylurea derivatives [16] (Table 9.4).

9.3.2 Urea and Thiourea Catalysed Reactions

It was reported by Curran et al. [19] in 1994 that a symmetrical N,N0-diarylurea effectively
catalyses the allylation of cyclic sulfinyl radicals with allyltributylstannane (Table 9.5).
High trans selectivity in the product was observed when a stoichiometric amount of urea
catalyst was used (run 4), suggesting activation in the transition state by double hydrogen
bonding between the urea hydrogen atoms and the sulfinyl oxygen atom.

Catalytic activity of the same urea and its variations was examined in the Claisen
rearrangement of 3-methoxyvinyl vinyl ether [20] (Table 9.6). Great rate acceleration was
observed in the use of thiourea, even though completion of reaction could not be estimated
due to slow decomposition of the catalyst under the reaction conditions used (run 6).
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Table 9.2 Binding affinity of N-octyl-N0-(p-tolyl)urea

O

N
H

N
H

C8H17

Me

X+

CDCl3 

(DMSO-d6)

complex

X NO2 SO3
� OPO3

� PO3H
� CO2

� PO3
2� OPO3

2�

Ka(M
�1) NDa NEb NEb NEb 1300 NEb NEb

(NDa 13 27 140 150 2500 3600)

aNot detected.
bNot examined.

Table 9.3 Binding affinity of urea derivatives with acetate

X

N
H

N
H

RRMeCO2
- +

DMSO-d6

complex

R, X CH3, O CH3, S (CH2)2, NHCH2Ph

Ka(M
�1) 45 340 12 000
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Table 9.4 Binding affinity of urea derivatives with N,N,N-tributylammonium butylsulfate

X

N
H

N
H

RC8H17Bu3N+(CH2)4SO3
- + complex

CDCl3

R, X C6H4, S 3-(NO2)C6H4, S 3-(NO2)C6H4, O 4-(NO2)C6H4, O

Ka(M
�1) 45 2100 6300 15 000

O

NN

H H

CF3 CF3

CO2C8H17C8H17O2C

uera

Table 9.5 Urea catalysed allylation

S
N

O

O

SePh

R

Ph SnBu3

S
N

O

O

R

Ph
S

N

O

O

R

Ph

O

NN
ArAr

H H

S

H

O

trans cis

additive, benzene
+

run additive
(equiv)

trans/cis yield
(trans)

1 none 5.3/1 59
2 TFE (1.0) 7.1/1 61
3 urea (0.25) 7.1/1 70
4 uera (1.0) 14.1/1 72

TFE: trifluoroethane.

Table 9.6 Urea catalysed Claisen rearrangement of 3-methoxyvinyl allyl ether

O

OMe

O

OMe

(E / Z = 2.6 / 1)

catalyst

catalyst (equiv)

a (1)

b (1)

DMSO (5)

c / DMSO (1 / 6)

d (1)

k (x 10-5 s-1)

0.6

0.6

1.0

1.2

0.8

N.D.a

none

krel

1

1.0

1.6

1.9

1.3

3-4

run

1

2

3

4

5

6

N

X

N

R3R3

CF3

C8H17O2C

R1

R2

a: R1 =CF3, R2 =CO2C8H1, R2 =Me, X = O
b: R1 =R2 =R2 =H, X = O
c: R1 =CF3, R2 =CO2C8H1, R2 =H, X = O
d: R1 =CF3, R2 =CO2C8H1, R2 =H, X = S

catalyst

80 oC
benzene-d6

aNot determined due to decomposition of the catalyst.
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Similar thiourea catalysed Claisen rearrangement was theoretically considered by
Kirsten et al. [21]. It was suggested that a transition state is significantly stabilized through
double hydrogen bonding, whereas the overall effect on the barrier is small due to
endergonic conformational changes and complexation (Scheme 9.4).

Urea-type catalyst has to be not only a good hydrogen donor (H-donor) but also a poor
hydrogen acceptor (H-acceptor), in order to avoid self-association which disturbs the
association of urea and a substance (Figure 9.3).Due to its ability toweakly accept hydrogen,
thiourea limits self-association compared to urea. Furthermore, substitution of electron-
withdrawinggroupsatthe3and5positionsofthearylresiduenotonlycausesincreasedacidity,
in other word hydrogen is liberated easily, but also lowers the hydrogen accepting ability
(Figure 9.5). Amidinium and guanidinium ions, the conjugate acids of organosuperbases,
could serve as stronghydrogendonors.However, they are ineffective catalysts due to their too
strong ability to form hydrogen bonding, in which a catalyst is trapped by product and/or
substrate and cannot be recycled, so-called �product inhibition�. Thus, thiourea has an
advantage in its excellent balance in affinity to product and/or substrate.

Schreiner et al. developed thiourea catalyst as a promising hydrogen donor, which has
more benefit in solubility, synthesis and catalytic turn over number compared with urea
catalyst, in the Diels–Alder reaction of N-crotonyloxazolidinone and cyclopentadiene
[22,23] (Table 9.7). N,N0-Di[3,5-bis(trifluoromethyl)phenyl]thiourea accelerates the reac-
tion and improves stereoselectivity (run 4) similar to a metal catalyst such as aluminium
chloride (AlCl3) (run 2) or titanium chloride (TiCl3) (run 3).

Traces of the reaction byNMR and IR spectra together with ab initio calculations reveals
that the hydrogen bond participated bicyclic structure between the acyloxazolidinone and
thiourea mainly controls the reaction course (Figure 9.6).

The thiourea catalysed Diels–Alder reaction of MVK and cyclopentadiene gives useful
information for further tuning the structure of the thiourea catalyst: flexible side chains on
nitrogen atoms of thiourea are ineffective due to the large entropy in complexation with an
hydrogen acceptor [22] (Table 9.8).

The effect of substitution on the aryl group of thiourea has also been examined (Figure
9.7). Substitution at the ortho position results in a lowering of catalytic activity due to steric
hindrance, and substitution at the para position shows activity that is less effective than
substitution at the meta position.

Trisguanidine is found to recognize phosphate and hydrolyze RNA in an enzyme-like
reaction [24] (Scheme 9.5). Although the use of guanidine as a Lewis acid catalyst is limited
in organic reaction, it may be a potential catalyst under aqueous conditions. Guanidine
catalysed reactions are summarized in Chapter 4.
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Scheme 9.4 Supposed mechanism for the thiourea catalysed Claisen rearrangement
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9.4 Urea and Thiourea as Chiral Catalysts

A variety of thiourea (or urea) compounds has been designed as chiral catalysts based on
modification of substituent(s) (R1 and/or R2) with chiral functionality as shown in type C of
Figure 9.1, which could recognize the substrate (and/or reagent) to construct an effective
asymmetric environment in transition state. The additional functionality in monothiourea

N N
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N N
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N N

S

CF3 CF3

F3C CF3

flexible side chain flexible side chain
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Figure 9.5 (a) Effect on introducing the CF3 group to aryl thiourea; (b) equilibrium of flexible
thiourea
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Table 9.7 Diels–Alder reaction of N-crotonyloxazolidinone and cyclopentadiene

O N

O O Me

Me

Me

O N Me

O O

Me

Me

O N O

O

Me

Me

Me

O N

O O Me

Me

Me

1

2

3

4

non

AlCl3

TiCl3

thiourea

-78 oC

-78 oC

23 oC

96

1

1

48

55

95

92

78

36 / 64

92 / 8

89 / 11

91 / 19

ratio (A / B)yield (%)time (h)temp (oC)catalystrun
S

N
H

N
H

ArAr

Ar = 3,5-(CF3)2-C6H3

25 mol% 
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Figure 9.6 Possible transition states of the thiourea catalysed reaction for (a) adduct A and
(b) adduct B
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catalyst is historically derived from Schiff base, amine, alcohol and cinchona alkaloid
respectively. Bisthioureas are also designed as alternative catalysts.

9.4.1 Monothiourea Catalysts

9.4.1.1 With Schiff Base Function (Jacobsen�s Catalyst)

The present establishment of urea-type catalysts as a new category originated from finding
by Sigman et al. [25]. They reported the potential catalytic activity of urea-type compounds
with Schiff base functionality (Jacobsen�s catalyst) in the course of screening their
possibility as metal ligand for asymmetric Strecker reaction by parallel synthetic libraries
and showed that sterically demanding groups on both urea substituents play important roles
for the generation of enantioselectivity (Figure 9.8).

The catalyst (R1¼ PhCH2, R
2¼H, R3 ¼ OCOtBu), among more than 70 kinds of urea-

type compounds examined, is found to be the most effective one with high catalytic turn
over number. Good enantioselectivity is observed in a range of substrates [26] (Table 9.9).
Although the size of the substituent in the catalyst is important, both yield and selectivity are
unaffected by the geometry of imine substrates.

Table 9.8 Catalytic activity of thioureas for the Diels–Alder reaction of
methyl vinyl ketone and cyclopentadiene

Me

O

+

COMe
krel

(1mol%)

S

N
H

N
H

RR

Run Catalyst krel

1 none 1.0
2 R¼ 3,5-(CF3)2-C6H3 4.8
3 R¼C6H5 1.4
4 R¼C8H17 1.0
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N
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Figure 9.7 Effect of electron-withdrawing groups (EWG) in aryl thioureas
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Mechanistic approaches to the (thio)urea catalysed Strecker reaction by NMR analysis
and theoretical calculations [27] reveal that: the catalyst has a stable 3D structure and
isomerises the E-imine substrate to a Z-one; only the hydrogen of the (thio)urea interacts
with the Z-imine through double hydrogen bonding; and the double interaction changes to a
single one during the reaction, in which the bond strength is weakened and the liberated
(thio)urea can be recycled (Scheme 9.6).

Thiourea effectively catalyses hydrophosphorylation of imine [28] (Table 9.10). The
products can be deprotected under mild hydrogenolysis conditions to afford the corre-
sponding optically active amino phosphoric acids.
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Table 9.9 Urea catalysed Strecker reaction

N

HR1

R2

+ HCN
F3C N

R2

O

CNR1

1. urea  (2 mol%)
    toluene, -70 oC, 20h

N

N
H

N
H

O
H
N

O

tBu

HO

tBu OCOtBu

Ph2. TFAA

urea

R1run R2 yield (%) ee  (%)

1 aryla allyl 74-99 77-96

2 tBu PhCH2 88 96

3 c-C6H11 allyl 88 86

4 n-C5H11 PhCH2 69 78

a Phenyl, anisyl, tolyl, bromophenyl.
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Scheme 9.6 Supposed mechanism of the (thio)urea catalysed Strecker reaction

Table 9.10 Thiourea catalysed hydrophosphorylation of imines

thiourea 
 (10 mol%)

thiourea

Rrun yield (%) ee  (%)

1 Ph 87 98

2 Et2CH 90 96

3  iPr 93 90

4 Me2C=CH 91 82

N

N
H

N
H

S

Me2N

O

tBu

HO

tBu OCOtBu

P

O

O
HO

NO2

NO2

N

HR

Ph
+

P

O

O
O

NO2

NO2

R

HN

Ph

Et2O
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9.4.1.2 With Amine Function

Amore simple thiourea catalyst with amino functionality catalyses the asymmetricMichael
addition of 1,3-dicarbonyl compound to nitroolefin [29,30]. In the reaction of malonate to
nitrostyrene (Table 9.11) the adduct is satisfactorily obtained when N-[3,5-bis(trifluor-
omethyl)phenyl]-N0-(2-dimethylaminocyclohexyl)thiourea is used as a catalyst (run 1),
whereas the reaction proceeds slowlywhen the 2-amino group is lacking (run2). In addition,
chiral amine without a thiourea moiety gives a poor yield and enantioselectivity of the
product (run 3). These facts clearly show that both thiourea and amino functionalities are
necessary for rate acceleration and asymmetric induction, suggesting that the catalyst
simultaneously activates substrate and nucleophile as a bifunctional catalyst.

Furthermore, this catalyst promotes asymmetric Mannich reactions [31] and Michael
addition of active methylene compounds to a,b-unsaturated imides [32].

Yoon et al. [33] found that thiourea catalyst with an amine function promotes the
stereoselective addition of a range of nitroalkanes to aromatic N-butoxycarbonyl (N-Boc)
imines. In theMannich reaction of nitroethane (Table 9.12) high enantioselectivity, but low
yield, is observed when urea is used (run 1), whereas thiourea affords the adduct in >95%
yield with 92% ee (run 2). It should be noted that addition of powdered molecular sieves is
necessary for reproducible results.

The acyl-Mannich reaction [34], acyl-Pictet-Spengler reaction [35,36] and cyanosilyla-
tion [37] catalysed with bifunctional thiourea catalysts have also been developed by fine
tuning of the side chain.

9.4.1.3 With Alcohol Function

The alcohol group also works as an alternative functionality in thiourea catalysts. Catalytic
enantioselective Friedel–Crafts alkylation of indoles with nitroalkanes using alcohol-

Table 9.11 Thiourea catalysed Michael reaction

+Ph
NO2

Ph
NO2

EtO2C CO2Et

toluene, rt
CH2(CO2Et)2

R2

N
H

S

N
H

R1

(10 mol%)

Run R1 R2 yield (%) ee (%)

1 3,5-(CF3)2C6H3

NMe2

86 93

2 3,5-(CF3)2C6H3 c-C6H11
57

a
—

3 catalyst
b

14 35

aCopresence of Et3N.
b(R,R)-1-acetamindo-2-dimethylaminocyclohexane.
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substituted thiourea has been reported [38] (Table 9.13). Reaction in general proceeds in
good yield with satisfactory selectivity (runs 1–5); however, the effectiveness is lowered by
either protection (run 6) or lack (run 7) of the alcoholic function.

Possible coordination of the thiourea catalyst with not only nitroolefin but also indole
through the thiourea hydrogen atom and the hydroxyl oxygen atom, respectively, in the
transition state are supposed (Figure 9.9).

Alcohol-substituted thioureas also catalyse the Petasis-type reaction of quinolines [39]
and conjugate addition of amine [40].

9.4.1.4 With Cinchona Alkaloid Function

Thiourea catalyst with a modified cinchona alkaloid unit is applied to intramolecular
Michael addition of phenol; chiral chromanone is produced in high yield with good

Table 9.12 (Thio)urea catalysed Mannich reaction

NHAc

N
H

N
H

X

Me2N

O

tBu

Ph

N
Boc

+ EtNO2 Ph
NO2

NHBoc

Me

(10 mol%)

iPr2NEt, toluene
4A MS, 0 oC

Run X Yield (%) syn/anti ee (%)

1 O 36 11/1 91
2 S >95 15/1 92

Table 9.13 Thiourea catalysed Michael reaction of nitroolefins with indole

thiourea
(20 mol%)

N
H

R2

R3
NO2+

N
H

R1

R2

R3

NO2

N
H

S

N
H

CF3

F3C

X

CH2Cl2, -24 oC, 72 h

thiourea

R1

Run X R1 R2 R3 Yield (%) ee (%)

1 OH H H Ph 78 85
2 OH Me H Ph 82 74
3 OH H OMe Ph 86 89
4 OH H Cl Ph 85 71
5 OH H H C5H11 76 81
6 OTMS H H Ph 18 39
7 H H H Ph 15 0
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stereoselectivity [41] (Scheme 9.7). Incorporation of tert-butyl ester at the a-position of
a,b-unsaturated ketone function is needed to enhance the reactivity of substrate.

9.4.2 Bisthiourea Catalysts

Thiourea catalyst with additional thoiurea functionality can act as possible bifunctional
thiourea catalyst due to the hydrogen bonding ability of the thiourea function. C2-
symmetric bisthiourea has been applied to the Baylis–Hillman reaction of cyclohexenone
[42] (Table 9.14). Adduct is obtained inmoderate to good yields (runs 1–6), but asymmetric
induction is dependent upon the aldehyde electrophile (90% ee in run 6). The use of
monothiourea as a catalyst results in low conversion (20%). Thus, it could be reasonably
deduced that each thiourea function of bisthiourea independently and effectively interact
with cyclohexenone and aldehyde in the transition state (Figure 9.10).
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Figure 9.9 Supposed transition state for thiourea catalysed Michael reaction of nitrostyrene
and indole

CO2
tBu

PhOOH

S

N
H

N
H

N

H

BnO

N

H

H

CF3

CF3

 toluene, -25 oC

92%, 85%ee
dr > 20:1

O

O

Ph

CO2
tBu

thiourea
(10 mol%)

thiourea

Scheme 9.7 Thiourea catalysed chromanone synthesis

Urea and Thiourea as Chiral Catalysts 289



C2-symmetric bisthiourea carrying a guanidine function at the molecular centre has been
designed as an alternative catalyst and applied to asymmetric Henry reaction; adduct is
formed in high yield and high enantioselectivity [43] (Scheme 9.8). Wide generality in
substrate is observed. Addition of potassium iodide under heterogeneous conditions is
necessary to avoid retro-aldol reaction and self aggregation of the catalyst is suggested by a
positive nonlinear effect in yield and enantioselectivity.

9.4.3 Urea-Sulfinimide Hybrid Catalyst

Tan et al. [44] succeeded in developing a new urea-sulfinimide catalyst that promotes the
indium mediated allylation of acylhydrazones (Scheme 9.9). Incorporation of Lewis base
functionality in proximity to the urea moiety is designed to promote the addition of
organometallic reagents to the C¼N bond of acylhydrazones through dual activation.

Table 9.14 Bisthiourea catalysed Baylis–Hillman reaction

bisthiourea
(0.4 eq)

+

bisthiourea

Rrun yield (%) ee  (%)

1 88 53

2 40 57

3 99 33

4 95 44

base

DMAP

DMAP

imidazole

5 63 60

6 72 90

DMAP

imidazole

DMAP

Ph

4-CF3C6H5

4-CF3C6H5

C6H13

Ph

c-C6H11

O

HR

OOH

R

O

(2.0 eq)

base (0.4 eq)
without  solvent HNNH

HN

S

NH

SF3C

F3C

CF3

CF3

DMAP: 4-dimethylaminopyridine.
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Figure 9.10 Supposed transition state for bisthiourea catalysed Baylis–Hillman reaction

290 Related Organocatalysts (2): Urea Derivatives



9.5 Concluding Remarks

Urea (thiourea) catalysts can coordinate and activate hydrogen bonding acceptors such as
the carbonyl, nitro and phosphate groups. Introduction of a chiral moiety produces useful
urea-based catalysts applicable in several types of asymmetric syntheses under mild
conditions. The key aspect in controlling enantioselectivity is an effective hydrogen
bonding network, due to additional functionality leading to favourable coordination of
catalyst to substrate(s) in the transition state. Schiff base, amine, alcohol, cinchona alkaloid
and thiourea itself have been tried as these functionalities. In the future more complex urea
systems may be designed for approaches to natural enzyme reaction.
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Amidines and Guanidines in Natural
Products and Medicines

Takuya Kumamoto

Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi,
Inage, Chiba 263-8522, Japan

10.1 Introduction

The excellent reviews of Berlinck [1–5] have surveyed a great number of guanidine-type
natural products. In addition, some guanidine-derivedmarine alkaloids have been reviewed
by Kobayashi and Ishibashi [6,7]. Also, a recent book gave accounts of marine alkaloids
including the phakellins, palau�amines and oroidin-like dimers derived frombromopyrroles
and polyketide-derived polycyclic guanidine alkaloids [8].

Some of the medicines that contain amidines and/or guanidines have been reviewed,
too [9].

In this chapter, natural products and medicines bearing guanidine and amidine functions
are discussed. The topics covered include the amidine and guanidine natural products for
which isolation, total synthesis and/or structural revision have recently been reported, as
well as medicines, with the focus on activity, stability and mode-of-action.

10.2 Natural Amidine Derivatives

In this section, natural products with the amidine moiety are examined. They have mostly
been isolated as fermentation products of actinomycete. For example, isolation of
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bottromycins [10–12] and coformycin [13,14] has been reported from Strepromyces sp.
Other amidines were isolated from fungi, marine invertebrates and plants.

10.2.1 Natural Amidines from Microorganisms and Fungi

10.2.1.1 Birnbaumins

Bartsch et al. reported the isolation of birnbauminsA andB (1–2), unusual 1-hydroxyindole
pigments from fungus, the �flower pot parasol� Leucocoprinus birnbaumii (Corda) Singer
[15]. The structure of birnbaumin A (1) consisted of 1-hydroxyindoleglyoxyl amide with a
side chain containing a very rare N-hydroxybisamidine moiety, which was determined by
the permethylation with diazomethane and the comparison of spectral data with the
calculated value of another structural candidate (Figure 10.1).

10.2.1.2 Efrapeptins and Neoefrapeptins

Efrapeptins are a complex mixture of peptide antibiotics produced by the fungus Tolypo-
cladium niveum (syn. Tolypocladium inflatum, Beauveria nivea), a soil hyphomycete. The
peptides are inhibitors ofmitochondrial oxidative phosphorylation andATPase activity and
photophosphorylation in chloroplasts. The structure of efrapeptin D was first proposed by
Bullough [16] as polypeptides composed of 15 amino acid residues including a large
number of a-aminoisobutyric acid (Aib), pipecolic acid (Pip), b-alanine and L-isovaline
(Iva) with an uncharacterized C-terminal group (X), which consisted of a basic part with
leucine residue. Gupta et al. [17] reported the full characterization of efrapeptin C (3) and
the derivatives D (4)–G based on 2D-NMR analysis and mass fragmentation. They showed
that theC-terminal group contains the bicyclic amidine ring, the same structure as that of the
versatile artificial bicyclic amidine 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) (Figure 10.2
for efrapeptin D; Table 10.1). Efrapeptins C (3) and E (5) showed insect toxicity against
beetle Leptinotarsa decemlineata (Coleoptera) (LC50 at 18.9 and 8.4 ppm, respectively).
Efrapeptins C–G showed mitochondrial ATPase inhibitory activity against fungi (Metar-
hizium anisopliae and T. niveum) and insect (flight muscles from Musca domstica).

Recently, Fredenhagen et al. [18] reported the isolation of neoefrapeptins A (6) to N
from the culture broth of the strain SID 22 780, identified asGeotrichum candidum Link:F.
The structures were very similar to those of efrapeptins, which contain a bicyclic amidine
part at the C-terminus and Aib, Iva and Pip, as well as other unnatural amino acids such as
3-methylproline (3M-Pro) and 1-aminocyclopropanecarboxylic acid (Acc).
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birnbaumin A (1): R = H
birnbaumin B (2): R = OH

Figure 10.1 Structures of birnbaumins A-B (1–2)
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10.2.1.3 Pyrostatins

Imada et al. reported the isolation of pyrostatins A and B from culture broth of strain
Streptomyces sp. SA-3501 isolated from a marine sediment [19,20]. The structures were
determined as 2-iminopyrrolidine carboxylic acid derivatives 7–8. These compounds showed
specific inhibitory activity against N-acetylglucosaminidase but no antimicrobial activity.
Recently, Castellanos et al. [21] reported the isolation of a compound with same structure as
pyrostatinB (8) fromCaribbeanmarine spongeCliona tenuis; however, the spectral datawere
not identical with those published for pyrostatin B. Total synthesis of the compound with the
structure of 8 was achieved to demonstrate that the synthesized 8 was identical with the
compound isolated by Castellanos but not with pyrostatin B previously isolated by Imada
et al. Further searching of the literature lead to the conclusion that the actual NMR data
reported for pyrostatin B matched those of ectoine (9) [22,23], another amidine alkaloid
isolated from extremely halophilic species of the bacterial genus Ectothiorhodospira [24].

Isolations of noformycin (10) [25] with antiviral activity [26] and an inhibitory effect
towards inducible-nitric oxide synthase [27] and other iminopyrroglutamic acid derivatives
11–13 have also been reported. The latter were inhibitors towards Erwinia amylovora, a
bacterium responsible for the fire light disease of apple and pear trees [28] (Figure 10.3).
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Figure 10.2 Structures of efrapeptinD (4) (amino acidwith underline shows variable residues)

Table 10.1 Amino acid residues in efrapeptins and neoefrapeptins

efrapeptins (A) (B) (C) (D) (E) (F)
neoefra-
peptins (A) (B) (C) (D) (E) (F)

C (3) Aib Aib Aib Pip Gly Aib A (6) Iva Aib Acc Pip Gly Iva
D (4) Aib Aib Aib Pip Gly Iva B Iva Iva Acc Pip Gly Iva
E (5) Iva Aib Aib Pip Gly Iva C Iva Aib Acc Pip Gly Iva
F Aib Aib Aib Pip Ala Iva F Iva Aib Acc 3M-Pro Gly Iva
G Iva Aib Alb Pip Ala Iva I Iva Iva Acc 3M-Pro Gly Iva
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10.2.2 Natural Amidines from Marine Invertebrates

10.2.2.1 Flustramine C

Flustramine C (14) was isolated from bryozoan Flustra foliacea (L.) [29,30]. This
compound possesses the amidine moiety in brominated pyrroloindole structure with
1,1-dimethylallyl group (Figure 10.4). It has been suggested that the Flustra alkaloids
are important for the bryozoan by controlling bacterial growth on its surface [31]. This
compound is levorotatory [32], however, the absolute configuration has not been deter-
mined yet. Total syntheses of racemic one were achieved by three groups [33–35].

10.2.2.2 Perophoramidine

Perophoramidine (15), halogenated alkaloid, was isolated from the Philippine ascidian
Perophora nameiHartmeyer andMichaelson (Perophoridae) [36a]. This compound contains
fused hexahydropyrrolopyridine, indole and dihydroquinoline rings. Amidine parts exist at
the fusing part of the indole and quinoline rings. The stereochemistry was determined by
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Figure 10.3 Structures of pyrostatins A and B (7–8), ectoine (9) and other iminopyrrolidine
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comparison of 1H-NMR data with the computer analysis data (Figure 10.4). Total synthesis
of racemic perophoramide has been reported [36b].

10.2.3 Natural Amidines from Higher Plants

10.2.3.1 Glomerulatines

Glomerulatines A–C (16–18) were isolated from the aerial part of a shrub, Psychotria
glomerulata (Don. Smith) Steyermark, previously known as Cephaelis glomerulata J.D.
Sm [37]. The dimeric structures were determined by spectroscopic means. The absolute
configuration of glomerulatine A (16) was deduced from those of (�)-calycanthine, which
possesses similar optical rotation ([a]D �466 for 16, �489 for (�)-calycanthine). On the
other hand, isocalycanthine type amidine compound, (8–8a),(80–80a)-tetrahydroisocaly-
canthine (19) was isolated from Psychotria colorata (Willd. ex R. and S.) Muell. Arg.,
which belong to the same genus as P. glomerulata [38] (Figure 10.5).

10.3 Natural Guanidine Derivatives

In this section, natural products with guanidines are studied. A large group of these products
consist of cyclic depsipeptides and polypeptides with arginine as an amino acid residue,
produced by mainly actinomycete and cyanobacteria in some cases (ex. microcystin-LR,
noduralin) [39]. Isolation of aminoglycosides (streptomycins, streptothricins [40] and their
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derivatives [41,42]), guanidines connected to cyclic peptides and macrolides through long
alkyl chains (fusaricidins [43,44] and azalomycins [45], respectively), and cyclic (capreo-
mycins [46] and tuberactinomycins [47]) and acyclic guanidine derivatives (miraziridine A
[48]) were also reported. Another series of natural products was found in higher plants,
marine sources such as dinoflagellates (saxitoxins) [7,49], pufferfish (tetrodotoxin) [6,7],
sea firefly (Vargula luciferin) [50], sponges and so on.

10.3.1 Natural Guanidines from Microorganisms

10.3.1.1 Argifin

Argifin (20) was isolated from the cultured broth of a fungal strain Gliocladium sp. FTD-
0668 by �Omura et al. [51,52] and the structure determined to be a cyclic peptide with
arginine residue [53] (Figure 10.6). This compounds has inhibitory activity towards
chitinase. Total synthesis [54] and computational analysis of a chitinase-argifin complex
[55] have also been reported.
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10.3.1.2 Plusbacins

Plusbacin A1 (21) and the derivativesA2–A4 and B1–B4 are lipodepsipeptides isolated from
a strain numbered PB-6250 related to the genus Pseudomonas obtained from a soil sample
collected in the Okinawa Pref., Japan [56]. These compounds contain arginine residue and
lactone linkage with characteristic 3-hydroxy fatty acids [57] (Figure 10.6). Plusbacin A3

(22) showed inhibitory activity against methicillin resistant Staphylococcus aureus [56,58].
Recent total synthesis of this compound was reported and the absolute configuration of the
lactone residue was determined as R [59].

10.3.1.3 Guadinomines

Guadinomines A and B (23–24) were recently isolated from the culture broth of Strepto-
myces sp. K01–0509 FERMBP-08504 strain by �Omura et al. [60]. The structure contained
alanine and valine residues, 1,2-diamine and a cyclic guanidine. The absolute configuration
of the latter guanidine part was deduced from those of K01-0509B, isolated from the same
strain (Figure 10.7) [61]. These compounds possess activity towards a pathogenic Gram
negative bacterium in a type III secretion mechanism (IC50 23¼ 0.01 mg/mL, 24¼ 0.007
mg/ml).

10.3.2 Natural Guanidines from Marine Invertebrates

10.3.2.1 Palau�amine

Palau�amine was isolated from a sponge, Stylotella agminata, collected in the Western
Caroline Islands. The structure was originally determined as 25 with hexacyclic bisgua-
nidine, in which bicyclo[3.3.0]azaoctane system (D and E) is cis-fused (at C11 and C12)
[62,63]. Recently the structure of palau�amine was revised from 25 to trans-fused 26 based
on synthetic studies of the compound with the structure in 25 [64], the computational
analysis of coupling constants of tetrabromostyloguanidine (27) [65] and further NMR
experiments of palau�amine-classmetabolites [66,67]; the absolute configurationwas revised
from(12S,17R) to (12R,17S) [68] (Figure10.8).Palau�amineis lessnontoxic (LD5013mg/kg;
i.p. mice); it is quite active against P-388 and A549 (IC50 0.1 and 0.2 mg/mL, respec-
tively), less so against other cancer cell lines (HT-29 and KB), and possesses antibiotic
activity (against Staphylococcus aureus and Bacillus subtillis) and antifungal activity
(against Penicillium notatum).
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10.3.2.2 Crambescins, Ptilomycalins and Batzelladines

Berlinck et al. reported the isolation of polycyclic guanidine alkaloids from the Mediterra-
nean marine sponge Crambe crambe. The series of these compounds was at first named as
crambins [69], lateron renamedascrambescins [70].CrambescinsA(28),B(29) [69] andC1
(30) [70,71] possess a common framework containing the six-membered ring cyclic
guanidine, a long alkyl chain and an ester function with terminal guanidine group. Only
crambescin B possess a spiro bicyclic ring. The stereochemistry of crambescin B (29) was
revised by synthetic studies of model compounds [72]. Ptilocaulin (31) is a polycyclic
guanidine derivative isolated from the Carribean Batzella sp, wrongly identified as
Ptilocaulis spiculifer, and a red spongeHemimycale sp. from the Red Sea [73]. From other
marine sponges, ptilomycalins (A, 32) [74,75] and crambescidin 800 (33) [75] have also
been isolated as a series of guanidine alkaloids (Figure 10.9).

BatzelladineA (34) and the derivativesB–E (35–38) are the first natural products of small
molecule weight that have been shown to inhibit the gp120-CD4 interaction [76]. On the
other hand, batzelladines F–I (39–42) induced a dissociation of a p56ck-CD4 binding
complex [77]. The structures of batzelladines A (34), D (37) [78] and F (39) [79] have been
revised (revised structures are shown in Figure 10.10). Recently, ptilomycalin D (43) [80],
batzelladines J (44) [81] and K–N (45–48) [82] have been isolated from sponges
Monanchona dianchora and M. unguifera, respectively (Figure 10.10). Total syntheses
of batzelladines were recently reported [79,83,84].

10.3.3 Natural Guanidines from Higher Plant

10.3.3.1 Martinelline and Martinellic Acid

Two pyrroloquinoline alkaloids, martinelline (49) and martinellic acid (50), have been
isolated from an organic extract of root of Martinella iquitosensis A. Sampaio (Bigno-
niaceae) by Witherup et al. (part of Merck�s research group) as bradykinin receptor
antagonists (Figure 10.11) [85]. The optical rotations of natural 49 and 50 were reported
as [a]Dþ9.4 and�8.5, respectively, however the synthetic (�)�50 showed a considerably
larger valuewith the same sense ([a]D�122.7; [86,87]�164.3 [88]). A compound with the
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structure in 49 was also synthesized, however a larger optical rotation with the opposite
sensewas observed ([a]D

28�108.0). It was supposed that either the natural martinellic acid
(50)may be partially racemic or too dilute a solutionwas usedwhen its specific rotationwas
measured by the chemists in Merck�s group [88].

10.4 Medicinal Amidine and Guanidine Derivatives

In this section, medicinal amidine and guanidine derivatives are detailed. Amidines and
guanidines also play important roles in medicinal chemistry in terms of the control of the
basicity, high coordination ability and nitric oxide source.
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10.4.1 Biguanides

Lowering of blood glucose by the infusion of guanidine [89], biguanides and two linked
guanidine moieties has proved to be useful for the treatment of diabetes mellitus. Three
compounds became available for diabetes therapy, phenformin (51), buformin (52) and
metformin (53) (Figure 10.12). Phenformin (51) was withdrawn due to lactic acidosis [90].
Metformin (53), a less lipophilic biguanide, was recently approved for use in the USA after
20 years of use in Europe [91].

10.4.2 Cimetidine

Black et al. [92] reported the classification and specific blockage of the receptors involved
in mepyramine-insensitive, non-H1 (H2) histamine responses and the discovery of the
selective antagonist brimamide (54), which inhibited histamine-induced gastric acid
secretion and suppressed some other histamine effects not eliminated by H1 histamine
receptor blockers. Modification of brimamide (54) led to the orally active antagonist
methiamide (55), which proved sufficiently active to allow the exploration of the thera-
peutic potential of this new type of drug. Side effects of kidney damage and agranulocytosis
with methiamide (55) might be attributed to the presence of the thiourea group in the drug
molecule. Owing to the tendency of guanidinohistamine (56) to show weak activity as an
H2-receptor antagonist, derivatives with the guanidine moiety were synthesized and,
finally, cimetidine (57), with a cyanoguanidine group with protons in similar acidity as
those of thiourea derivatives such as 54 and 55, was found as an effective histamine H2-
receptor antagonist [93]. Famotidine (58) is known as another H2-blocker containing
amidine and guanidine parts in the molecule (Figure 10.13).
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10.4.3 Imipenem

Imipenem (59) is one of the carbapenem, which possess a broad spectrum of antimicrobial
activity against Gram positive as well as Gram negative bacteria, such as Pseudomonas
aeruginosa [94]. This compound was transformed from thienamycin (60) (Figure 10.14)
produced by Streptomyces cattleya. This antibiotic was known to be rather unstable, for
example, less stable than benzylpenicilline at pH 7. Low stability of 60was also foundwhen
the concentration was high, which was deduced from the intermolecular aminolysis of the
azeitidinone by the cysteamine side chain in 60, however, basic functionality at the terminal
of carbon chain was found to be necessary because the corresponding N-acetyl derivative
has lost the activity. Thus, the conversion of the amino group to a more basic one would
result in a compound with increased stability by protonation of the basic group in
physiological conditions. As expected, 59 with a formylimidoyl group was 5–30 times
more stable compared with 60 but kept the same or similar antimicrobial activity [95].
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10.4.4 NOS Inhibitors

Nitric oxide (NO) is a molecular messenger synthesized by nitric oxide synthase (NOS)
enzymes.NOScarries out the oxidation of the guanidinemoiety of L-arginine (61) to deliver
citrulline (62) and NO via N-OH-arginine (63) (Scheme 10.1).

Analogues of L-arginine (61), such as NG-methyl-L-arginine (L-NMA, 64) [96,97], NG-
nitro-L-arginine (L-NNA, 65) [98], N-iminoethyl-L-ornithine (L-NIO, 66) [99] and L-N6-
(1-iminoethyl)-L-lysine (L-NIL, 67) [100] were known as NOS inhibitors. Based on the
structure of L-NIL, sulfur containing derivatives such as GW273629 (68) and GW274150
(69) were designed and found the selectivity towards iNOS, one of the isoforms of NOS
[101] (Figure 10.15).

10.4.5 Pentamidine

A series of p-alkoxy amidinobenzene derivatives, such as phenamidine (70) and
pentamidine (71), were used in veterinary medicine as an antiprotozoal towards Babesia.
Pentamidine (71) has been used for the treatment of human protozoan infections [102], and
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is currently still the clinical drug of choice against African trypanosomiasis, antimony
resistant leishmaniais and Pneumocystis carinii pneumonia (PCP) [103]. This compound
was supposed to show inhibitory activity with insertion into the double helix of DNA [104]
and tRNA [105] and was found to inhibit the RNA function [106]. Recently, souamidine
(72) and the corresponding methoxime pafuramidine (73) are currently in clinical trials for
treatment ofAfrican Sleeping sickness,malaria, PCPandPneumocystis jirovecipneumonia
[107] (Figure 10.16).
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Organic bases attract much attention as environment friendly chemicals due to their easy
structural modification, repeated use of recovered materials and simple operation based on
the acid–base concept [1]. The functions of organosuperbase catalysts and of the related
intelligent molecules in organic synthesis (reaction) are attributable to their affinity to form
substrates through their stronger or lesser proton (or nucleophile) affinity. In the cases of a
superbase with strong basicity, salt formation resulting from preliminary reaction with the
substrate is crucial for the desired reaction course, whereaswith an intelligentmolecule that
is not necessarily strongly basic but is able to form tight hydrogen bonding with the
substrate, control of the reaction is by interaction through hydrogen bond network(s). In
particular, for effective asymmetric induction it is very important for the active site in the
catalyst to selectively (or specifically) recognize target groups in the substrate and then to
construct a rigid, but flexible, chiral environment in transition state. Therefore, complexa-
tion not only throughmono-interaction between each functional group in the catalyst and in
the substrate, but also through multi-interaction containing additional functional group(s)
in some cases is required for effective molecular recognition. Thus, a lot of intelligent
molecules with multi-functions have been designed and prepared by introducing different
functional, but mutually noninteractive, groups to the original molecule [2].

Individual reaction in living organisms is strictly controlled by reactant–substrate
specificity, as exemplified in enzymatic reactions, even though the total mode of action
is systematically controlled by correlation with other reactions. Host–guest interaction in
inclusion chemistry using cyclodextrin [3] is a typical example of specific reactions in an
artificial field. On the other hand, nonspecific catalysts that are tolerant to various functional
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groups are generally requested as reaction tools with wide ranges of applicability in
chemically related organic reactions. Thus, in the design of more intelligent molecules
as synthetic tools it is necessary to overcome antipathy between �specific� for functionality
recognition and �common� for reactivity in organic synthesis. Computer-aided molecular
recognition between ligand and pharmacophore has been progressed in drug discovery
research [4]. This concept may give a clue for the design of the new generation.

Interestingly, a number of novel nitrogen-containing superbase backbones have been
identified through the extensive computational work ofMaksi�c�s group; the representatives
are shown in Figure 11.1.

Molecules (e.g. 1) possessing imino structural and electronicmotif have been recognized
as important building blocks for the construction of potent superbases with extended
p-systems [5]. The principles which make systems thermodynamically stable and highly
basic are explained by a large increase in the p-delocalization energy of the corresponding
conjugate acids, thus leading to appreciable stabilization of protonated species.

Another important structural motif for construction of the strong organosuperbases are
cyclopropeneimines (e.g. 2) [6]. They exhibit high basicity due to the significant aromatic
stabilization of the three-membered ring upon protonation and the basicity can be increased
by amine substitutions at the double bond. Amino groups stimulate aromatization of the
cyclopropene fragment and also release some of their lone pair electron density, thus
contributing to a uniform distribution of the positive charge over the entire molecular
system. Further increase in the basicity of cyclopropeneimines could be achieved by
intramolecular hydrogen bonding (IMHB) such as depicted in 2 [7].

Quinonimine (e.g. 3) exhibits a very high basicity, which can be ascribed to significant
aromatization of the semiquinoid structure upon protonation by resonance [8]. The amine
substitutents increase the conjugation of the planar systems thus enhancing the relaxation
effect. The amino group is capable of accommodating the positive charge, thus increasing
the double bond character in the iminium fragment resulting from protonation. A further
increase of the basicity could be achieved by a domino effect in the extended p-system
involving two quinoid fragments.

Extended polycyclic p-systems (e.g. 4) possessing a carbonyl oxygen terminus serve as a
basic proton scavenger [9]. Carbonyl polyenes (e.g. 5) are also calculated to exhibit high
basicities, even belonging to the lower part of superbasicity scale [10]. These open chain
and zig-zag extended p-systems involve polyenes and a carbonyl functional group at the
molecular terminus. Structurally related to carbonyl polyenes are iminopolyenes (e.g. 6),
being extended p-systems and a new class of highly basic compounds [11]. The explanation
of iminopolyene basicity is the increase in stabilization triggered by protonation, and amino
substitution is crucial for their superbasicity by amplifying the resonance effect.

Some of the extended p-systems (e.g. 7) possessing imino nitrogen atoms as the most
basic sites, which are parts of the [3]iminoradialene or quinonimine structure, are neutral
organosuperbases [12]. The diaminophosphono [¼P(NR2)2] and diaminomethylene
[¼C(NR2)2] ends (and 1,3-diamino-2-methylene cyclopropene ring) enable efficient
cationic resonance across the extended linear p-system, contributing to enlarged basicity.
The¼ P(NR2)3 end gives the largest basicity.

Poly-2,5-dihydropyrroles (e.g. 8) represent another class of extended p-system with
pronounced basicity [13]. The aromatization of their protonated bases amplifies the
susceptibility toward the proton attack. Aromatization of the five-membered ring and
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accompanying stabilization of the conjugate base, with the important resonance effect, are
the main contributions to high basicity.

Triazine (e.g. 9) can be used as a useful building element for neutral superbases, where
incorporation enhances the basicity through thermodynamic stabilization of the molecule
[14]. The basicity of triazine is enhanced by dimethylamino substituents such as in 9. On
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Figure 11.1 Representative structures of computationally designed nitrogen-containing
superbases by Maski�c�s group
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protonation the triazino-guanidine molecule yields an IMHB, which is further stabilized by
cationic resonance.

The concept of the IMHBhas been proved particularly useful if used in amultiple fashion
[15]. Then the cooperative and collective IMHB effects lead to a considerable stabilization
of the corresponding conjugate acids. An additional degree of freedom in structures
optimizing proton sponge systems is offered by changing the naphthalene moiety for
other aromatic spacers, thus varying the N.N distance of the proton pincer. Following these
concepts, N-substituted azacalix[n](2,6)pyridines have been synthesized and N,N0,N00-tris
(p-tolyl)azacalix[3](2,6)pyridine 10 has been found to be the size of the cavity appropriate
for a high proton affinity[16] (Figure 11.2). These findings are corroborated by theoretical
study byDespotovi�c et al. [17].A closely relatedmacrocycle 11, with an additional pyridine
ring incorporated, also showed respectable superbasicity [18]. The amplified basicity in
both systems is a consequence of strong cationic resonance in conjugate acids supported by
stabilization provided by IMHB.

A lot of catalysts incorporating both acidic and basic groups in the molecule have been
designed and applied tomolecular recognition and asymmetric synthesis, inwhich intended
functionality could be obtained by control of the reaction conditions [19]. In living
organisms a variety of a-amino acids with different characters are used as building
blocks in the construction of peptides which control the total mode of action. The success
in the catalytic use of proline for asymmetric synthesis [20] suggests that alternative
enzymatic reactions may propose attractive models in the design of intelligent but simple
molecules. Thus, it might be possible to create useful, more sophisticated catalysts from
cheap and easily available precursors in the near future.

In the twenty first century it is strongly requested that synthetic chemistry should
contribute more extensively to the solution of serious environmental problems for the next
generations. One of various chemical approaches is the production of more effective
catalysts for the removal of harmful substances, such as arsenic and heavy metals. Basic
compounds, in general, show strong affinity to metal salts. In fact, it is known that
guanidines can form complexes with a range of metal salts [21], indicating that organo-
superbases could serve as effective metal scavengers as well as proton scavengers. This
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chelation technique may be applied to recycle rare metals from used goods. Organosu-
perbases with strong basicity could be potential candidates for these purposes.

As discussed in Chapter 4 (Oxazolidinone and Oxazole), guanidines catalyze the
insertion of carbon dioxide (CO2) to alkynic bonds [22]. This behaviour may give a hint
to trappingCO2 by organobase catalyzed chemical reaction, even to necessarymodification
of reaction conditions. Hopefully, it is the ideal that the CO2-incorporated products could be
used as new energy sources.
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