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Introduction

For many years it was assumed that the metabolism of nitrogen- and sulphur-contain-
ing chemicals, drugs and xenobiotics to their corresponding N-oxides and S-oxides
was an exclusive property of cytochrome P-450 (CYP) (Cashman 1995). However,
after the isolation and purification of the flavin-containing monooxygenase (FMO)
from pig liver in the mid-1960s, it was apparent that FMO could catalyse the
oxygenation of many nitrogen-, sulphur-, phosphorous-, selenium and other nucleo-
philic heteroatom-containing chemicals (Ziegler 1980). Today, it is recognised that
FMO catalyses the oxygenation of numerous heteroatom-containing drugs (Cashman
1997, 2000), chemicals (Ziegler 1993) and agricultural agents (Hodgson et al. 1998;
Hodgson and Levi 1992). In this chapter the term ‘oxygenation’ is used to signify a
one-step two-electron substrate oxygenation by FMO as opposed to two sequential
one-electron oxidations by CYP. Despite the pioneering studies of Ziegler, Hlavica
(Heinze et al. 1970; Ziegler 1988) and others, the involvement of the FMO in drug
and xenobiotic metabolism has historically been underestimated probably due to a
fundamental biochemical property of the enzyme. FMO is considerably more ther-
mally labile than most CYPs and investigations of drug metabolism that did not
account for this fact invariably led to the conclusion that FMO was not important in
the oxygenation of the chemical studied. Although thermal instability confounds
studies with FMO, it also points to a key property of FMO that can be used to
distinguish the involvement of FMO in drug metabolism.

In the 1970s, important studies describing the mechanism of molecular oxygen
addition to dihydroisoalloxazines and related flavin models by Bruice (Kemal et al.
1977), and Balou and Massey (Ballou et al. 1969) and others shed considerable light
on the chemical basis for FMO action. Studies of the chemistry of 4a-hydroperoxy
flavins and the kinetics of reaction with nucleophiles provided insight as to how FMO
could accomplish many of the same chemical oxygenations (Ball and Bruice 1983;
Kemal and Bruice 1976; Doerge and Corbett 1984; Miller et al. 1986). Much of the
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current understanding of the mechanism of flavoprotein and FMO catalysis was
developed in the late 1970s and early 1980s.

In the mid-1980s several investigators provided evidence that multiple forms of
FMO could be present in an animal (Williams et al. 1984; Tynes et al. 1985; Hlavica
and Golly 1991). Thus a ‘pulmonary’ FMO with properties distinct from that of the
‘hepatic’ FMO was identified, purified and characterised. Today, we recognise that
there are six forms of mammalian FMO and some can be present in multiple tissues of
the same organism. The description of multiple forms of FMO was advanced by
elucidation of the primary sequences by amino acid and nucleotide analysis (Hines
et al. 1994; Lawton et al. 1994). While the significance of human FMOs had been
recognised since the 1960s, it was not until the late 1980s and 1990s that the FMOs
were characterised by purification and cDNA cloning (Lomri et al. 1992; Lawton and
Philpot 1993; Dolphin et al. 1992; Phillips et al. 1995; Philpot et al. 1996).

Today, the number of human FMOs being described in the literature is expected to
increase because of the ease of obtaining new sequences with the polymerase chain
reaction (PCR) and the availability of the human genome sequence. Numerous allelic
variants have been reported and some clinical significance has been associated with
the FMO variants. The number of flavoproteins related to FMOs is also likely to
increase as investigators become interested in studying FMO in other species includ-
ing plants, insects and other organisms.

The physiological role of FMO is unknown. However, FMO has been suggested to
have evolved to detoxicate nucleophilic heteroatom-containing chemicals and xeno-
biotics found in foodstuffs by converting them to polar, readily excreted, water-soluble
metabolites (Ziegler 1990). FMOs have very broad substrate specificity and, barring
steric limitations, accept most nucleophilic heteroatom-containing substrates for
oxygenation (Cashman 1995). Recent studies have shown that FMO is capable of
oxygenating several endogenous and dietary compounds with significant physiologi-
cal activities such as biogenic amines (Cashman 2000). It is likely that, as more species
are investigated the physiological role of FMO in cellular homeostasis will become
clearer.

Nomenclature

FMO is a general definition that may include a number of flavoproteins. For the
purposes of describing mammalian FMOs in this chapter, the term FMO applies to
flavoproteins among different families that possess a consensus amino acid sequence
equal to or greater than 50% identity, and identities among orthologous forms greater
or equal to 82% Thus, numerous flavoproteins with similar functional properties (i.e.
cyclohexanone monooxygenase (Ryerson et al. 1982), yeast FMO (Suh et al. 1996)
that meet the criteria as a multi-substrate flavoprotein monooxygenase are excluded as
an FMO because of low sequence similarity. The prefix ' FMO" is used to designate the
gene or cDNA of an FMO.

As FMOs were discovered and characterised, the common or trivial names assigned
to enzymes were formalised and a system of nomenclature was adopted. The
nomenclature was developed on the basis of primary amino acid sequence identity. If
an FMO has an amino acid sequence identity with = 82% identity it is grouped within
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a family, and the family is indicated by the first numeral of the designation (i.e.
1,2, 3 ....). The order of naming follows the chronology of publication of full-length
sequences for each member of the family (Table 3.1). The nomenclature conforms to
that approved by the Human Gene Mapping Nomenclature Committee (Dolphin et al.
1991). Compared with the CYP gene families, the FMO gene family is relatively
simple. Allelic variants have been observed for FMO that usually possess only single
base changes. Allelic variation can occur as a function of the population and possibly
age and gender and can result in an FMO with altered activity. However, there are
other missense, nonsense and deletion or truncation mutants of FMO that can
significantly affect enzyme function and these will be discussed below in greater
detail.

Gene Organization

The FMO genes are localised on chromosome 1q and the human FMO gene family
may exist as a gene cluster (McCombie et al. 1996; Dolphin et al. 1997, Gelb et al.
1997). The general pattern of intron/exon organisation for FMO is assumed to be
similar in various animals and humans although this has not been exhaustively
examined. Evidence for multiple gene promoters and other regulatory elements have
been reported for rabbit FMOT (Luo and Hines 1996, 1997) and rabbit FMO2
(Shehin-Johnson et al. 1996). FMO cDNA primers can be selected to amplify certain
introns on the basis that the junctional sites are conserved across gene family and
across species lines. For example, the intron/exon boundaries determined for human
FMO3 (Treacy et al. 1998) relied on the gene structure of rabbit FMO2 (Wyatt et al.
1996). After a PCR fragment was obtained and verified by sequencing, the strategy
enabled amplification of human FMO3 introns 1 and 4-8. Introns that are hard to
amplify by the above approach can be derived from a consideration of the sequence
available in GenBank. For human FMO3, sequence analysis indicated that FMO3 had
nine exons ranging in size from 80 to 705 bp. The similarity in exon/intron organisa-
tion for the FMO genes may suggest that the FMO family members arose from gene

Table 3.1 Summary of mammalian flavin-containing monooxygenases?

Designation Trivial name Species Accession number
FMOT1 1A1 Rabbit M32030
FMOT1 Ziegler's enzyme Pig M32031
FMOT1 FMO-1 Human M64082
FMO2 1B1 Rabbit M32029
FMO2 Lung enzyme Rabbit —
FMO3 1D1 Rabbit L10037
FMO3 HLFMO Human M83772
FMO4 1E1 Rabbit L10392
FMO4 FMO2 Human Z11737
FMO5 1C1 Rabbit L08449
FMO6 — Human AL021026

2Adapted from Cashman (1995).
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duplication and further mutagenesis. Diversification of the FMO gene presumably led
to selective advantages and new function. Because FMO has been suggested to play a
role in detoxicating nucleophilic heteroatom-containing foodstuffs, it is possible that
FMO played a role in certain populations to process some biological natural products
and protect that population. Further allelic variation of FMO (as described below for
human FMO3) altering the catalytic activity and or substrate specificity could render
certain individuals or populations more or less susceptible to the effects of environ-
mental xenobiotics. Human FMO3, for example may be another example of an
‘environmental gene’. The large allelic variation of codon 158 of human FMO3 that
approaches 50% may represent an example of a protective mechanism of ‘animal-
plant warfare’. It is possible that evolutionarily conserved allelic variation of human
FMO3 prevalent in certain geographical locations possessing certain plant toxins helps
protect humans from plant toxin exposure (Gonzalez and Nebert 1990).

Structural aspects

The primary amino acid sequences of perhaps two to three dozen mammalian FMOs
and variants are now known but the three-dimensional structure of FMO is not known.
The lack of an X-ray structure probably comes from the fact that mammalian FMOs
are highly lipophilic enzymes that are associated with the membrane and are hard to
crystallise. Despite the difficulties of working with a membrane-associated enzyme,
considerable structural information is known. Most of the sequence information has
been deduced from oligonucleotide sequencing (Gasser et al. 1990; Lomri et al.
1993a; Lawton et al. 1993, 1994). For some FMOs, automated Edman degradation
sequence and, to a lesser extent, mass spectral sequence analysis has provided
substantial sequence information especially for FMO1. Ozols has provided extensive
amino acid sequence information of rabbit FMOs (Ozols 1991, 1994). Combined with
the sequence deduced from the cDNA data, the amino acid sequence data has
provided insight into the cofactor binding domains and the general structural motifs of
the protein and has provided some evidence for microheterogeneity (Ozols 1994). It
was soon clear that widely studied FMOs such as pig FMO1 and rabbit FMO2 were
N-terminal blocked (Guan et al. 1990). While there were methods available to
deacetylate proteins, the most straightforward method to identify post-translational
modifications of FMO was by direct peptide sequencing using mass spectrometry. In
addition, the cDNA sequence data could not by itself provide information about post-
translational modifications, and the cDNA and peptide data suggested that pig FMOT
had consensus sequences for N-glycosylation (Guan et al. 1991). By using a combina-
tion of biochemical methods and mass spectrometry (i.e. gas chromatography mass
spectrometry, HPLC mass spectrometry, electrospray mass spectrometry and matrix-
assisted laser desorption mass spectrometry) the site of FMO N-glycosylation was
identified (Korsmeyer et al. 1998). For pig FMO1, the only residue that was N-
glycosylated was Asn 120. Determination of the site of N-glycosylation helped to
support construction of molecular models of FMOT1. Information about the site of N-
glycosylation also potentially revealed information as to how pig FMO1 associated
with the membrane. However, N-glycosylation of FMO1 probably is not essential for
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enzyme activity because cDNA-expression in bacteria (that lacks the ability to N-
glycosylate) nevertheless provides active FMO enzyme.

The amino acid composition of a number of FMOs has been reported (Lawton et al.
1994). Although molecular models of FMO based on the crystal structure of other
flavoproteins have been proposed, the level of suitability and resolution are not really
sufficient to make firm conclusions regarding structure and function. The first FMO
model was developed by Ziegler (Ziegler 1999) based on the crystal structure of E.
coli glutathione reductase (Thieme et al. 1981; Mattevi et al. 1991). A representation
of this model is shown in Figure 3.1(a). In this model, emphasis is placed on a dimer
interface formed between the putative FAD and NADPH domains juxtaposed to the
dimer interface of the opposite FMO monomer (Christensen 1999). Peptide residues
321-339 that contain the proposed FMO signature sequence FATGY have been
proposed as a linkage between the putative FAD domain and active site and residues
473-494. In a different model developed within the author’s laboratory in collabora-
tion with Professor Ellie Adman (University of Washington), we used the structure of
NADPH-peroxidase to model human FMO3 (Figure 3.1(b)). The NADPH-peroxidase
model is supported by some of the data in the literature regarding the site of mutations.
For example, in the NADPH-peroxidase model, the nonsense mutation M66I that is
associated with trimethylaminuria maps to a region near the proposed FAD and
NADP* domains. In the glutathione reductase model, the M66l maps to a region quite
distal to the proposed cofactor domains. Both models show that the site of N-
glycosylation (discussed below) is in a region remote from the putative cofactor
binding domains and this is in accord with other evidence suggesting that N-
glycosylation is not an essential element of enzyme function.

As described above, most of the structural information about FMO comes from
studies of pig FMOT1. Purified pig FMOT1 contains approximately 15 nmol of FAD/mg
of protein and is devoid of haem iron or other metals (Ziegler 1980). Highly purified
pig FMOT1 generally contains variable amounts of lipid and it is generally very difficult
to segregate the enzyme from minute amounts of lipid. It is notable that another FMO
(i.,e. FMO?2) is tightly associated with a chaperone protein although it is not known
how widely this phenomenon exists for other FMOs from other species or organisms.
Rabbit FMO?2 is tightly associated with calreticulin (Guan et al. 1991), however, for
mammalian FMOs it is not known what the physiological role of this association is.
The visible spectrum of FMO is similar to other flavoproteins (i.e. Amax of 445 nm and
380 nm and shoulder at 480 nm). In the absence of molecular oxygen, NADPH
reduces the FAD prosthetic group to provide reduced FADH; and the UV-vis spectrum
is shifted to shorter wavelength (i.e. Amax of 440 nm and 370 nm with no shoulder)
(Poulsen and Ziegler 1979; Beaty and Ballou 19814, b). As described in greater detail
below, addition of molecular oxygen to the fully reduced FMO generates a spectrum
similar to peroxy flavins found in other flavoproteins or hydroperoxy isoalloxazines
that have been chemically synthesised as models of FMO (Kemal and Bruice 1976;
Miller 1982). The formation of a relatively stable hydroperoxy flavin species that
represents the ‘resting state’ of the enzyme is remarkable for at least two reasons. First,
FMO somehow stabilises the hydroperoxy species under general cellular conditions
that are strongly reducing, and second, stabilisation of the hydroperoxy flavin allows
the FMO to oxygenate essentially any nucleophilic substrate that has the appropriate
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Figure 3.1 (a) Human FMO3 model based on threading the FMO3 sequence onto the X-ray
structure of NADPH-peroxidase (npx). (b) Human FMO3 model based on threading the FMO3
sequence onto the X-ray structure of glutathione reductase (get).

steric dimensions to enter the substrate binding channel. It is this fundamental property
of FMOs that distinguish them from other monooxygenases and allow FMO to perform
its role as an extremely broad-based mixed function monooxygenase.

The cDNAs of FMO reported in the literature encode for active enzymes of
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approximately 533-535 amino acids, but examples with 19 or 25 additional C-
terminal amino acids have been observed. Several regions of FMO contain relatively
highly conserved amino acid residues that are presumably important for structure and
function (Kubo et al. 1997). For example, the FAD- and NADP*-binding domains (i.e.
GXGXXG) near amino acid positions 9—14 and 186-196, respectively, share some
similarities to other flavoproteins where the crystal structure is known (Vallon 2000).
Site-directed mutagenesis studies of the region 9-14 (i.e. GXGXXV) of rabbit FMO2
gave a cDNA-expressed enzyme that was devoid of activity and a protein that did not
bind FAD (Lawton and Philpot 1993). In contrast to many other monooxygenases from
the CYP family, the N-terminal hydrophobic tail does not help to anchor FMO to the
membrane. Other regions must be important. Comparison of FMO hydropathy plots
showed numerous regions of conserved hydrophobic segments (Cashman 1997).
Although the N-terminal region is hydrophobic, the lack of a discernible signal
peptide sequence and the obvious importance of the FAD-binding region suggest that
this is not a membrane insertion area.

Studies have shown that removal of the hydrophobic amino acid residues of the C-
terminus still allow the FMO to associate with a bacterial membrane. Although a
direct comparison between bacterial and mammalian membranes for FMO associa-
tion has not been made, nevertheless it is clear that the hydrophobic portion of the C-
terminus is not essential for membrane insertion and enzyme function. The conclusion
is that FMO likely has an internal sequence that is essential for membrane association.

Genetic aspects

There are a number of points at which the metabolism of a drug or chemical by FMO
could be altered. Some of the points are either poorly understood or have not been
investigated. For example, for orally administered drugs, the initial pre-systemic
metabolism by FMO in the intestine is poorly understood. It appears that FMO1 is the
prominent enzyme in the rabbit intestine (Shehin-Johnson et al. 1995) but it is
unknown whether FMO1 serves to significantly alter human drug bioavailability such
as described for CYP 3A4 or the P-glycoprotein systems. A few drugs (i.e. cimetidine,
verapamil and albendazol) that are substrates for FMO may have their bioavailability
altered as a consequence of FMO action, but this research area is largely unexplored
(Piyapolrungroj et al. 2000; Redondo et al. 1999). Various studies have shown that
expression of FMO is both tissue- and species-dependent (Lemoine et al. 1991; Wirth
and Thorgeirsson 1978; Duffel et al. 1981; Cashman et al. 1990; Dannan et al. 1986).
Although it is common for a tissue to have more than one FMO present, the activity is
dominated by the most prominent FMO present. For example, in adult human liver,
evidence for FMO3, FMO4 and FMO5 has been obtained but it is FMO3 that is by far
the most catalytically important species present (Cashman et al. 1995). Of course, in a
tissue such as the kidney where multiple forms of FMO are more equally present, the
oxygenation of a drug or chemical via FMO is probably determined by the kinetic
properties of the particular agent (Ripp et al. 1999). Of note is the fact that FMOT1 is
not functionally present in the adult human liver but is the prominent form of FMO in
the foetal liver. This represents an intriguing example of regulation of expression of
active FMO protein. The observation that FMO1 is not functionally present in adult
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human liver underscores another important point: the major form of FMO present in
the liver of most commonly used animals is FMO1 and not the form that is the
prominent one (i.e. FMO3) found in adult human liver. Thus, some caution should be
exercised in comparing preclinical metabolic data obtained in animals with that of
adult humans and it is important that an appropriate animal model is used.

In contrast to other monooxygenases of the CYP family, there is little data to suggest
that FMOs (other than FMO?2) are inducible. FMO2 levels appear to be regulated
during development by pregnancy. Gestation increases FMO2 activity in rabbit (Hines
et al. 1994), mouse placenta (Osimitz and Kulkarni 1982) and pig corpora lutea
(Heinze et al. 1970). In the rat, some evidence has accumulated that hepatic FMO
activity is decreased when animals are placed on a synthetic diet (Kaderlik et al.
1991). It is possible that hepatic FMO is maximally present and decreases to a de-
induced level in the presence of a synthetic diet or other conditions. Hormones and
dietary factors regulate FMO expression but this is done in a species- and tissue-
dependent fashion. Traditional receptor-mediated transcriptional regulation that in-
volves ligand binding does not appear to play a significant role in FMO expression as
it does for CYP, for example. There is one report in the literature that rat FMO1 is
induced by treatment of animals with 3-methylcholanthrene (Chung et al. 1997) but
this has not been independently confirmed. Expression of FMO s likely to be under
the auspices of multiple mechanisms. That expression of FMO is tissue-specific comes
from the observation that some tissues contain very high levels of FMO mRNA but
very low levels of functional protein or FMO activity. For example, human FMO2
encodes a truncated non-functional protein (Dolphin et al. 1998). Interestingly, while
Caucasians apparently do not express human FMO2, some individuals of African
descent do possess full-length human FMO2. The expression of active human FMO2
will undoubtedly be highly dependent on the ethnicity of the population examined.

Another way that FMO is regulated is through genetic regulation by polymorphisms.
Genetic polymorphisms are defined as allelic variations occurring with a pre-
valence of at least 1%. Inter-individual variation of enzymic metabolic activity can
result in significant population-wide differences in the oxygenation of drugs or
xenobiotics. Polymorphisms of monooxygenase genes can exert a dramatic effect on
drug metabolism. For example, CYP2D6-mediated debrisoquine 4-hydroxylation is
ethnically linked: ‘poor metabolisers’ make up about 5-10% of the population in the
Caucasian population but only about 0.1% of the Asian population (Tucker et al.
1977). For those individuals that have the variant gene, the polymorphism causes an
exaggerated clinical response to the side effects of debrisoquine. Another example
comes from the CYP2C19-mediated 4'-hydroxylation of (S)-mephenytoin (Goldstein
and de Morais 1994). In Caucasians, the prevalence of the poor (S)-mephenytoin
metaboliser phenotype is low (approximately 0.2% but quite large in the Asian
population (i.e, 15-20%).

In humans, polymorphisms of human FMO3 were recognised and characterised
after observations about the abnormal metabolism of trimethylamine (TMA) (Al-Waiz
et al. 1987; Hadidi et al. 1995; Mitchell et al. 1997; Thithapandha 1997; Treacy et al.
1998; Dolphin et al. 1997; Cashman et al. 1997). In normal humans, TMA is
metabolised to the polar and non-odorous metabolite trimethylamine N-oxide (TMA
N-oxide) that is efficiently excreted in the urine (Al-Waiz et al. 1988). For normal
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individuals, the urinary TMA N-oxide to TMA ratio is 97%:3% (or urinary TMA levels
of < 18 umol/mmol creatinine). For severely affected individuals, the TMA N-oxide:T-
MA ratio can be as low as 10:90 or almost exactly opposite of the normal condition.
Individuals with trimethylaminuria have a diminished capacity to oxidise dietary-
derived TMA to its odourless metabolite TMA N-oxide and these people excrete large
amounts of TMA in their urine, sweat and breath. Trimethylaminuria patients have
been described as suffering from ‘fish odour syndrome’ because of the fish-like odour
(Ayesh et al. 1993). Trimethylaminuria is an autosomal recessive inborn error of
metabolism that is quite uncommon and non-randomly distributed in the population.
It has been relatively well documented in British and Australian populations and it
may be more prevalent in North America than currently recognised (Akerman et al.
1999). A significant amount of evidence has accumulated that mutations of the human
FMO3 gene are responsible for trimethylaminuria and segregate with the disorder. A
genotype—phenotype correlation has emerged. Individuals homozygous or compound
heterozygous for the human FMO3 truncation mutation E305X manifest the most
severe phenotype. Another mutation that also causes a severe phenotype is a proline
to leucine substitution at codon 153. Homozygotes with this genotype can have a
TMA N-oxide:TMA ratio as low as 10%:90% Another causative mutation is a
methionine for isoleucine change at codon 66 that causes a more modest change in
an individual’s ability to metabolise TMA (i.e. TMA levels of 48 pmol/mmol of
creatinine) (Treacy et al. 1998). There are additional causative mutations and these are
listed in Table 3.2.

In addition to the mutations that cause severe trimethylaminuria, evidence for allelic
variation of the human FMO3 gene have been observed that represents pharmacoge-
netic polymorphisms (Table 3.3). Again, for populations that have a significant number
of poor metabolisers it is possible that the individuals may be more susceptible to
adverse drug reactions or exaggerated clinical response. Altered substrate activities
have been observed for human FMO3 (Cashman et al. 2000) and may be responsible
for mild trimethylaminuria (Zschocke et al. 1999).

Table 3.2 Nonsense and missense mutations of the human FMO3 gene associated with trimethy-
laminuria

Substitution Location References
Deletion Exons 1 and 2 Forrest et al. (2000)

A52T Exon 3 Akerman et al. (1999)
N61S Exon 3 Dolphin et al. (1996)
M66I Exon 3 Treacy et al. (1998)

M82T Exon 3 Dolphin et al. (1996)
P153L Exon 4 Dolphin et al. (1997); Treacy et al. (1998)
E305X Exon 7 Treacy et al. (1998)
E314X Exon 7 Akerman et al. (1999)
R387L Exon 7 Akerman et al. (1999)
M4341 Exon 9 Dolphin et al. (1996)

R492W Exon 9 Dolphin et al. (1996)
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Table 3.3 Common polymorphic variation in the Human FMO3 Gene®

Substitution Location Prevalence

E158K Exon 4 K homozygote is present about 17%
V257M Exon 6 M homozygote is present about 0.5%
E308G Exon 7 G homozygote is present about 4%

2Genotype frequencies determined in a Caucasian population.

The literature is replete with examples of adverse interactions with drugs and/or
chemicals mediated by CYP. One such example is the induction of CYP2E1 by ethanol
or other related alcohols and ketones that metabolise disulfiram (Antabuse) to toxic
species (Guengerich et al. 1991). For human FMO evidence for such clear-cut adverse
drug interactions has not been reported but some examples have emerged of adverse
clinical problems. For example, individuals with trimethylaminuria also suffer from
additional metabolic and psychosocial abnormalities including self-esteem, anxiety,
clinical depression and addiction to drugs (Todd 1979). Many of these clinical
manifestations could arise, at least in part, from abnormal endogenous or xenobiotic
metabolism. For example, in an Australian trimethylaminuria cohort several indivi-
duals also manifested hypertension and adverse reactions from tyramine, other amines
and sulphur-containing medications. Because FMO has been shown to metabolise
biogenic amines (Lin and Cashman 1997a,b), deficient FMO metabolism of biogenic
amines could contribute to some of the neurochemical effects observed in individuals
with trimethylaminuria. One report showed that a trimethylaminuria patient displayed
seizures and other behavioural disturbances after subjected to choline loading
(McConnell et al. 1997). Dietary choline is a major precursor source of TMA. Certain
central nervous system drugs that are normally efficiently cleared could produce
exaggerated responses for individuals with common polymorphic variants of FMO
(Adali et al. 1998). For example, the metabolic detoxication of amphetamine and
methamphetamine by human FMO3 may be under pharmacogenetic control (Cash-
man et al. 1999b). Anecdotal reports have suggested that tricyclic antidepressants give
exaggerated side reactions for individuals suffering from mild or severe trimethylami-
nuria. Because human FMO3 of the liver is largely responsible for TMA detoxication,
hepatic diseases also can exacerbate the trimethylaminuria condition (Fernandez et al.
1997; Stransky 1998). In addition, there are some conditions that apparently aggravate
the trimethylaminuria condition including menstruation (Zhang et al. 1996) and
possibly copper deficiency (Blumenthal et al. 1980). It is unknown whether a transient
trimethylaminuria condition occurs for some children (Mayatepek and Kohlmueller
1998). Associations with such diseases as Prader—Willi syndrome (Chen and Aiello
1993) and Noonon'’s syndrome (Calvert 1973) have also been linked with trimethyla-
minuria. Finally, it is possible that small molecules present in brassica vegetables can
alter the urinary TMA N-oxide to TMA ratio and give a transient trimethylaminuria
condition (Fenwick et al. 1983). Based on the results of recent studies, it is likely the
aggravation of trimethylaminuria by brassica vegetables is due to acid condensation
products of indole-3-carbinol present in the vegetables. Inhibition of FMO by indole-
3-carbinol is discussed in greater detail, below.
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Biochemical properties

Below, the biochemical properties of FMO are discussed in some detail to put the
monooxygenase system in perspective with other systems. As described above, the
mammalian FMOs are a family of gene products that catalyse a remarkable range of
oxygenation of nucleophilic nitrogen-, sulphur-, phosphorous- and selenium-contain-
ing drugs and xenobiotics to their respective oxides. Although many exceptions are
known, generally, formation of polar, oxygenated metabolites can provide a means to
terminate the biological activity of a heteroatom-containing compound (Cashman
et al. 1996). The degree to which a polar, oxygenated metabolite is excreted depends,
of course, on further metabolic processes, both oxidative and reductive, and numerous
exceptions to the general rule described above have been observed.

There are some biochemical properties unique to the FMO class of monooxy-
genases. With the possible exception of FMO2, FMOs are unusually sensitive to
thermal inactivation and this property often serves as a means to distinguish the
contribution to the metabolism of a chemical by FMO from that of other monoox-
ygenases. Thus, procurement of tissue from an animal before the temperature of the
animal rises is essential to preserve maximal FMO activity. In the absence of
NADPH, about 85% of the activity of most FMOs is lost if the tissue is left standing
at 45-55°C for 1-4 minutes. These are conditions sometimes achieved under post-
mortem conditions (Ziegler 1980). Thermal lability also represents a practical way to
distinguish the contribution of FMO from that of CYP to the N- or S-oxidation of a
drug or other chemical. Heat inactivation of microsomes at 55°C for one minute in
the absence of NADPH largely destroys FMO activity and retains CYP activity.
Addition of NADPH to a preparation treated in this fashion allows for CYP to
function normally but generally abrogates FMO activity. Of course, heat inactivation
of microsomes tends to produce significant quantities of H,O, and it is always a
good idea to destroy any H,O, formed by addition of exogenous catalase. The best
way to ensure maximal FMO activity is to add NADPH (or an NADPH-generating
system) directly to a freshly thawed preparation of enzyme. Even at the customary
incubation temperature of 37°C, if enzyme preparations containing FMO activity are
allowed to stand for even a few minutes in the absence of NADPH, significant FMO
activity can be lost. This problem may have contributed to the fact that many
examples of FMO-mediated metabolism were overlooked. The reason for this is that
historically, many metabolic reactions were initiated by the addition of NADPH (or
an NADPH-generating system) and this procedure inherently destabilised the FMO. If
the pre-incubation phase is conducted in the absence of NADPH at 37°C, significant
FMO activity can be lost. This has probably led to a general underestimation of the
role of FMO in drug and chemical metabolism. With the advent of cDNA-expressed
enzymes in drug metabolism, the challenges of the thermal lability of FMO are less
of a problem. Today, the investigator is less dependent on the amount of FMO
activity lost during post-mortem inactivation because of the availability of the
recombinant enzyme. Another advance has come about from the recognition that
some recombinant fusion proteins of FMO are considerably more stable than those
of the native enzyme (Brunelle et al. 1997).

Another fascinating property of FMO is the formation of a relatively stable
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hydroperoxy flavin intermediate. This is important for at least three inter-related
reasons. First, the unusually long-lived hydroperoxy flavin species is remarkably stable
and resistant to decomposition and disproportionation. This property allows the FMO
to be in an oxygenating mode during essentially the entire lifetime of the catalytic
cycle. This may account for the second feature of the hydroperoxy flavin: generally
(barring steric limitations), almost any strong nucleophile is oxygenated by FMO and,
as it will be described in more detail below, for a class of substrate, generally, all are
oxygenated at nearly the same rate. This suggests that the formation of product occurs
before the rate-limiting step of the enzyme reaction. Regardless of the mechanistic
details, FMO has somehow evolved to stabilise and preserve the integrity of a
potentially labile oxygenating agent during the catalytic cycle. Although poorly under-
stood, this ingenious mechanism underscores the potential versatility of the catalyst. In
addition, it points to some previously undiscovered molecular property of the FMO
active site and substrate-binding region construction that allows the hydroperoxy
flavin moiety to exist for long periods of time (on a biological time scale) without
decomposition. It is possible that the substrate-binding region is constructed of lipo-
philic, non-nucleophilic amino acid residues that contribute to stabilising this critical
species for FMO catalytic function. Evaluation of this suggestion must await further
structural information.

Another important feature of FMO is that, under normal conditions, no detectable
production of H,O, or other reactive oxygen species is formed during the catalytic
cycle of the enzyme, and therefore minimal FMO-mediated autooxidation of substrate
is observed. The conclusion is that formation of hydroperoxy flavin is tightly coupled
to formation of oxygenated product unless NADPH is not present. Thus, there is
generally an excellent stoichiometry between consumption of one mole of molecular
oxygen by FMO and formation of one-half mole oxygenated product and one-half
mole of water.

Consequently, monitoring consumption of molecular oxygen with an oxygen
electrode or some other oxygen-sensing system can provide a method for determin-
ing enzyme kinetics. Of course, for multi-step kinetics or where multiple products
are formed it is useful to have the authentic synthetic metabolites and quantify the
FMO enzyme reaction products by some separation technique such as HPLC. That
FMO does not generate copious amounts of H,O, in the absence of substrate
suggests that FMO does not expose the cell to untoward effects of oxidative stress. In
addition, and as described below, physiological substrates such as glutathione or
other cellular nucleophiles appear to be excluded from the substrate binding
channel. This is important because if cellular nucleophiles were continuously
oxygenated it would be biologically quite wasteful, lead to cellular stress due to loss
of NADPH and possibly contribute to proliferation of cellular reactive oxygen species
and oxidative stress. This underscores the role of FMO as a xenobiotic detoxication
catalyst. However, under severe cellular stress such as that during conditions of post-
mortem inactivation, FMO may lose its NADPH cofactor to other apparently more
vital cellular function. This may point to the fact that FMO plays an auxiliary role in
cellular homeostasis and that under conditions where cellular defence is not
essential, FMO participates in cellular survival by providing essential reducing
equivalents to important biochemical sites.
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Catalytic mechanism

The laboratories of Ziegler and Ballou have characterised the detailed steps of the pig
FMOT1 catalytic cycle (Poulsen and Ziegler 1979; Beaty and Ballou 1981a,b). It is
likely that other FMOs also conform to the same general mechanistic picture although
as other FMOs from other species are described this question should be re-examined.
The prominent steps of the FMOT catalytic cycle are shown in Figure 3.2. In the first
step of the enzyme reaction (step 1), the fully oxidised flavoprotein (FMO-Flyy)
combines with NADPH in a fast step to give the FMO in the reduced form (FMO-
FIH,). The Ky, for binding of NADPH is in the low micromolar region and the rate
constant (i.e. 53 M) suggests that it is among the fastest reactions in the cycle. After
delivering the reducing equivalents to the flavin, the NADP* apparently remains
proximal to the reduced flavin moiety and possibly serves as a protector or ‘gate-
keeper’ to the complex. This is important as the reduced flavin is not indefinitely stable
and reaction of the reduced flavin with molecular oxygen to form the key hydroperoxy
flavin (step 2) may require the presence of the NADP™ cofactor in an as yet poorly
understood way. Formation of the hydroperoxy flavoenzyme is also rapid (i.e. 45 M~)
and provides the long-lived hydroperoxy flavin oxygenating species that makes up the
vast majority of the resting form of the enzyme. The hydroperoxy flavoenzyme is the
form of the enzyme that waits in the ground state until an appropriate substrate comes
along. For substrates such as dimethylaniline, oxygenation proceeds very rapidly (i.e.
bimolecular rate constant of 4700 M~" s~1) with attack of the nucleophilic nitrogen
atom on the terminal hydroperoxy flavin oxygen atom (step 3) to produce the product
(S—0) and the hydroxy flavoenzyme species (i.e. the pseudobase FMO-FIHOH). The
oxygenated product then leaves the product binding region, again, in a very fast step.
The next and final step (step 4) is slow and constitutes the overall rate-limiting step of
the catalytic cycle. From kinetic measurements, it is not clear whether dehydration of
pseudobase FMO-FIOH or desorption of NADP™ is the rate-limiting step but this step
is approximately 20-30-fold slower than any of the other steps in the catalytic cycle

NADPH
EF\Z~F|QX
H,0 + NADP* 1
4 Enz-FIH, + NADP*
2 02
Enz-FIHOH
3 Enz-FIOOH
S-0 S

Figure 3.2 Proposed catalytic cycle of FMO. S and S-O represent the substrate and the
oxygenated substrate, respectively (adapted from Cashman 1995).
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(i.e. 1.9 M. It is possible that NADP*comes away last because NADP' is a
competitive inhibitor of the FMO. As discussed above, under normal conditions,
formation of the highly protected hydroperoxy flavin species is tightly coupled to
substrate oxygenation. The catalytic mechanism also predicts that because release of
product comes before the rate-limiting step all good substrates will have similar Vi
values. Generally, for very good substrates (low K, high Vinax substrates) this is the
case but there are exceptions and it is somewhat dependent on the nature of the
substrate. Steric factors may play a role in this general conclusion for a given class of
FMO substrate. In summary, detailed kinetic studies are in accord with the mechanism
of Figure 3.2 and the proposal does not violate the principles of enzyme saturation
and Michaelis—Menten kinetics. Ziegler has proposed that FMO operates by providing
a single point of attachment for substrate oxygenation and more complex induced fit
interactions are not required (Ziegler 1993). However, the prediction that the hydro-
peroxy flavin of FMO acts similarly to synthetic isoalloxazine hydroperoxides and that
the enzyme simply serves as a reactant in a bimolecular reaction is probably not true
for all substrates. As described below, however, additional binding interactions must
be at work to produce the various degrees of stereoselectivity observed for the FMOs
examined.

Substrate specificity, inhibitors and induction

As the drug discovery pipeline has expanded with the advent of combinatorial
chemistry, knowledge of monooxygenase-mediated detoxication should become an
ever-increasing component in drug development (Cashman 1996). The substrate
specificity of most of the FMOs has been summarised previously (Ziegler 1980, 1990,
1993; Cashman 1995). A model of pig FMO1 was proposed to explain much of the
structure function information known at the time (Cashman 1995). This was based on
the structure—function relations of a series of 10-[(N, N-dimethylamino)alkyl]-(2-tri-
fluoromethyl)phenothiazine derivatives and other substrates N- and S-oxygenated by
FMOT1 and FMO3 (Lomri et al. 1993 a—c; Overby et al. 1995; Nagata et al. 1990).
Use of the 10-(N, N-dimethylaminopentyl) derivative provides a highly sensitive means
of determining FMO activity and N-oxygenation of this substrate is highly correlated
with FMO3 immunoreactivity in human liver preparations (Cashman et al. 1993b).
Generally, pig FMOT1 provides a reasonable starting point for understanding the
substrate specificity of animal FMOs because a prominent form of FMO in animal liver
is FMO1. However, it appears that human FMOT is considerably more restricted than
pig FMOT1 in the size of the nucleophilic heteroatom-containing substrates accepted
(Kim and Ziegler 2000). Animal FMO?2 differs from pig FMO1 because it is competent
to N-oxygenate primary amines. On the other hand, evidence for stimulation of pig
FMOT1 by primary amines has been observed. However, careful examination of FMO1
shows that the enzyme can N-oxygenate primary amines but it does so more than
100-fold less efficiently than FMO3 (Lin and Cashman 1997a,b). Both chlorpromazine
and imipramine have been reported to activate human FMO3 toward the oxygenation
of good substrates such as methimazole (Overby et al. 1997; Wyatt et al. 1998). As
described above, animal FMOs 1, 2, and 3 oxygenate a wide variety of nucleophilic
tertiary and secondary amines as well as sulphur-containing compounds. Little is



FLAVIN MONOOXYGENASES 81

known about FMO4 and FMOG6 substrate specificity because of the difficulties
associated with cDNA-expression and characterisation. FMO5 is an unusual FMO
and evidence for selective N-oxygenation of long-chain aliphatic primary amines has
been reported (Overby et al. 1995), but FMOS5 does not apparently S-oxygenate the
widely used substrate methimazole.

Because FMO3 is probably the most functionally important FMO from the stand-
point of human drug and xenobiotic metabolism, most of the discussion in this section
will focus on this form of the enzyme. It is notable that the hepatic form of FMO
present in rats is FMOT1. Thus, rats represent a poor choice to use as FMO models for
human hepatic drug development. For mice and dogs where FMO3 levels are more
nearly similar to human liver caution should be exercised as there is a gender effect
for FMO3 in these species (Ripp et al. 1999). Rabbit liver preparations may over-
predict the contribution of FMO3 to drug metabolism because the hepatic levels
appear to be present to a greater extent than in human liver. In designing a small
animal strategy useful as a small animal model of human hepatic FMO3, the female
mouse or dog may be more suitable but gender effects on other pharmacodynamic
properties of the drug or xenobiotic to be evaluated may confound the picture.

Traditionally, human FMO3 activity has been described based on studies in human
liver microsomes. Today, more studies are emerging that report on human FMO3
activity in other systems including hepatocytes (Fischer and Wiebel 1990; Sherratt and
Damani 1989; Rodriguez et al. 1996) and other propagated cells (DiMonte et al.
1991). With the widespread use of recombinant human FMO3 enzyme preparations,
a fuller description of substrate specificity is available. When practical, an important
approach is to utilise substrates both in vitro and in vivo to characterise human FMO3.
Thus, (S)-nicotine (Park et al. 1993), TMA (Treacy et al. 1998), cimetidine (Cashman et
al. 1993a), clozapine (Sachse et al. 1999) and ranitidine (Kang et al. 2000) have been
used to phenotype various populations for human FMO3 activity. All five chemicals
have been shown to be relatively selective probes of human FMO3 activity in vitro. A
non-invasive approach is to utilise the tertiary amine TMA that arises from the dietary
precursor choline. Each substrate has some advantages and disadvantages. (S)-
Nicotine is selectively N-1'-oxygenated by human FMO3 to form exclusively the trans
N-1"-oxide both in vitro and in vivo. Animal FMOT1 forms a 50:50 mixture of cis and
trans nicotine N-1'-oxide. Therefore, the stereochemistry of the product reveals
whether FMO1 or FMO3 N-oxygenates nicotine. That only the trans N'1'-oxide
diastereomer is formed in humans in vivo suggests that only FMO3 metabolises (S)-
nicotine. Despite the usefulness of nicotine as a stereoselective in vitro probe of
human FMQO3, its use in vivo is somewhat limited due to the relatively high Ky, of
nicotine. TMA is an excellent substrate for FMO3 in vitro (Cashman et al. 1997; Lang
et al. 1998) but because it arises from dietary choline and other sources the TMA
levels may vary in vivo and it is therefore important to establish in vivo TMA N-
oxide:TMA ratios. Cimetidine S-oxygenation is another selective substrate for human
FMO3 presumably because of the nucleophilicity of the sulphur atom and because
the imidazole nucleus serves to inhibit CYP-mediated oxidation (Cashman et al.
1993a). Urinary cimetidine S-oxide is mainly present as the (-)-isomer (i.e. (-)—75%:
(+)—25% cimetidine S-oxide). The in vivo result was in good agreement with that
observed studying the S-oxygenation of cimetidine in vitro. The conclusion is that
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human FMO3 largely forms (-)-cimetidine S-oxide and human FMO1 forms (+)-
cimetidine S-oxide. The bimodal profile of formation of plasma cimetidine S-oxide
may be due to absorption differences or due to the action of different FMOs. Another
possibility is that presystemic metabolism of cimetidine in the intestine contributes to
the variability of cimetidine pharmacokinetics (Lu et al. 1998). However, the role of
presystemic FMO in the metabolism of drugs and other xenobiotics is an understudied
area. Clozapine is a cyclic tertiary amine that is efficiently N-oxygenated by human
FMO3 (Tugnait et al. 1997). Clozapine and caffeine have been studied in vivo as
probes of human FMO3 phenotype and genotype (Sachse et al. 1999). While
clozapine is an effective in vitro probe, three common polymorphisms of human
FMO3 were not linked to either clozapine or caffeine metabolism. For clozapine, it is
possible that the Kp, value is too high to serve as a useful in vivo marker. The lack of
correlation of caffeine with FMO3 genotype and the reported lack of substrate activity
for human FMO3 (Rettie and Lang 2000) brings up the issue as to whether caffeine is a
useful probe for human FMO3. In view of the lack of a nucleophilic nitrogen atom
and the lack of substrate activity, this suggests that caffeine metabolism is not
dependent on the human FMO3. Ranitidine N-oxygenation has found use in correlat-
ing phenotype with genotype in a Korean population (Park et al. 1999). Other
nucleophilic heteroatom-containing compounds have been shown to be selectively
oxygenated by human FMO3. For example, tamoxifen (Kupfer and Dehal 1996),
benzydamine (Ubeaud et al. 1999), xanomeline (Ring et al. 1999), N-deacetyl
ketoconazole (Rodriguez et al. 1999) and sulindac sulphide (Hamman et al. 2000) are
substrates for human FMO3 oxygenation.

To date, few examples of true competitive inhibition of human FMO3 have been
reported. Most of the inhibitory effects on FMO have been examples of alternate
substrate competitive inhibition. This is the case where a chemical is a better substrate
for the compound being studied and addition of the chemical decreases the apparent
oxygenation of the compound. Chemicals with low K, high Vi kinetic parameters
for human FMO3 such as methimazole or thiobenzamide generally show alternate
substrate competitive inhibition of human FMO3. Recently, a true competitive
inhibitor based on dimethylamino stilbene carboxylate was reported (Clement et al.
1996). Another compound, indole-3-carbinol and its acid condensation products are
potent, competitive inhibitors of human FMO3 (Cashman et al. 1999a). Indole-3-
carbinol is a dietary constituent of cruciferous vegetables and is degraded to dimers
and trimers upon reaching the acidic contents of the stomach. In a study comparing
the in vitro inhibitory potency with the in vivo inhibitory potency, it was shown that
the dimer was a potent inhibitor of human FMO3. Rat hepatic and intestinal FMO1
are also inhibited by dietary indole-3-carbinol (Larsen-Su and Williams 1996) and the
down-regulation of FMO coupled with the induction of CYP may predispose animals
to potential drug—drug interactions (Katchamart et al. 2000).

Stereochemical considerations

A number of reports have presented evidence on the stereoselective oxygenation of
heteroatom-containing drugs and chemicals by the FMO. Some of this work was
recently summarised (Cashman 1998). For FMO, advantage can be taken of the fact
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that many S- and N-oxides formed by FMO are sufficiently stable to spontaneous
racemisation to allow the determination of optical activity after the monooxygenase
reaction. For example, sulphoxides are relatively stable to stereomutation and race-
mise at elevated temperatures (i.e. above 200°C). In general, tertiary amines are more
prone to thermal stereomutation than sulphoxides. However, cyclic tertiary amine N-
oxides and even some linear amine N-oxides are sufficiently stable to thermal
racemisation to assess FMO-mediated stereoselectivity. Because racemisation or
decomposition of S- or N-oxides can occur by a number of routes (i.e. photochemical,
acid-promoted or elimination reactions), in any studies of quantification of FMO
stereoselectivity, it is advisable to chemically synthesise the product and do stability
studies on the material that possesses a centre of chirality. Therefore, an important step
in the determination of FMO-dependent stereoselectivity is to establish a bioanalytical
method to measure the optical purity of the enzyme-catalysed reaction. 'H-NMR
spectroscopy in the presence of a chiral auxiliary (i.e. a europium shift reagent,
Eu(hfc);) was used to probe the FMO-mediated stereoselectivity of aryl-1,3-dithiolane
S-oxygenation formation (Cashman and Olsen, 1990; Cashman et al. 1990) and the
optical purity was established by correlating the circular dichroism absorbance spectra
by use of the Cotton effect (Mislow et al. 1965). Another approach is to use gas-liquid
chromatography with a chiral stationary phase to separate lipophilic S-oxides. Because
of the relatively low volatility and susceptibility to thermal decomposition, chiral
phase gas—liquid chromatography is not generally useful in quantifying FMO-
mediated stereoselectivity reactions. One possible exception is where an S-oxide or
N-oxide can be quantitatively converted into a material that is efficiently chromato-
graphed by gas-liquid chromatography. Two such examples are the thermal rearrange-
ment of FMO metabolites (S)-nicotine N-1"-oxide to an oxazine (Jacob et al. 1986)
and the formation of 3,4-dimethoxy styrene from verapamil N-oxide (Cashman, 1989).
Of course, the most unambiguous method to determine FMO product stereoselectivity
is to determine the X-ray crystal structure of the S- or N-oxide. However, the
requirement for significant amounts of high-quality crystals and the amount of time
and expense associated with this technique has limited its usefulness.

Commercially available chiral stationary phase HPLC (CSP HPLC) has allowed rapid
advances in the characterisation of the stereoselectivity of enzyme-mediated reactions
especially when used in conjunction with other methods to determine the absolute
configuration. A summary of some of this technology has been presented previously
(Cashman 1998). Generally, use of CSP HPLC is the method of choice for the
determination of the absolute configuration of FMO products due to the speed,
relative lack of expense and accuracy. Only 1-2 pg of FMO metabolite is required in
each chromatographic run and this is easily obtained from typical small-scale incuba-
tions. In addition, synthetic chemical or enzymic methods are available to stereoselec-
tively form the desired metabolite in enantiomerically enriched form. For example, by
use of nonchiral oxidising agents in the presence of a chiral macromolecule,
stereoselective S-oxygenation is easily achieved. Treatment of sulphides with sodium
meta periodate in the presence of bovine serum albumin often provides multi-
milligram quantities of S-oxide with great enantioselectivity (Cashman 1998). With the
development of milder and more selective oxidising agents (Boyd et al. 1989),
additional reagents should continue to become available to provide increasingly
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efficient means of obtaining authentic chiral standards. One of the best ways to
chemically synthesise small amounts of S- or N-oxides with enantioenriched centres
of chirality is with the modified Sharpless chiral oxidation reagent (Pitchen et al.
1984). The author’s laboratory has had success by using this procedure to synthesise
authentic metabolites useful as a standard in developing CSP HPLC for FMO-mediated
chemical oxygenations (Cashman 1998). Another useful method for generating FMO-
mediated metabolites possessing a centre of chirality is the use of other enzymes.
Today, many monooxygenases are available commercially in pure form. Use of
different monooxygenases can also provide information whether other enzyme
systems give the same product stereochemistry, and this can be valuable in determin-
ing the contribution of other monooxygenases in substrate probe stereoselectivity. For
example, alkyl-substituted p-tolyl sulphides have been shown to be stereoselectively
S-oxygenated to S-oxides by FMOs (Rettie et al. 1995) (Table 3.4). CYPs or other
haemoproteins also S-oxidise these same substrates and in some cases give the same
product stereochemistry, in other cases give a distinct one (Pike et al. 1999). Thus,
FMOT1, 2, and 3 give a predominance of the (+)-(R) S-oxide but FMO5 and CYP2B
and 2C6 mainly produce the (-)-(S) S-oxide (Rettie et al. 1994) (Table 3.4). This
example points out the advantage of using stereochemistry to identify the contribution
of a particular enzyme to the formation of a product, but it also suggests that caution
should be exercised when multiple enzyme systems can oxidise the same probe
substrate, depending on metabolic reaction conditions and substrate concentrations.

Role of FMO in toxicological aspects

In contrast to the CYP field of monooxygenases where some key advances have been
made based on the observation that CYP bioactivated a chemical or drug to a toxic
metabolite, fewer examples of FMO-mediated bioactivation are available. Rather, as
discussed above, FMO has been associated with detoxication processes that convert
nucleophilic heteroatom-containing chemicals or drugs into relatively polar, readily
excreted metabolites. As described previously by Ziegler, it is possible that FMO
evolved to inactivate many chemicals present in plants that would otherwise inhibit

Table 3.4 Stereoselective S-oxidation of ethyl p-tolyl sulphides and related compounds

Enzyme system Absolute Enantiomeric References
configuration excess

Horseradish Peroxidase® (+)-(R) 100 Grayson and Rous, (1987).

Hog FMO1P (+)-(R) 95 Light et al. (1982)

Rabbit FMO1® (+)-(R) 99 Rettie et al. (1994)

Rabbit FMO2 (+)-(R) 91 Rettie et al. (1990)

Rabbit FMO3® (H)-(R) v. low Rettie et al. (1994)

Rabbit FMOS5 (+H)-(S) 92 Fisher et al. (1995)

Cyclohexanoneb (-)-(S) 80 Boyd et al. (1989)

Monooxygenase

2The substrate used was methyl p-tolyl sulphide.
bThe substrate used was ethyl p-tolyl sulphide.
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and destroy CYPs (Ziegler 1990). Thus, conversion of a sulphur-containing chemical
to a polar S-oxide that might otherwise be oxidised by and inactivate CYP would
constitute a chemoprotective strategy. The evidence for this postulate is that FMO is
primarily localised where CYP resides and FMO is recalcitrant to inactivation by many
chemicals that inhibit CYP. For example, depending on the structure, thiones (i.e.
thioamides, mercaptoimidazoles, thiocarbamides, etc.) are metabolised by both CYP
and FMO (Decker et al. 1991, 1992; Decker and Doerge 1991). In the case of 2-
mercaptoimidazole (i.e. methimidazole) S-oxidation by CYP or FMO leads to a
metabolite (i.e. a sulphenic acid) that covalently modifies CYP (Kedderis and Rickert
1985).

There are numerous examples of reactive metabolites produced by FMO- or CYP-
mediated S-oxidative bioactivation that results in CYP inactivation without much effect
on FMO. Of course, the presence of thiophiles such as glutathione to form disulphides
after reaction with sulphenic acids can attenuate the relative toxicity of sulphenic
acids formed by FMO. Once formed, the disulphides can undergo disulphide
exchange and produce the parent thione and oxidised glutathione. This is an example
of a futile metabolic cycle whereby the substrate is oxidised and after a reductive step
is returned to its parent oxidation state. Oxidation of glutathione and consumption of
NADPH may make the cell more susceptible to the toxic properties of other reactive
metabolites especially if the thione is a low Ky, high V. substrate and depletes the
cell of glutathione (Mizutani et al. 2000). In summary, judging whether an FMO-
dependent oxygenation is a detoxication or bioactivation process is not always a
simple exercise. However, on the basis of information available in the literature, the
majority of the data suggests that FMO is a detoxication catalyst.

There are a few examples in the literature of how the toxicity of certain chemicals
may be different under certain experimental conditions where the expression of FMO
is altered. For example, the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) is efficiently N-oxygenated by FMO in an apparent detoxication process
(Cashman and Ziegler 1986). In a species where low FMO activity is present, the
majority of MPTP is metabolised by monoamine oxidase (MAO) to the neurotoxic
metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPDP*) and N-methyl-4-
phenylpyridinium ion (MPP*). In different strains of mice, it is likely that FMO-
mediated N-oxygenation of MPTP is a detoxication process leading to a non-toxic,
readily excreted product whereas MAO-mediated oxidation results in highly electro-
philic metabolites that participate in interruption of cellular function (Chiba et al.
1988). In the 1970s there was the view that the FMO system could N-hydroxylate
procarcinogenic arylamines. This is likely to be true for some arylamines but human
FMO is likely to be only a minor contributor to the overall N-oxygenation of these
types of compounds. However, aliphatic primary amines avoid potentially toxic
hydroxylamine formation by efficient N-oxygenation by human FMO3 (Cashman
2000) and this may lead to significant cytoprotection (Clement et al. 2000).

There are a few clinical examples of individuals with deficient FMO activity that
result in toxic sequelae. However, to date, aside from the inherited defect of
metabolism called trimethylaminuria discussed above, there is no direct link between
altered FMO and a human disease state. However, drug—drug interactions may pose a
problem for individuals with common variants of FMO.
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