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General characteristics
FUNCTION

Epoxide hydrolases (EH, E.C.3.3.2.3) hydrolyse oxiranes, a specific class of cyclic
ethers (Oesch 1973). The common feature of these compounds, their three-membered
ring system, is under high tension, due to the unusually small bonding angles.
Together with the polarisation of the C—O bonds, this leads to an enhanced chemical
reactivity that is further modulated by the substitution pattern at the epoxide ring.
Epoxides act as electrophiles with the reactive centre being one of the ring carbon
atoms. As a general rule, asymmetric substitution at the ring enhances the reactivity.
Important targets for epoxides in living organisms are nucleophilic sites in biomacro-
molecules, in particular proteins and nucleic acids. Chemical attack of these leads to
cytotoxic and genotoxic effects. In particular, the modification of DNA bases can
result in inheritable changes and such changes may ultimately give rise to carcinogen-
esis (Miller and Miller 1981). The primary function of xenobiotic epoxide hydrolases is
to defeat such hazardous effects of epoxides. Epoxides can enter the body pre-formed
or may arise from the metabolism of xenobiotic and, in some cases, of endogenous
compounds (Figure 12.1).

In contrast to the great number of enzymes that can metabolise arenes or alkenes to
epoxides, there are at present only two distinct mammalian xenobiotic epoxide
hydrolases known (Oesch and Bentley 1976; Ota and Hammock 1980; Guenthner
et al. 1981; Thomas et al. 1990; Hammock et al. 1997; Armstrong 1999). These two,
the membrane-bound microsomal epoxide hydrolase (mEH) and the soluble epoxide
hydrolase (sEH), will be described in detail in this chapter. Three more EHs have been
identified in mammals that all have a narrow substrate specificity for epoxides formed
from endogenous precursors, namely the leukotriene A4 hydrolase (Haeggstrom et al.
1990), the cholesterol epoxide hydrolase (Levin et al. 1983; Oesch et al. 1984) and
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Figure 12.1 Role of epoxide hydrolases in the metabolism of exogenous and endogenous
epoxides. EH: epoxide hydrolase.

the hepoxilin epoxide hydrolase (Pace-Asciak and Lee 1989). These will not be
discussed here, since they have little, if any, impact on xenobiotic metabolism.

In general, xenobiotic epoxide hydrolases serve the above-described detoxification
function, yet, as always, there are some exceptions to this rule (Bentley et al. 1977). A
prominent example for this is the metabolic activation of polycyclic aromatic hydro-
carbons (PAH) to the corresponding dihydrodiol epoxides, the ultimate carcinogenic
metabolites of this class of compounds (Holder et al. 1974; Sims et al. 1974) (Figure
12.2). PAH with a so-called bay region are metabolically activated in a first step by,
e.g. CYP (cytochrome P450), to pre-bay epoxides. These genotoxic metabolites can
rapidly rearrange to the corresponding, much less toxic, phenols and thus undergo
spontaneous detoxification. Likewise, enzymic cleavage by epoxide hydrolases to the
corresponding vicinal dihydrodiols leads to per se inactive products. However, these
diols are again substrates for a variety of CYP and COX isoenzymes which finally
generate the highly reactive dihydrodiol epoxides. These compounds neither undergo
rearrangement to phenols (they are alkene, not arene oxides), nor are they substrates
(or in some cases only extremely poor substrates) for epoxide hydrolases. Their
detoxification by glutathione conjugation (Jernstrom et al. 1992), the last line of
defence, is obviously not sufficient to protect the organism from the potent carcino-
genic effect of these metabolites. The central importance of mEH for this activation
pathway has finally been proven using mEH knockout mice (Miyata et al. 1999). In
contrast to their wild-type relatives, these animals were highly resistant to the
carcinogenic effect of 7,12-dimethylbenz[alanthracene in the mouse skin tumorigen-
esis test.

A second, recently discovered and somehow unexpected activation pathway driven
by epoxide hydrolases is the formation of toxic vicinal diols from the epoxides of
unsaturated fatty acids. Leukotoxin, the epoxide of linolenic acid, has earlier been
reported to be the chemical mediator in multiple organ failure and adult respiratory
distress syndrom (ARDS) (Ozawa et al. 1991). It now appears that the diol rather than
the epoxide seems to be the causative agent (Moghaddam et al. 1997): in mice, sEH is
the major leukotoxin-metabolising EH. Pretreatment of mice with an sEH inhibitor
significantly increased the tolerance of the animals to the toxic effects of leukotoxin.
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Figure 12.2 Role of epoxide hydrolase in the metabolic activation of polycyclic aromatic
hydrocarbons (PAH) to diol epoxides.

1 = parent PAH; 2 = PAH pre-bay epoxide; 3 = PAH phenol (two regioisomers possible);
4 = PAH dihydrodiol; 5= PAH dihydrodiol epoxide. CYP, cytochrome P4s50: EH, epoxide
hydrolase.
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Likewise, recombinant expression of sEH enhanced leukotoxin cytotoxicity in a
number of different cell systems.

In summary, the vast majority of substrates are chemically inactivated and thus
detoxified by EH but in some specific cases, epoxide hydrolysis can directly or
indirectly increase the toxicity of the respective substrate.

PHYLOGENETICS

The mEH was among the first xenobiotic metabolising enzymes to be cloned
(Gonzalez and Kasper 1981) and characterised in terms of amino acid sequence
(Heinemann and Ozols 1984), yet little immediate progress resulted from these early
findings. At the end of the 1980s, a bacterial enzyme with marginal sequence
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similarity to the mEH was discovered, a haloalkane dehalogenase (Janssen et al.
1989), but this possible relationship was largely ignored. This changed dramatically
when the molecular characterisation of sEH was reported (Beetham et al. 1993; Grant
et al. 1993; Knehr et al. 1993). At that time, direct comparison of the two epoxide
hydrolase sequences did not show any convincing relationship between the two, yet
the sEH, like the mEH before, showed marginal but significant similarity to the
bacterial haloalkane dehalogenase (Arand et al. 1994), of which the three-dimen-
sional structure had just been determined (Franken et al. 1991; Verschueren et al.
1993). The dehalogenase had been identified as a member of the a/f hydrolase fold
family of enzymes (Ollis et al. 1992), its most famous relative thus being the
acetylcholine esterase. The fact that the overall protein fold is conserved in this family
of enzymes, despite the lack of evident sequence similarity, strongly suggested that
proteins related to the dehalogenase by sequence similarity should have the same
three-dimensional structure, and therefore EHs should also be members of the a /S
hydrolase fold enzyme family (Arand et al. 1994; Lacourciere and Armstrong 1994;
Pries et al. 1994). Final proof for this has recently been provided by X-ray analysis of a
variety of EH structures (Argiriadi et al. 1999; Nardini et al. 1999; Zou et al. 2000).
The generic EH structure derived from this is the following (Figure 12.3).

The central domain of EH is the a/f hydrolase fold that is composed of a central 3-
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Figure 12.3 Three-dimensional structure of epoxide hydrolases.

The left part of the figure shows a ribbon model of the EH structure while the right side shows
a maghnification of the active centre, with styrene oxide as a generic EH substrate in place. Note
that the N-terminal extension is a unique feature of the mEH-like epoxide hydrolases. The
numbered circles in the ribbon representation denote the position of the following individual
polymorphisms of EHs that are discussed later in this chapter. 1 =Tyr;13His (mEH);
2 = Argi3gHis (mEH); 3 = Arg,s;Gln (sEH); 4 = Argapx Arg/Arg (insertion;sEH).
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sheet flanked by a-helices. On top of this fold sits a so-called lid. The catalytic site is
situated at the interface of these two structural entities, with a catalytic triad (Ollis
et al. 1992) being anchored in the a/f hydrolase fold and two catalytic tyrosines
hanging from the lid into the substrate binding pocket. One very important aspect of
this discovery was its impact on the understanding of the catalytic mechanism of
enzymic epoxide hydrolysis, (see below). Furthermore, the comparison between the
EHs and the dehalogenase revealed a number of typical signature sequences that
define a subgroup in the family of a/f hydrolase fold enzymes. These signatures can
be used to scan the available biological databases for the identification of other
potential epoxide hydrolases. A phylogenetic tree of a selection of sequences retrieved
this way is shown in Figure 12.4.

The first lesson to be learned from this multiple-sequence comparison is that mEH
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Figure 12.4 Phylogenetic tree of epoxide hydrolase/haloalkane dehalogenase-related «/f
hydrolase fold enzymes.

Comparison has been performed using CLUSTAL-X (Thompson et al. 1997). For further details
of the analysis see Arand et al. (1999a).
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and sEH are, indeed, at the opposite ends of this comparison, and they must have
evolved from their common ancestor several billion years ago. The mammalian mEH
has apparent orthologues in insects (Wojtasek and Prestwich 1996), nematodes
(Wilson et al. 1994) and in fungi (Arand et al. 1999a), while sEH orthologous enzymes
have been identified in plants (Kiyosue et al. 1994; Stapleton et al. 1994). A second
finding is the broad variety of different enzymes in this family tree, ranging from
epoxide hydrolases over esterases to C—C bond hydrolases. As will be detailed later,
mammalian xenobiotic epoxide hydrolases have an aspartic acid residue in their
active site serving as the catalytic nucleophile. Unexpectedly, a number of enzymes in
the alignment revealed a serine in this position, namely the esterases and C-C bond
hydrolases, and this results in a dilemma in terms of enzyme nomenclature: while
these serine-nucleophile enzymes are functionally related to esterases, they are
included in the epoxide hydrolase/dehalogenase-like a/f hydrolase fold enzymes on
the basis of their structure, and it will be difficult to establish a widely accepted
nomenclature system as is now available for CYP (Nelson et al. 1996), UGT
(Mackenzie et al. 1997) and GST (Hayes and Pulford 1995) enzymes. So far, it has
been proposed to name mEH HYL1, mammalian sEH HYL2 and plant sEH HYL3
(Beetham et al. 1995), yet this attempt must be regarded as preliminary since the other
enzymes related to EH should be incorporated into this nomenclature system.

MECHANISM

The mechanism of enzymic epoxide hydrolysis has been subject of intense investiga-
tion since the 1970s (DuBois et al. 1978), and its understanding offers a clue to the
incredible yet hidden efficacy of EHs. It was a kind of mystery how a single enzyme,
the mEH, could—on the one hand—have an enormously broad substrate specificity
while—on the other—displaying an apparently high affinity to different substrates,
sufficient to detoxify these at low concentrations.

The first indication of an unusual mode of action was provided by the notion that a
single round of substrate turnover in the presence of heavy water led to the incorpora-
tion of 'O into the enzyme rather than into the reaction product (Lacourciere and
Armstrong 1993), an observation incompatible with the previously favoured direct
hydrolysis of epoxides by EH (Armstrong 1987). The authors reasoned that the forma-
tion of an enzyme-substrate ester intermediate must have taken place, a deduction
that was further substantiated by the above-described sequence comparison (Arand
et al. 1994) between EH and other enzymes for which the formation of similar ester
intermediates in the course of their enzymic reaction had already been shown.
Biochemical (Pinot et al. 1995; Arand et al. 1996, 1999b; Rink et al. 1997, 2000;
Laughlin et al. 1998; Tzeng et al. 1998; Yamada et al. 2000) and structural (Argiriadi
etal. 1999; Nardini et al. 1999; Zou et al. 2000) analyses of EHs then led to a detailed
understanding of the process (Figure 12.5).

The key event in the initial substrate recognition of epoxides by EH seems to be the
trapping of the epoxide oxygen by two tyrosine residues via hydrogen bonding in the
active site of the enzyme. Also contributing to this initial, reversible binding may be
some hydrophobic interactions between the lipophilic side chain of the substrate and
the surface of the substrate access tunnel of the enzyme. Here, also, some constraints
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Figure 12.5 Catalytic mechanism of enzymic epoxide hydrolysis.

do apply. Due to the position of the active site residues at the end of its substrate
access tunnel (Zou et al. 2000), mEH may be unable to hydrolyse trans-substituted
epoxides, while the sEH, with its active site residues sitting on the side of a bent
narrow tunnel (Argiriadi et al. 1999), does interact with these trans-substituted epo-
xides but cannot breakdown particularly bulky substrates.

The first chemical reaction step is the crucial one for substrate inactivation: the
hydrogen bonding of the epoxide oxygen positions a ring carbon favourable for
nucleophilic attack by the catalytic nucleophile of the EH catalytic triad, an aspartic
acid residue. In a push—pull mechanism, this aspartic acid forms an ester bond with
the ring carbon under scission of the respective C—O bond in the epoxide ring.
Simultaneously, the oxygen is saturated by a proton from one of the two tyrosines. The
resulting enzyme-substrate ester intermediate is subsequently hydrolysed by the water-
activating charge relay system of the catalytic triad, composed of a histidine and an
acidic residue, an aspartic acid in the case of sEH and a glutamic acid in the case of
mEH.

An important observation was that the first step of this reaction, the ester formation,
proceeds by orders of magnitudes faster than the second, hydrolytic step (Tzeng et al.
1996). First, this explains a likely underestimation of the detoxication efficacy of EH as
illustrated in Figure 12.6, if the product formation is used as the measure for this.
Second, it explains the apparent contradiction between broad substrate specificity and
high substrate affinity. The relationship between the real affinity of the substrate to the
enzyme, characterised by the dissociation constant Kp, and the apparent affinity
measured as the Michaelis—Menten constant Ky is dependent on the rate constants of
the nucleophilic attack (k1) and the hydrolysis (k,) as follows:

ks
KM_KDX/(1+I<2 (12.1)
If, as in the present case, ki is orders of magnitudes higher than k;, this equation
essentially reduces to
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Figure 12.6 Detoxification kinetics of enzymic epoxide hydrolysis.

Displayed is the result of a computer simulation of styrene epoxide hydrolysis by human mEH.
The concentrations of epoxide (narrow line), diol (broken line) and ester intermediate (bold line)
are plotted over time. Under the chosen conditions (enzyme in excess over its substrate, as is
probably true for mEH in most real life settings), the decline of the substrate concentration (i.e. of
the toxic challenge) proceeds significantly faster than the increase in product formation, due to
the intermediate accumulation of the enzyme-substrate ester. Thus, considering rate of
detoxification by taking the initial rate of product formation as the measure results in a strong
underestimation of the efficacy of the enzyme. For further discussion see Oesch et al. (2000).

Kwm = Kp X k2 (12.2)
ki

which can be further transformed to

ﬂ = ﬁ (12.3)
Ko ki
Thus, the apparent high affinity of mEH for many substrates is actually based on a
comparatively low real affinity and reflects the great difference between kq and k.
From the above it is evident that the enzymic epoxide hydrolysis is not optimised for
product release. EH turnover rates are in the order of a few substrate molecules per
second at best (Thomas et al. 1990). In contrast, acetylcholine esterase, a structural
and functional relative (see above), achieves a turnover rate of 25,000 s~', despite the
fact that the second step for both enzymic reactions is chemically practically the same,
i.e. hydrolysis of the ester intermediate. We speculate that optimisation of the
hydrolytic step could not be more successful in the case of EHs, since the ester
intermediates of different substrates may have different spatial location in the active
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site. We suggest that the epoxide side chain will put some constraint on the position of
the attacked epoxide ring carbon which can most likely be compensated by an
inferred flexibility of the aspartic acid that acts as the nucleophile. Since ester
formation is the detoxification step, selection pressure is in favour to speed up this step
rather than the subsequent hydrolysis. Indeed, it was possible to increase k, of mEH
for a variety of different substrates by introducing a single-point mutation (Arand et al.
1999b), but the consequences for the turnover of other substrates have not been
thoroughly investigated.

Microsomal epoxide hydrolase
STRUCTURAL CHARACTERISTICS

Mammalian mEH has a molecular mass of 51 kDa, corresponding to 455 amino acid
residues (Porter et al. 1986). It is attached to the ER membrane by a single N-terminal
membrane anchor (Friedberg et al. 1994). This anchor is connected to the generic a/f
hydrolase fold by a stretch of about 100 amino acid residues that wraps around the
molecule in a single large meander (see Figure 12.3), thereby apparently clamping
together the a/f hydrolase fold and the lid on its top (Zou et al. 2000). This very
compact structure may be a reason for an observed comparatively high resistance of
mEH against thermal inactivation and proteolytic digestion. The quaternary structure
of mammalian mEH is presently unknown. It has been speculated that the enzyme
associates with the CYP and CYP reductase to a multienzyme complex, yet the few
experimental approaches to prove this have not been conclusive (Oesch and Daly
1972; Etter et al. 1991). Since EH substrates are, in general, highly lipophilic, it is
conceivable that the entry to the EH active site is directly connected to the lipid bilayer
of the membrane, so that lipophilic compounds that would travel along the lipid phase
could directly enter into it. A similar topology has just been reported for the
xenobiotic-metabolising CYP2C5 (Williams et al. 2000). Such a scenario, with the
two-dimensional membrane being the universal and efficient adaptor, would facilitate
the interaction between EH and any CYP, without the need of direct interaction
between the proteins.

After solubilisation from the membrane with detergents, EH is in the state of a
homo-oligomer of an apparent molecular weight of 700-800 kDa (Guengerich and
Davidson 1982). A soluble enzyme related to the mammalian mEH has been
identified in Aspergillus niger (Morisseau et al. 1999a). This enzyme has been cloned
(Arand et al. 1999a) and crystallised (Zou et al. 2000), and proved to be a homodimer
in solution and in crystal form. The interaction surface between the two subunits
involves the lid and the N-terminal meander and is apparently well conserved
between fungal and mammalian enzymes. Thus, mEH may also exist as a homodimer
in the membrane, possibly with its active site bent towards the lipid bilayer.

METABOLIC FUNCTION

Microsomal epoxide hydrolase is believed to be the major xenobiotic metabolising EH
(Armstrong 1987). It has an extremely broad range of substrates, examples of which
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are shown in Figure 12.7. In general, an mEH substrate should be an epoxide (so far,
no exceptions have been identified), should be hydrophobic in nature and should be
mono-,1,1-di- or 1,2-cis-disubstituted.

Bulky substrates, such as benzo[alpyrene-4,5-oxide are as well accepted as slim
compounds, e.g. octene-1,2-oxide. Since epoxides are potentially hazardous, not very
many therapeutically used drugs undergo this metabolic pathway and thus, implica-
tions of mEH in clinical drug metabolism are, from a quantitative standpoint, not so
numerous as those associated with CYP, glucunonide and sulphate conjugating
enzymes, yet toxicologically especially important. One example is the anticonvulsant
carbamazepine, a major metabolite of which is the 10,11-oxide (Eichelbaum
et al. 1979). This symmetric epoxide is not very reactive and did not act as a mutagen
in the Ames test (Glatt et al. 1983). Nevertheless, it has been suggested to be the cause
of the adverse drug effects of carbamazepine after in vivo inhibition of mEH by co-
medication with valpromide (see below) (Meijer et al. 1984).

Some industrial compounds are metabolically activated to epoxides. A prominent
case is styrene, of which more than 90% of a given dose is converted to the 7,8-
epoxide in the human body (Jenkins Sumner and Fennell 1994). It is at the same time
an impressive example of the detoxification efficacy of mEH. Despite the fact that
styrene oxide is a proven carcinogen (Ponomarkov et al. 1984), styrene itself is orders
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Figure 12.7 Typical substrates for mammalian mEH.
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of magnitudes less harmful since the metabolically formed styrene-7,8-oxide is almost
immediately hydrolysed by mEH, probably because the liver is the major site for both,
formation as well as breakdown of the epoxide. Thus, it has been observed in styrene-
exposed workers that the biomarkers of exposure to the reactive metabolite styrene
oxide hardly correlate with the level of styrene exposure, but show significant
correlation with exposure to exogenous styrene oxide that was present in roughly
1,000-fold lower concentration in the ambient air as compared to the styrene
(Rappaport et al. 1996). This is in line with the observation that recombinant cell lines
that express human mEH at a level comparable to that observed in human liver can
tolerate up to a definable threshold a high concentration of styrene, without showing
detectable signs of genotoxic damage (Herrero et al. 1997).

A number of possible endogenous functions have been attributed to mEH, the
significance of which is not perfectly clear:

(1) The formation of 16a,17a-epoxides first from oestradiol (Breuer and Knuppen

1961) and later from androsterone was reported (Disse et al. 1980), and it was

found thereafter that these were good substrates for mEH (Vogel-Bindel et al.

1982). Furthermore, the adrenal gland was reported to contain exceptionally high

amounts of mEH (Papadopoulos et al. 1994). Very recently, high expression of

mEH was observed in the corpus luteum, and a decrease of oestradiol production
was observed on treatment with the mEH inhibitor 1,1,1-trichloro-2,3-propene
oxide under conditions where the aromatase activity remained unaffected (Hattori
et al. 2000). Finally, mEH has been identified as one component of a so-called

anti-oestrogen binding site (AEBS) (Mesange et al. 1998).

Similarly, mEH has been proposed to be a component of the vitamin K epoxide

reductase (VKOR) (Guenthner et al. 1998).

(3) A highly controversial issue that splits the EH community in believers and
disbelievers is its possible role in the membrane transport of bile acids (Alves et al.
1993), which is discussed in the context of subcellular localisation of the enzyme
in the next section.

[S)

SUBCELLULAR LOCALISATION

The major location of mEH within the cell is the ER membrane. The above-mentioned
bile acid carrier function implies a location of mEH on the plasma membrane that has,
indeed, been claimed in a few reports (Alves et al. 1993; von Dippe et al. 1993, 1996;
Zhu et al. 1999). However, many attempts by other researchers, including ourselves,
to reproduce these findings have reportedly failed (Waechter et al. 1982; Craft et al.
1990; Honscha et al. 1995; Friedberg et al. 1996; Holler et al. 1997), and we,
therefore, find the present proof for the mEH being a genuine plasma membrane
constituent not unambiguously conclusive. The topology of mEH within the ER
membrane has been a subject of intense research for some time (Porter et al. 1986;
Craft et al. 1990). It finally turned out that mEH is attached to the membrane with a
single N-terminal anchor (Friedberg et al. 1994) and that at least the mammalian
enzyme is oriented towards the cell cytosol (Holler et al. 1997), as are the CYP
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enzymes, and not towards the ER [umen, as are the UGTs (glucuronosyl transferases;
Figure 12.8).

TISSUE DISTRIBUTION

Early studies have identified EH activity in almost every tissue that was analysed,
which led to the statement that mEH is apparently ubiquitously expressed in rat organs
(Oesch et al. 1977a). These findings, referring to the distribution of enzyme activity
among organs, were later refined to tissue compartments and cell types, using a variety
of techniques such as immunohistochemistry or cell sorting (Bentley et al. 1979; Wolf
et al. 1984; Guenthner and Karnezis 1986; Steinberg et al. 1987; Bogdanffy 1990;
Farin and Omiecinski 1993; Backman et al. 1999; Hattori et al. 2000; Kessler et al.
2000). Indeed, a large variety of cell types express mEH to appreciable levels, but in
many others mEH expression is below the level of detection. This should be borne in
mind when talking about the apparently ubiquitous mEH expression. Expression of
mEH is usually highest in the liver, followed by testes, adrenal gland, lung, kidney and
intestine (in the mouse, interestingly, higher in testis than in the liver) (Thomas et al.
1990; Hammock et al. 1997). However, this order may vary from species to species.
In humans, for instance, a particularly high mEH content has been reported for the
adrenal gland (Papadopoulos et al. 1994). In rats, three different transcripts for mEH
have been described, that are divergent in their 5-non-coding region but code for
identical polypeptides (Honscha et al. 1991). It was concluded, that at least three
alternative non-coding first exons exist in the rat mEH gene which would allow for
three independant regions of transcriptional control. Five such non-coding first exons
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Figure 12.8 Membrane topology of mEH in comparison to other ER-resident xenobiotic-
metabolising enzymes.

Part of the metabolism of benzo[alpyrene is incorporated into the figure as an example of the
metabolic cooperation of the different enzymes.
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have recently been described for the human mEH gene and their tissue-specific
expression was reported (Gaedigk et al. 1997). Thus, one reason for the wide
distribution of mEH in mammalian tissues is obviously due to the existence of multiple
promoters in the mEH gene.

SPECIES DIFFERENCES

Marked species differences in the expression level of mEH between mammals exist.
Under certain circumstances, these may be crucial for differential toxic effects in
different species (Oesch et al. 1977b). Of the classic laboratory animals, the mouse is
low in mEH, with about 0.1-0.2% of the microsomal protein being mEH. In contrast,
human liver mEH constitutes well above 1% of the microsomal protein, while in the
rat it is between 0.5% and 1%. This is possibly one reason why high doses of styrene,
above a threshold of about 300 ppm in the ambient air, led to a strong increase in
styrene oxide blood levels in mice while this was not observed with rats under similar
conditions (Kessler et al. 1992).

INDUCIBILITY BY FOREIGN COMPOUNDS

Microsomal EH is—despite its already high concentration in liver—inducible by a
large variety of different compounds in laboratory animals. In view of the above-
described enzymic mechanism this is beneficial even if the enzyme is already in
apparent excess over its substrate, because the steady-state level of its substrates is, in
any case, inversely correlated with the mEH concentration. 2-Acetylaminofluorene
(Astrom and DePierre 1981) and trans-stilbene oxide (Schmassmann and Oesch 1978)
are among the most potent inducers, leading to up to a 7-fold increase of enzyme
activity in rat liver. Other inducers include phenobarbital (Oesch et al. 1971a),
imidazole derivatives (Kim et al. 1995), lead acetate (Sheehan et al. 1991) and pero-
xisome proliferators (Oesch and Arand 1994). The existence of several independent
promoters in the mEH gene (see above) that are differentially regulated complicates
the analysis of transcriptional regulation since the different inducers will most likely
act on different transcriptional units of the gene.

INHIBITORS

The first mEH inhibitors that were identified (Oesch et al. 1971b) can, on the basis of
current understanding, all be regarded as substrates with a low k, i.e. a low Ky and a
low Viax (see above). Of these, 1,1,1-trichloro-2,3-propene oxide (TCPO) (Figure
12.9) has been the most widely used. Later, valpromide was identified as the first non-
substrate inhibitor of mEH, on the basis of its interference with the carbamazepine
metabolism (see above) (Meijer et al. 1984). The amide group seems to mimic the
epoxide ring, most likely in that the amide carbonyl hydrogen bonds to the tyrosines
while the amino group hydrogen bonds to the nucleophilic aspartate. The hydropho-
bic side chain of valpromide is obviously well suited to fit the substrate access tunnel.
Obviously, valpromide has a much lower Kp with mEH than most of the substrates,
thus making up for the lack of covalent binding to the enzyme. The advantage of using
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Figure 12.9 Prototypes of mEH inhibitors.

a non-substrate inhibitor is obvious: as long as the inhibitor is itself a substrate for the
enzyme it can be consumed over time and thus lose its inhibitory potency. Indeed,
TCPO is no safe inhibitor if used over a longer period of time in the presence of
substantial amounts of mEH.

GENETIC POLYMORPHISMS

Two genetic polymorphisms affecting the primary sequence of the mEH protein in
humans have been described (Hassett et al. 1994), and quite a number of epidemio-
logical studies has monitored the prevalence of the different alleles in different
subgroups of the population, especially with respect to disease susceptibility
(McGlynn et al. 1995; Lancaster et al. 1996; Benhamou et al. 1998). The two
polymorphisms represent single amino acid exchanges, namely Tyri3His or
ArgisgHis, none of which apparently affects the enzyme kinetics or substrate selectiv-
ity. This is not surprising, since both polymorphic sites lie on the surface of the protein
(see Figure 12.3), far away from the catalytic centre. However, both polymorphisms
appear to moderately affect the protein stability, resulting—at best—in a 2-fold
difference in the enzyme tissue concentration. This is far from the observed maximum
interindividual difference in enzymic activity reported in human liver (Mertes et al.
1985; Hassett et al. 1997), and thus is unlikely to be a major contributor to this
variability. Likewise, polymorphisms (single nucleotide polymorphisms; SNPs) in the
promoter region of the human mEH gene have been identified (Raaka et al. 1998) that
may have a minor influence (£30%) on the transcription efficacy of the gene, which
is, at best, a minor contribution to overall variability. However, since only one of the at
least five promoter regions of the human gene (see above) has been addressed in this
study, there is a good chance that more relevant polymorphisms in the regulatory
regions of the gene await detection.

Soluble epoxide hydrolase
STRUCTURAL CHARACTERISTICS

Mammalian sEH is a homodimer in solution, with a subunit molecular mass of
62 kDa, corresponding to 554 amino acid residues (Beetham et al. 1993; Grant et al.
1993; Knehr et al. 1993). The generic EH a/f hydrolase fold is built by the C-terminal
320 amino acid residues while the N-terminal 220 amino acid residues comprise a
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second domain, harbouring a potential second catalytic site, the function of which is
as yet unknown. From X-ray analysis of mouse sEH (Argiriadi et al. 1999), one
important function deduced for the N-terminal domain was to stabilise the overall
structure, since the N-terminal domain of subunit A largely interacts with the C-
terminal domain of subunit B and vice versa.

METABOLIC FUNCTION

The soluble epoxide hydrolase complements the mEH in the metabolism of xenobiotic
epoxides in that it is capable of hydrolysing 1,2-trans-substituted oxiranes (Ota and
Hammock 1980). Typical examples of this group of compounds are trans-stilbene
oxide and trans-ethylstyrene oxide. Treatment with the latter compound leads to sister
chromatide exchange in human lymphocytes (Kramer et al. 1991). In these cells the
individual susceptibility to this is negatively correlated with the expression level of
sEH. As a general rule, bulky substrates are not accepted, but a limited number of PAH
epoxides are converted to diols by sEH (Figure 12.10) (Oesch and Golan 1980).
Nevertheless, the clear domain of sEH are epoxides derived from fatty acids. Substrates
within this group range from arachidonic acid epoxides (Zeldin et al. 1993) over
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Figure 12.10 Typical substrates for mammalian sEH.



474 ENZYME SYSTEMS THAT METABOLISE DRUGS AND OTHER XENOBIOTICS

leukotoxin (Moghaddam et al. 1997) to diepoxides (Nourooz-Zadeh et al. 1992). The
observation that some of these substrates and/or their corresponding diols apparently
have (patho)physiological functions points towards a major endogenous role for sEH.
In line with this, the sEH knockout mouse has a reduced blood pressure, indicating a
modulating function of sEH in blood pressure regulation (Sinal et al. 2000).

A particularly interesting aspect of sEH is the potential second catalytic centre.
Sequence similarity analysis has grouped the N-terminal domain into a large family of
hydrolytic enzymes, including dehalogenases (different from the haloalkane dehalo-
genase) and phosphatases (Koonin and Tatusov 1994). The fact that a putative sub-
strate binding cavity as well as the catalytic residues are conserved in the N-terminal
sEH domain suggests that it probably has a second catalytic activity.

SUBCELLULAR LOCALISATION

As indicated by its former name cytosolic EH, sEH has first been identified in the cell
cytosol (Gill et al. 1974). Later, a similar enzyme was found in the matrix of
peroxisomes (Waechter et al. 1983), organelles that are separated from the cytosol by
a single membrane and harbour a substantial number of different metabolic pathways,
such as formation and degradation of long-chain and branched fatty acids or the
degradation of urate (Lazarow and Fujiki 1985). Several of these pathways lead to
the stoichiometric formation of hydrogen peroxide as a by-product, hence the name
peroxisome. The presence of sEH in peroxisomes may protect the cell from secondary
oxidation products generated by hydrogen peroxide and by lipid peroxidation initiated
by it, but the true function is as yet unclear. Comparison of the biochemical character-
istics of cytosolic and peroxisomal sEH did not reveal any significant difference
between the two (Meijer and DePierre 1988; Chang and Gill 1991). Sequence analysis
of the C-terminal of sEH appeared to explain the situation in that an imperfect carboxy
terminal peroxisome targeting signal (PTS 1) was identified in the rat sEH sequence
(Arand et al. 1991), and it was concluded that the lack of perfection resulted in a
reduced translocation efficacy into the peroxisomal matrix, thus leading to an unusual
bi-compartmental localisation of the same enzyme. This interpretation has recently
been challenged by the observation that the native sEH does not translocate into
peroxisomes after recombinant expression in mammalian cells (Mullen et al. 1999)
while a mutant with an lless4Leu substitution, that restores the perfect PTS |, is
exclusively localised in peroxisomes under otherwise identical conditions.

TISSUE DISTRIBUTION

The major location of sEH in most species is the liver, followed by kidney, heart, brain,
lung, testes, spleen and lymphocytes (Gill and Hammock 1980; Seidegard et al. 1984;
Schladt et al. 1986). At least in the organs with higher expression levels, this seems to
correlate with the expression of peroxisome proliferator-activated receptor a (PPARa)
(Issemann and Green 1990), the transcription factor important for the regulation of
sEH expression (see below).
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SPECIES DIFFERENCES

Species differences in sEH are much more pronounced than they are for mEH
(Hammock et al. 1997). A 100-fold difference exists between the expression level of
sEH in rat and mouse liver. Rat is particularly low in sEH. The sEH expression in
human liver is intermediate, about 10-fold below the mouse expression level and
10-fold above the rat expression level. This suggests a significant difference between
the above species with respect to the adverse effects of trans-substituted epoxides.

INDUCIBILITY BY FOREIGN COMPOUNDS

In contrast to mEH, sEH is not inducible by administration of classical inducers of
xenobiotic metabolising enzymes. The only group of compounds known so far that
enhances sEH expression are the peroxisome proliferators (Waechter et al. 1984). It
was shown that in rodents, sEH expression is co-ordinately regulated with that of the
enzymes involved in peroxisomal (-oxidation of fatty acids (Schladt et al. 1987),
which are transcriptionally regulated by the PPARa (Issemann and Green 1990). A
functionally active PPARa-responsive element that mediates this effect has, indeed,
been identified in the rat sEH gene (Hinz W, Oesch F, and Arand M, unpublished
observations).

INHIBITORS

The first established inhibitors of sEH were chalkone oxide derivatives (Mullin and
Hammock 1982), the 4-fluorochalkone oxide possibly being the most important
representative (Figure 12.11). Like the epoxide-derived inhibitors for mEH, these
compounds are essentially low k, substrates for sEH (Morisseau et al. 1998). Very
recently, alkyl urea derivatives have evolved as a novel, especially potent group of
non-substrate competitive inhibitors of SEH (Morisseau et al. 1999b). X-ray analysis of
the enzyme-inhibitor complex indicates a molecular interaction that resembles the
one speculated about above for the mEH valpromide interaction (Argiriadi et al.
2000). The urea carbonyl seems to hydrogen bond to the active site tyrosines, while a
nitrogen-bound proton hydrogen bonds to the catalytic nucleophile. These class of
inhibitors possess a surprisingly low Ki—in view of the fact that they do not covalently
bind to the enzyme—that is, in the nanomolar range. Thus, these compounds
represent promising candidates for a possible therapeutic interaction with sEH, e.g. in
prevention of multiple organ failure (see above).

? [ j\ jjj\
F H H
4-Fluorochalcone oxide N-Cyclohexy!-N'-(3-phenyipropyljurea

Figure 12.11 Prototypes of sEH inhibitors.



476 ENZYME SYSTEMS THAT METABOLISE DRUGS AND OTHER XENOBIOTICS

GENETIC POLYMORPHISMS

Very recently, two polymorphisms affecting the protein sequence have been described
for sEH (Sandberg et al. 2000). Of these, an Argys;GIn exchange that results in a
surface modification of the a/f hydrolase fold domain at the dimerisation interphase
seemed to have little effect on enzymic activity and protein stability, while an insertion
of an additional arginine in position 402/403 seemed to decrease both, specific
enzymic activity as well as protein stability. The latter change that affects a loop
structure in the lid domain was proposed by the authors to slightly influence the
geometry of the active centre of the enzyme. The exact prevalence of this polymorph-
ism as well as its possible consequences for human health remain to be established.
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