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Introduction

In 1829 Liebig isolated a compound from horse urine which he called hippuric acid
(Greek: acid from horse urine) and was able to show that the material contained both
a benzoyl group and nitrogen. Keller isolated the same compound from his own urine,
in 1842, following self-administration of benzoic acid and the structure of hippuric
acid was determined by Dessaignes, three years later, when he found both benzoic
acid and glycine on treatment of the material with inorganic acid (Conti and Bickel
1977). Thus conjugation of benzoic acid with glycine to yield hippuric acid or
benzoylglycine (Figure 14.1) is generally accepted to be the first xenobiotic transfor-
mation reaction to be discovered (Smith and Williams 1970; Conti and Bickel 1977).
The other major metabolic transformation of xenobiotic carboxylic acids, namely
conjugation with glucuronic acid, was also discovered in the nineteenth century
(Williams 1959; Conti and Bickel 1977).

The significance of xenobiotic metabolism and particularly that of the xenobiotic
carboxylic acids to the initial development of biochemistry cannot be overempha-
sised. For example, the application of higher homologues of both benzoic acid and
the phenylacetic acids ultimately resulted in the elucidation of the B-oxidation
pathway of fatty acid metabolism (Dakin 1922), and glycine was shown to be a
constituent of hippuric acid before it was found in glycocholic acid, a bile acid (Young
1977).

COOH CONHCH,COOH

) —

3

Benzoic acid Hippuric acid (benzoylglycine)

Figure 14.1 Conjugation of benzoic acid to hippuric acid: the first reaction of drug metabolism.
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Since these initial observations, conjugation of xenobiotic carboxylic acids with
endogenous amino acids has been shown to be an important pathway in the bio-
transformation of a number of compounds in a variety of species. The reaction
involves the formation of an amide or peptide bond between the carboxyl group of the
xenobiotic acid and the amino group of the endogenous compound. The conjugation
reaction is generally accepted to be a two-step process involving initial activation of
the carboxyl group to yield a reactive acyl-CoA thioester (Figure 14.2, equations 1 and
2), followed by acyl transfer to the amino group of an amino acid (Figure 14.2,
equation 3) (Killenberg and Webster 1980; Caldwell 1982). Thus selectivity, or
specificity, may be exerted at either the activation and/or acyl-transfer steps.

As pointed out above, the two major metabolic options of carboxylic acids have
been known for well over a century and it was only relatively recently that a number
of alternative metabolic pathways have been elucidated and their potential toxicologi-
cal significance appreciated (Figure 14.3) (Hutson 1982; Caldwell 1984, 1985; Fears
1985). Conjugation with glucuronic acid is discussed elsewhere in this book (Chapters
5 and 8) and will not be examined in any detail here. The formation of acyl-coenzyme
A (acyl-CoA\) thioester intermediates (Figure 14.2, equations 1 and 2) is of significance
in both the metabolism of xenobiotic acids and in intermediary biochemistry, and the
alternative pathways associated with carboxylic acids are those of the acyl-CoA
thioester intermediates. It is therefore appropriate to briefly provide an overview of the
fate of these reactive intermediates.

1. Ar-COOH + ATP — Ar-CO~AMP -+ PPi + H,0
2. Ar-CO~AMP + CoA-SH — Ar-CO~S-CoA + AMP
3. Ar-CO~8-CoA + NH,CH,COOH — Ar-CO-NHCH,COOH + CoA-SH

Figure 14.2. Reaction sequence of amino acid conjugation.
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Figure 14.3 Biotransformation of xeno/endobiotic carboxylic acids.
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Reactions of Acyl-coenzyme A thioesters

With respect to the topic of this chapter, the transfer of the acyl moiety to the amino
group of an amino acid is obviously the most significant of the reactions outlined in
Figure 14.3. However, a number of alternative pathways are possible and what may
appear as relatively minor changes in the structure of the xenobiotic acid may result in
significant alterations in the product ultimately formed.

Carnitine, an essential cofactor required for the transport of long-chain fatty acids
into mitochondria, has been shown to yield conjugates with xenobiotic carboxylic
acids following acyl transfer onto the secondary alcohol group. Thus cyclopropane
carboxylic acid (Quistad et al. 1978a—c, 1986), pivalic acid (Vickers et al. 1985;
Totsuka et al. 1992; Mizojiri et al. 1995) and valproic acid (Millington et al. 1985) are
all excreted as carnitine conjugates following administration either as such, or as
metabolic precursors, to both animals and man. In the case of cyclopropane carbo-
xylic acid, the corresponding glycine conjugate is also excreted (Quistad et al. 1978a)
and Quistad et al. (1986) were able to detect very small (ca 0.04% of the dose)
quantities of benzoylcarnitine following administration of benzoic acid to the rat.
Kanazu and Yamaguchi (1997) have carried out a comparative in vitro study to
examine the relative extent of carnitine and glycine conjugation using rat hepatocytes
and kidney slices. Cyclopropane and cyclobutane carboxylic acids were found to be
the best substrates for carnitine conjugation in both tissues, both compounds also
yielding glycine conjugates.

Acyl-transfer to oxygen may also result in the formation of sterol esters. For example,
the pyrethroid insecticide fluvalinate undergoes ester hydrolysis to yield an anilino
acid derivative which undergoes conjugation with bile acids in rats, chickens and
cows (Quistad et al. 1982). Similarly, the hypolipidaemic drug, CCD (1-(4-carboxy-
phenoxy)-10-(4-chlorophenoxy)decane) forms a cholesteryl ester conjugate in the rat
(Fears et al. 1982).

Acyl-transfer to carbon results in the addition of either single or multiple acetate
units and elongation of the carbon chain (Caldwell and Marsh 1983). For example,
5-(4-chlorobut-1-yl)picolinic acid undergoes addition of a two-carbon unit to yield
products corresponding to the 3-ketoacid, a,-unsaturated acid and the corresponding
saturated analogue (Miyazaki et al. 1976). These metabolites were found in the urine
of both animals and man following drug administration. Similarly, 3-hydroxy-3-
phenylpropionic acid has been identified in horse urine following administration of
benzoic acid (Marsh et al. 1982).

The active acyl group may become involved with the intermediates of lipid
biosynthesis (Caldwell 1984) and undergo acyl transfer to oxygen to yield hybrid
triacylglycerols (Hutson 1982; Fears 1985) or alternatively may be incorporated into
triglycerides following chain elongation (Hutson 1982; Caldwell 1985). The pharma-
cological and toxicological significance of these alternative pathways, the majority of
which are quantitatively minor, have been discussed elsewhere (Fears 1985; Hutson
etal. 1985).

In the case of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs
(NSAIDs), e.g. ibuprofen and fenoprofen, the formation of the acyl-CoA thioesters is of
pharmacological significance. These agents are used as racemic mixtures even though
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their main pharmacological activity, inhibition of cyclooxygenase resides in the
enantiomers of the S-configuration. However, the R-enantiomers of a number of these
agents form the corresponding CoA thioesters which subsequently undergo inversion
of chirality of the propionic acid moiety, followed by hydrolysis to yield the active
enantiomer (Hutt and Caldwell 1983; Caldwell et al. 1988). Recent evidence,
associated with the formation of amino acid conjugates, has indicated that the
reaction, in some species, may be highly stereoselective rather than stereospecific (see
below).

Amino acids and conjugation

As pointed out above, conjugation of benzoic acid with glycine is generally accepted
to be the first reaction of drug metabolism to be discovered but it was not until the
1980s that Marsh et al. (1981) demonstrated the formation of hippuric acid following
the administration of benzoic acid to the horse. Since the initial observation, a number
of alternative amino acids have been shown to be involved and the history of the
amino acid conjugations is summarised in Table 14.1.

The amino acid utilised for conjugation is highly dependent on both the structure of
the xenobiotic carboxylic acid and the animal species under investigation. The most
frequently observed amino acid conjugates are those with glycine, which is utilised by
the majority of animal species for the conjugation of a wide variety of carboxylic acids
including aliphatic, aromatic, heteroaromatic and phenylacetic acid derivatives.

The first example of an alternative to glycine conjugation was reported by Jaffe, in
1877, who found that benzoic acid underwent conjugation with ornithine in the hen.
Ornithine conjugation, unlike the other amino acid conjugations, involves the acyla-
tion of both amino groups, thus in the case of benzoic acid the product is N?, N°-
dibenzoylornithine or ornithuric acid. Conjugation with ornithine has been found to
occur in other avian and in some reptile species (Smith 1958), and appears to be
associated with uricotelic species (Killenberg and Webster 1980), species which
excrete uric acid as the major nitrogenous waste product of amino acid metabolism, a

Table 14.1 Discovery of the amino acid conjugations

Amino acid Carboxylic acid Species References
Glycine Benzoic acid Man Keller (1842)
Ornithine Benzoic acid Hen Jaffe (1877)
Glutamine Phenylacetic acid Man Thierfelder and Sherwin (1914)
Serine Xanthurenic acid Rat Rothstein and Greenberg (1957)
Glutamic acid  4-Nitrobenzoic acid Spider Smith (1962)
Arginine 4-Nitrobenzoic acid Spider Smith (1962)
Histidine Benzoic acid Peripatus Jordan et al. (1970)
Taurine Phenylacetic acid Pigeon James et al. (1971)
Alanine 4,4'-Dichlorodiphenylacetic  Mouse Wallcave et al. (1974)
acid
Aspartic acid  2,4’-Dichlorodiphenylacetic  Hamster Reif and Sinsheimer (1975)
acid
2,4'-Dichlorodiphenylacetic  Rat Reif and Sinsheimer (1975)

acid
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process characteristic of terrestrial species which develop within a shell where the
nitrogenous waste products are stored in an insoluble form. Ornithine conjugation is
not a general reaction of all avian species. For example, benzoic acid yields ornithine
conjugates in domestic fowl (Galliformes), ducks and geese (Anseriformes), and
hippuric acid in pigeons and doves (Columbiformes), whereas parrots yield neither
amino acid conjugate (Baldwin et al. 1960). The formation of an N-acetylornithine
conjugate of 3-phenoxybenzoic acid has been reported in the chicken (Huckle et al.
1982).

L-Glutamine conjugation, first reported to be the route of biotransformation of
phenylacetic acid in humans (Thierfelder and Sherwin 1914), appears to be restricted
in the main to arylacetic acids, e.g. phenylacetic acid and related compounds in
mammals. The conjugation of phenylacetic acid and related compounds (e.g.
4-chlorophenylacetic acid and indol-3-ylacetic acid) with L-glutamine was believed
to be confined to the anthropoid apes, Old and New World monkeys and humans
(James et al. 1972a,b; Bridges et al. 1974). However, both phenylacetic acid and
4-chlorophenylacetic acid yield small quantities of the corresponding glutamine
conjugates in the ferret (Hirom et al. 1977; Idle et al. 1978) and 2-naphthylacetic acid
undergoes extensive conjugation with L-glutamine in the ferret, rabbit and rat
(Emudianughe et al. 1977, 1978). Formation of L-glutamine conjugates of benzoic
acid derivatives in the house fly and arachnids has also been reported (Smith 1962;
Hitchcock and Smith 1964; Esaac and Casida 1968). With respect to drug metabolites,
diphenylmethoxyacetic acid, a metabolite of diphenhydramine, yields an L-glutamine
conjugate following drug administration to the Rhesus monkey (Drach and Howell
1968; Drach et al. 1970). In addition, a-fluorovalproic acid and the corresponding
fluorinated 2-propyl-4-pentenoic acid oxidation product undergo glutamine conjuga-
tion in rats and mice (Tang and Abbott 1997; Tang et al. 1997).

Taurine, T-aminoethane sulphonic acid, while not strictly an amino acid, yields
conjugates with xenobiotic carboxylic acids and taurine conjugation is generally
classified as an amino acid conjugation. The reaction appears to be primarily
associated with carnivorous species, e.g. dog (Jordan and Rance 1974; Sakai et al.
1984) and ferret (Idle et al. 1978), and some aquatic species (James and Bend 1976;
James 1982) but is known to occur also in the rat (Emudianughe et al. 1978; Egger
et al. 1982; Peffer et al. 1987), horse (Marsh et al. 1981) and to a minor extent in
humans (Shirley et al. 1994). In terms of xenobiotic acids, taurine conjugation was
thought to be restricted to aryl- and aryloxyacetic acids but some aromatic, e.g.
3-phenoxybenzoic acid (Hutson and Casida 1978; Huckle et al. 1981c) and aliphatic
acids, e.g. trimoprostil (Kolis et al. 1986), have been shown to undergo this conjuga-
tion.

The most commonly encountered alternative amino acids to glycine are L-gluta-
mine, L-ornithine and taurine but there are, however, several examples of other amino
acids involved in conjugation reactions but these appear to be restricted both in terms
of their species occurrence and the substrate utilised (Table 14.2) (Caldwell et al.
1980; Quistad 1986). In addition, a small number of dipeptide conjugates have also
been reported and these are summarised in Table 14.2.

Polyglutamyl conjugates of methotrexate, a folic acid antagonist, have been
reported in several species including humans (Baugh et al. 1973; Shin et al. 1974;
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Table 14.2 Atypical amino acids and dipeptides used in conjugation reactions

Amino acid or  Carboxylic acid Species References
dipeptide
Alanine 4,4'-Dichlorodiphenylacetic  Mouse Wallcave et al. (1974)
acid
Piperonylic acid Hamster Gingell (1976)
Housefly Esaac and Casida (1968)
Asparticacid ~ 2,4-Dichlorodiphenylacetic  Rat Reif and Sinsheimer (1975)
acid
Serine 4,8'-Dihydroxyquinaldic Rat Rothstein and Greenberg
acid (1957)
2,4'-Dichlorodiphenylacetic  Rat Feil etal. (1973)
acid Reif and Sinsheimer (1975)
4,4'-Dichlorodiphenylacetic Mouse Gingell (1976)
acid
Piperonylic acid Housefly Esaac and Casida (1968, 1969)
Histidine Benzoic acid Peripatus Jordan et al. (1970)
Glutamic acid  Benzoic acid Indian fruit bat Idle etal. (1975)
African bat Collins etal. (1977)
trans 3-(2,2-Dichlorovinyl)-  Cow Gaughan etal. (1977)
2,2-dimethylcyclopropane
carboxylic acid
Piperonylic acid Housefly Esaac and Casida (1969)
3-Phenoxybenzoic acid Cow Gaughan etal. (1977)
Arginine Benzoic acid Scorpion Hitchcock and Smith (1966)
p-Aminobenzoic acid House spider ~ Smith (1962)
Millipede Hitchcock and Smith (1964)
Arachnids Hitchcock and Smith (1964)
Glycyltaurine  Quinaldic acid Cat Kaihara and Price (1961)
Morris and Price (1963)
Glycylglycine  Quinaldic acid Cat Kaihara and Price (1965)
Aspartic acid ~ 4,4’-Dichlorodiphenylacetic  Rat Pinto et al. (1965)
and serine? acid
Glycylvaline  3-Phenoxybenzoic acid Mallard duck  Huckle et al. (1981a)

2Sequence unknown

Israili et al. 1977). The significance of this biotransformation is unclear but these
conjugates may contribute to the biological activity of the drug (Montgomery et al.
1979).

Structure—metabolism relationships

The biotransformation of xenobiotic carboxylic acids is dependent on the size and the
nature of the substituents surrounding the carboxyl group. The presence and nature of
other functional groups within the molecule and their possible biotransformation will
also influence the ultimate fate of the acid. To date there have been few systematic
attempts to examine the structure—metabolism relationships of amino acid conjuga-
tion. The majority of the literature resulting from an examination of the metabolic fate
of a particular xenobiotic carboxylic acid in a range of animal species, an approach
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which is handicapped by both species variation in the amino acid used for the
conjugation and alternative, possibly competing, metabolic pathways.

Structure—metabolism relationships for amino acid conjugation need to be carried
out with some care as selectivity, or specificity, may be exerted at either of the two
steps of the reaction, i.e. formation of the acyl-CoA thioester or in the acyl-transfer. In
in vivo studies of the two major metabolic options available to carboxylic acids, i.e.
conjugation with either an amino acid or glucuronic acid, the ultimate fate of the
compound will depend on a number of factors including the administered dose,
availability of the conjugating agent, diet and species under examination (Hutt and
Caldwell 1990).

Aliphatic and alicyclic carboxylic acids

There are few examples of exogenous aliphatic carboxylic acids, or 3-aryl substituted
acids containing three carbon atoms in a straight chain, undergoing amino acid
conjugation, presumably due to their facile f-oxidation. However, in addition to the
metabolism of xenobiotic carboxylic acids, amino acid conjugation is an important
metabolic pathway for the elimination of endobiotic acids that may accumulate in a
number of metabolic diseases which result in acidaemia, e.g. isovaleric acid under-
goes conjugation with glycine (Tanaka and lIsselbacher 1967). In cases of medium-
chain acyl-CoA dehydrogenase deficiency, 3-phenylpropionic acid, a compound that
normally undergoes -oxidation to benzoic acid followed by excretion as hippuric
acid, is excreted as 3-phenylpropionylglycine (Bennett et al. 1992). In such cases,
unusual amino acids, not normally associated with amino acid conjugation, may be
utilised, e.g. sarcosine (Lehnert 1983). Several investigations using purified enzyme
systems for the formation of both CoA thioesters and N-acyltransferase activity have
indicated that short-chain aliphatic acids may form amino acid conjugates in vitro
(Mahler et al. 1953; Schachter and Taggart 1954; Nandi et al. 1979).

Several 3-arylpropionic acid derivatives have been reported to yield amino acid
conjugates, the carboxylic acid metabolites of the anti-histamines brompheniramine
and chlorpheniramine have been found to yield amino acid conjugates in the urine of
both humans and dogs (Bruce et al. 1968). Glycine conjugates have similarly been
reported for the unsaturated acid, cinnamic acid and the related compounds
f-methylcinnamic and 3,4-dimethoxycinnamic acids (Williams 1963; Solheim and
Scheline 1976; Hoskins 1984).

The metabolism of the anticonvulsant agent valproic acid involves cytochrome
P450-mediated formation of 2-propyl-4-pentenoic acid which is implicated in the
hepatotoxicity of the drug via -oxidation to yield a reactive metabolite. Valproic acid
also undergoes glycine conjugation in rats but to a minor extent, less than 1% of the
dose. The a-fluorinated derivatives of both valproic acid and 2-propyl-4-pentenoic
acid have been synthesised in order to prevent f-oxidation and hence hepatotoxicity.
As a result of the structural modification, neither compound undergoes f-oxidation
and the metabolic pathway switches to amino acid conjugation. Both yield
L-glutamine conjugates in the rat and mouse (Tang and Abbott 1997; Tang et al. 1997).

The formation of taurine conjugates of relatively long chain aliphatic acids has been
reported. For example the metabolism of prostaglandin Ez(PGE,) in rat hepatocytes
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yields taurine conjugates of the major metabolites arising from S-oxidation dinor and
tetranor prostaglandin E; (PGEq) and dinor-PGE; (Hankin et al. 1997). Whether these
metabolites are produced in vivo is yet to be investigated. However, taurine con-
jugates of the PGE, analogue trimoprostil and its S-oxidation products have been
identified in rat bile following administration of the parent drug (Kolis et al. 1986).
Similarly both all-trans and 9-cis retinoic acids have been reported to undergo a
variety of biochemical transformations in the rat resulting in the formation of highly
polar metabolites identified as taurine conjugates (Skare et al. 1982; Shirley et al.
1996).

Glycine conjugation of isopropoxyacetic acid has been found in both rat and dog
following the administration of isopropyl oxitol (Hutson and Pickering 1971). While
the glycine conjugate of cyclopropylcarboxylic acid, a metabolite of the miticide,
hexadecyclopane carboxylate, has been reported in the urine of rats, cows and dogs
(Quistad et al. 1978a—c). The glutamic acid conjugate of trans-3-(2, 2-dichlorovinyl)-
2, 2-dimethylcyclopropane carboxylic acid has been found in the cow. Both geome-
trical isomers have been reported to give rise to glycine, serine and glutamic acid
conjugates in insects (Unai and Casida 1977). The formation of glycine conjugates of
cyclohexanoic acid derivatives, hexahydrohippuric acid and 3,4,5,6-tetrahydrohippu-
ric acid, together with hippuric acid, have been reported in rats and perfused rat liver
following the administration of cyclohexanoic acid and shikimic acid (Brewster et al.
1977a,b, 1978). Hexahydrohippurate has also been reported to occur in the urine of
cattle, horses and elephants (Balba and Evans 1977).

Aromatic carboxylic acids

Benzoic and heterocyclic aromatic acids are mainly conjugated with glycine in
mammalian species, other amino acid conjugates are also generated but their
occurrence is restricted in terms of species. Between 1944 and 1955, Bray and co-
workers examined the fate, in terms of conjugation with either glycine or glucuronic
acid, of a variety of substituted benzoic acids in the rabbit (summarised in Williams
1959), and this group of compounds is the most extensively examined in terms of
quantitative structure—metabolism relationships. Hansch et al. (1968) using Bray’s data
for the para-substituted compounds established a parabolic relationship between the
logarithm of the percentage of the dose undergoing conjugation with glycine (Log MR)
and log P:

Log MR = —0.665(Log P)* 4 3.153LogP — 1.763
r=0.916, s=0.187, n=28

Subsequently, examination of the data obtained for the ortho-substituted com-
pounds indicated that the steric bulk of the substituent, as measured by Taft’s steric
parameter, Es, was the determining factor (Caldwell et al. 1980), the extent of glycine
conjugation expressed as a percentage of the dose decreasing as steric bulk of the
ortho substituents increased, which Caldwell et al. (1980) interpreted as steric
hindrance of the ortho-substituent for the formation of the CoA thioester.

Kasuya et al. (1990, 1991) examined structure—metabolism relationships for the
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glycine conjugation of a series of benzoic acids using liver and kidney mitochondria
from rat and mouse. Physicochemical parameters found to be of significance for the
rate of glycine conjugation were Van der Waals volume and the calculated logarithm
of the octanol/water partition coefficient (CLOGP). These workers also re-examined
Bray’s data for para-substituted benzoic acid conjugation in the rabbit, and similar to
their in vitro observations both Van der Waals volume and CLOGP were found to be
significant parameters (Kasuya et al. 1990). Overall conjugation with glycine was
found to increase with lipophilicity and decrease with steric bulk of substituents in the
3- and 4-positions of the aromatic ring. More recent investigations have examined the
overall fate of benzoic acids, i.e. excretion either unchanged or as the glycine or
glucuronide conjugates, following administration to rabbits (again using Bray’s data)
and rats (Ghauri et al. 1992; Cupid et al. 1996, 1999). Using computational chemistry
and multivariate statistical methods, relationships were derived which allow prediction
of the urinary excretion of both conjugates together with the unchanged acid.
Interestingly, the urinary excretion of benzoylglycines in the rat was found to be
dependent on molecular weight and the energy of the highest occupied molecular
orbital (HOMO) of the acid (Cupid et al. 1999), whereas in the case of the rabbit the
most significant parameters were CLOGP, the molar refractivity, the partial charge on
C; of the aromatic ring and the second principal ellipsoid axis, several of which relate
to molecular size and shape (Cupid et al. 1996; 1999). Similar to the in vitro study by
Kasuya et al. (1990), the most important physicochemical property was CLOGP
(Cupid et al. 1996). Such species differences in the structure—metabolism relationships
of a relatively simple series of compounds serve to illustrate the complexity of the
reaction sequence involved in amino acid conjugation.

Arylacetic acids

The amino acid utilised for conjugation of arylacetic acids varies between species,
rodents such as rats producing predominantly glycine conjugates whereas primates,
including humans, utilise L-glutamine (Table 14.3). Substitution of these compounds
at the a-carbon atom, also has a marked effect on their metabolic fate. For example,
2-phenylpropionic and diphenylacetic acids undergo glucuronidation rather than
amino acid conjugation in both animals and humans (Dixon et al. 1977a,b).

Table 14.3 Variation in the amino acid conjugation (% dose) of arylacetic acids with structure
and species

Species Rat Man Rhesus monkey  Capuchin
monkey
Amino acid Glycine Glutamine Glutamine Glutamine
Phenylacetic acid 99 93 32 64
4-Chlorophenylacetic acid 92 90 40 14
4-Nitrophenylacetic acid 61 - - -
1-Naphthylacetic acid 15 0 0 5
2-Naphthylacetic acid 8.6 - - -

Data from Caldwell et al. (1980), Dixon et al. (1977c) and Emudianaghe et al. (1978).
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The conjugation of the regioisomers 1- and 2-naphthylacetic acid is of interest as
the pattern of conjugation both in terms of the pathway, glucuronidation versus amino
acid conjugation and the amino acid utilised varies considerably. The major metabolic
pathway of the 1-isomer in human, rat and rabbit is glucuronidation, the cat yielding
both glycine and taurine conjugates while the glycine conjugation of the compound is
relatively low (15% of dose) compared to the substituted phenylacetic acids (61-99%)
(Dixon et al. 1977c). In contrast the 2-isomer undergoes conjugation with three amino
acids simultaneously, namely glycine, L-glutamine and taurine, in addition to glucuro-
nic acid conjugation in the rat, rabbit and ferret (Emudianughe et al. 1978), the overall
urinary recovery of the 2-isomer being reduced in comparison to 1-naphthylacetic
acid but the total undergoing amino acid conjugation being greater. This difference in
amino acid conjugation may be due in part to steric hindrance in the case of
1-naphthylacetic acid for the formation of either the CoA thioester or N-acyltrans-
ferase(s). Thus it would appear that the 2-naphthylacetic acid readily undergoes
activation but that selectivity is exerted in the acyl transfer step. These data suggest that
2-naphthylacetic acid may be a useful probe compound for investigating these
mechanisms.

The fate of 2-phenylpropionic acid is of interest as this compound undergoes chiral
inversion in the rat (Fournel and Caldwell 1986), the initial step of which is formation
of a Coenzyme A thioester. As amino acid conjugation does not take place in this
species, the selectivity presumably occurs at the level of N-acyltransferase. In recent
years a number of 2-arylpropionic acid NSAIDs, together with 2-phenylpropionic
acid, have been reported to undergo conjugation with taurine, mainly in the dog
(Sakai et al. 1984; Mori et al. 1985; Asami et al. 1995; Konishi et al. 1999) but also in
the rat and mouse (Mohri et al. 1998; Egger et al. 1982), and to a minor extent in
humans (Shirley et al. 1994). In addition, 2-phenylpropionic acid has been reported to
yield a glycine conjugate following administration to dogs (Tanaka et al. 1992). In the
case of some compounds, the stereochemistry of the amino acid conjugates has been
investigated and there are indications that the S-enantiomers of the 2-arylpropionic
acids may also form CoA thioesters, but to a much smaller extent than their
R-antipodes, and that the conjugation reaction may also be stereoselective and vary
with species (Tanaka et al. 1992; Shirley et al. 1994; Mobhri et al. 1998; Konishi et al.
1999).

Aryloxyacetic acids

Aryloxyacetic acid derivatives, e.g. the herbicides 2,4-dichlorophenoxyacetic acid
(2, 4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) together with the structurally
related hypolipidaemic agent, clofibric acid, are known to undergo taurine conjuga-
tion in carnivorous, marine and other species (James and Bend 1976; James 1982;
Emundianughe et al. 1983). 3,4-Dichlorobenzyloxyacetic acid, an agent with poten-
tial for the treatment of sickle cell anaemia, has been shown to undergo extensive
taurine conjugation (60% of dose) in the rat (Peffer et al. 1987). This compound may
be useful as a probe for taurine conjugation in other species. Both 2,4-D and 2,4,5-T
have been reported to yield small quantities of amino acid conjugates following
administration to rats (Grunow and Bohme 1974). An explanation for this observation,
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in terms of the affinity of the corresponding CoA thioesters for the glycine N-
acyltransferase(s) has been postulated (see below; Kelley and Vessey 1986).

Biochemical and molecular mechanisms of amino acid conjugation
ACYL-CoA SYNTHETASES

As pointed out above, the initial reaction in amino acid conjugation is the formation
of an acyl CoA thioester mediated by an acyl CoA synthetase or ATP-dependent acid:
CoA ligases. These synthetases are divided into three ATP- and one GTP-dependent
systems, thus: short-chain/acetyl-CoA synthetase/acetate: CoA ligase (AMP), EC
6.2.1.1; medium-chain/butyryl-CoA synthetase/medium-chain fatty acid: CoA ligase
(AMP), EC 6.2.1.2; long-chain fatty acyl-CoA synthetase/acyl-CoA synthetase/long-
chain fatty acid: CoA ligase, EC 6.2.1.3 and medium-chain fatty acid: CoA ligase
(GDP), EC 6.2.1.10.

Of these four systems, the medium-chain CoA synthetase (EC 6.2.1.2) is principally
associated with the activation of benzoic acids and phenylacetic acids whereas the
long-chain CoA synthetases (EC 6.2.1.3) are primarily involved in the activation of the
2-arylpropionic acids (Sevoz et al. 2000).

The medium-chain CoA synthetase was initially purified by Mahler et al. (1953)
from bovine hepatic mitochondria. The enzyme showed broad substrate specificity for
straight chain aliphatic acids (C4-Cy2) with optimal activity at C;. In addition, benzoic
and phenylacetic acids, together with several branched chain aliphatic carboxylic
acids were found to be activated by this enzyme. However, salicylic and p-aminosa-
licylic acids were found not to be substrates (Schachter and Taggart 1954). Killenberg
et al. (1971), again using the same enzyme source, purified two medium-chain CoA
synthetases, one being able to activate salicylic and p-aminosalicylic acids while the
other could not. Differences in enzyme stability were also reported, the salicylate CoA
synthetase being less stable than the non-salicylate CoA synthetase. By the mid-1970s,
three soluble CoA synthetases, medium-chain acyl-CoA synthetase, a salicylate CoA
synthetase and a propionyl-CoA synthetase, had been purified from guinea pig liver
mitochondria (Groot and Scheek 1976).

More recently, Kasuya et al. (1996) reported the purification and characterisation of
a medium-chain acyl-CoA synthetase from bovine hepatic mitochondria. Enzyme
specificity was examined using aliphatic acids (C3-Cyo), substituted benzoic acids and
1- and 2-naphthylacetic acid. Optimal activity was found with hexanoic acid, but
benzoic acid derivatives with large alkyl and alkoxy groups in the para- or meta-
positions were also highly active whereas ortho-substituted derivatives exhibited no
activity (Kasuya et al. 1996). Such data corresponded to in vivo observations where
the extent of glycine conjugation decreased with increased steric bulk of the ortho-
substituent (Caldwell et al. 1980). Also of interest is that both regioisomers of
naphthylacetic acid had activities similar to that of benzoic acid. The molecular mass
of the Kasuya-enzyme was determined to be 65 kDa, whereas the mass of the Mahler-
enzyme was estimated to be between 30 and 60 kDa (Mahler et al. 1953) and that of
a similar enzyme isolated from rat liver mitochondria was 47 kDa (Groot and Scheek
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1976). However, stability may be a problem and storage may result in either dissocia-
tion and/or degradation (Kasuya et al. 1996).

The rat possesses five long-chain acyl-CoA synthetases (ACS1-ACS5) (Sevoz et al.
2000). Each ACS appears to have a marked tissue distribution and completely different
regulation from those of the others (Suzuki et al. 1995). Rat ACST is found predomi-
nantly in the liver, heart and adipose tissue (Suzuki et al. 1991), while ACS2 and ACS3
are the major forms in the CNS (Fujino and Yamamoto 1992, Fujino et al. 1996). The
remaining enzymes, ACS4 and ACS5, are highly expressed in steroidogenic tissues
and the small intestine (Kang et al. 1997; Oikawa et al. 1998). These regulator and
tissue distribution differences may reflect the biological roles of these enzymes with
regard to their function in fatty acid metabolism (Oikawa et al. 1998). Using rat
recombinant ACS1 and ACS2 expressed in E. coli and (—)-(R)-ibuprofen or (—)-(R)-
fenoprofen, Sevoz et al. (2000) reported that ACS1 appeared to be the major enzyme
involved in the first step of the chiral inversion of the 2-arylpropionic acids in vitro.

ACYL-CoA: AMINO ACID N-ACYLTRANSFERASE

The transfer of the acyl group from CoA thioester to the amino group of the amino acid
is catalysed by an N-acyltransferase. The first example of this type of enzyme to be
partially purified was the glycine N-acyltransferase (EC 2.3.1.13) from bovine hepatic
mitochondria (Schachter and Taggart 1954). The enzyme was found to show absolute
specificity with respect to the amino acid but to catalyse the transfer of a variety of
both aliphatic (C,-Cq9) and aromatic acyl groups. Moldave and Meister (1957)
partially purified a glutamine N-phenylacetyltransferase (EC 2.3.1.14) from the cyto-
solic fractions of human liver and kidney. This enzyme was found to catalyse both
phenacylation of glutamine and the benzoylation of glycine, the latter reaction being
carried out at a considerably slower rate than the former. The kidney enzyme appeared
to have a higher specific activity than the hepatic enzyme (Moldave and Meister
1957). Glycine N-acyltransferases have also been purified from human and bovine
hepatic mitochondrial preparations (Tishler and Goldman 1970; Forman et al. 1971).
Both enzyme preparations were found to transfer salicyl and benzoyl acyl groups from
their corresponding CoA thioesters to produce salicyluric and hippuric acid respec-
tively.

Webster et al. (1976) isolated and purified two acyl-CoA: amino acid N-acyltrans-
ferases, with a molecular mass approximately 24 kDa, from Rhesus monkey and
human hepatic mitochondrial preparations. Both enzymes were shown to exhibit
acyl-acceptor specificity with either glycine or L-glutamine. The ‘glycine’ conjugating
enzyme showed acyl-donor specificity for benzoyl and salicyl Co-A while the
‘glutamine’ conjugating enzyme used either phenylacetyl or indolylacetyl-CoA (Web-
ster et al. 1976). The presence of only one glutamine N-acyltransferase was indicated
by the nearly constant ratio of phenylacetyl and indolylacetyl transferase activities
during purification of the enzyme isolated from Rhesus monkey tissues.

Webster et al. (1976) also reported that the amino acid N-acyltransferase activity of
both enzymes was inhibited by the acyl donors for the other enzyme. Nandi et al.
(1979) found similar results following isolation of two enzymes from bovine hepatic
mitochondria. However, in addition they observed that glycine was the preferred acyl
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acceptor for both enzymes, with L-glutamine and L-asparagine being weak acyl
acceptors. The molecular mass of these two enzymes of approximately 33 kDa was in
agreement with those of Lau et al. (1977) and Forman et al. (1971) of 36 and 32 kDa
respectively.

The specificity of the two bovine transferases to the CoA thioesters of 2,4-D, 2,4,5-T
and phenoxyacetic acid has been examined using benzoyl- and phenylacetyl-CoAs as
reference standards for activity (Kelly and Vessey 1986). Phenoxyacetyl-CoA and
2,4,5-T-CoA were found to be substrates for the phenylacetyl- and benzoyl-trans-
ferases respectively, whereas 2,4-D-CoA was a substrate for both enzymes. Both
enzymes showed a high affinity for the herbicide-CoA thioesters but the reaction rates
were low, which was found to be due to increased Ky, values for glycine in compari-
son to the normal substrates (Kelly and Vessey 1986).

Organ location

Although the liver is a major site of amino acid conjugation, the kidney has been
known to be involved in this biotransformation since 1870. Quick (1931) extended
the early work of Schmeideberg in the 1870s, in showing that in the dog hippuric acid
biosynthesis was effected by the kidney and not the liver. Amino acid conjugation has
been reported at very low levels of enzymic activity in rat intestinal slices and everted
sections (Strahl and Barr 1971). The formation of p-aminohippuric acid from
p-aminobenzoic acid has been reported for rat and guinea pig duodenum homo-
genates (Irjala 1972). Rabbit small intestine extracts possessed very low levels of
glycine N-acyltransferase activity. Lung tissue, however, was found to contain no
enzymatic activity at all (James and Bend 1978). A similar pattern of results were
reported in that human brain, lung, intestine and heart possessed little or no ability to
form hippuric acid from benzoic acid (Caldwell et al. 1976).

The relative contributions of the kidney and liver to the formation of amino acid
conjugates is both species and substrate dependent. The formation of glycine
conjugates from p-aminobenzoic acid, benzoic acid and salicylic acid was under-
taken in tissue slices, homogenates and mitochondria from hepatic and renal sources
in the rat, guinea pig, cat and dog (Irjala 1972). The conjugation of p-aminobenzoic
acid was greater in renal tissue slices than the hepatic tissue in all four species
investigated. Benzoic acid conjugation was greater in renal than hepatic slices from
cats and dogs, but no significant differences were seen in the rat and guinea pig.
With salicylic acid as substrate, the renal slices showed greater activity than the liver
in rat, guinea pig and dog. When homogenates were used instead of the tissue slices,
a different picture was seen. Both p-aminobenzoic acid and benzoic acid conjuga-
tion were greater in the liver than kidney in rat and guinea pig. However, this
observation was reversed in the cat and dog. Using salicylic acid as substrate, little
activity was found in rat hepatic homogenates whereas using guinea pig tissue,
hepatic activity was greater than renal, and in the dog the reverse was observed.
Finally, using mitochondrial preparations from both renal and hepatic sources in the
rat, hepatic mitochondria showed greater activity in glycine conjugation of
p-aminobenzoic acid than renal mitochondria.

The conjugation of benzoic acid with glycine has been investigated using human
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hepatic and renal cortex homogenates (Temellini et al. 1993). The kidney cortex was
found to have the higher activity of the two organs but that the activity was normally
distributed in both organs. The enzymic activity of both hepatic and renal preparations
from rat, mouse, hamster, gerbil and ferret have been investigated using 3-phenox-
ybenzoic acid as substrate (Huckle et al. 1981b). These investigators examined the
overall conjugation reaction, CoA thioester formation and glycine N-acyltransferase
activity. Examination of the overall reaction indicated that in the ferret and mouse,
renal activity was the greatest, the activities were similar in hamster and gerbil renal
and hepatic tissue, and that the rat had greater activity in the hepatic tissue. When the
activation of the substrate with CoA was investigated, similar results were observed.
However, when the glycine N-acyltransferase activity was investigated the rat, ferret
and gerbil showed higher activity in renal tissue than the liver, whereas the opposite
was true for the hamster and mouse (Huckle et al. 1981b). It was also found that acyl-
CoA formation was 10 to 300-fold slower than glycine N-acyltransferase activity, thus
making the CoA thioester formation the rate-limiting step in glycine amino acid
conjugation (Forman et al. 1971, Huckle et al. 1981c¢).
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