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Preface

In the last 30 years several problems have been examined in the framework
of the study of certain composite materials having the particular feature
that they can be described by means of minimizing configurations of ener-
gies not necessarily finite on all the “smooth” admissible ones.

Problems involving energies with these features appeared, for exam-
ple, in the study of elastic-plastic torsion theory, of electrostatic screening,
and of the modelling of some rubber-like nonlinear elastomers, and have
been generally approached by means of ad hoc, or particular mathematical
techniques.

The aim of the present volume is to propose a systematic and uni-
fying mathematical framework, within the calculus of variations, for the
treatment of problems of this nature, at least in the stationary case.

From this point of view, the fundamental notion that appears to play
a central role is the one of unbounded functional. These functionals take
nonnegative extended real values, and represent the energies under consid-
eration. They depend, in a classical manner, essentially on two variables:
one of set-type nature in which the functional enjoys measure theoretic
properties, and one of scalar configuration-type nature in which it enjoys
convexity and lower semicontinuity properties. On the other side, the above
energies behave also in a “non-classical” way. They turn out to take finite
values only on those configurations that are subject to pointwise constraints
on the strains, hence not depending on the regularity of the configurations
themselves.

The analysis of this notion requires the reconsideration of well-establi-
shed concepts and techniques. Therefore the book naturally divides into
two parts.

In the first part (Chapters 1 to 5), we aim to allow as much as possible
a self-contained reading of the volume. The main notions of convex anal-
ysis are recalled, together with those of measure theory, and of theory of
variational convergences. Then we introduce some function spaces usually
considered in calculus of variations, where we study some lower semiconti-
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nuity and minimization problems for energy functionals. Such notions are
also adapted to the new setting by means of the necessary changes and the
required extensions.

At the end of the first part, Chapter 6 plays the role of a hinge chapter.
It begins with a brief survey on some aspects of the theory of the standard
functionals of the calculus of variations such as unique extension properties,
representation as integrals of the calculus of variations, relaxation theory,
and homogenization processes. Then, the mathematical aspects of some
physical models, which suggest the notion of unbounded functional, are
briefly explained.

By unique extension properties, we mean those types of problems in
which one tries to extend a function defined in a set to a wider one by
preserving some of its characteristic features, and gaining uniqueness of the
extension.

The representation as integrals of the calculus of variations problems
refers to the identification of sufficient conditions (possibly also necessary)
on an abstract functional F' implying its description as

F(Q,u):/Qf(az:,Vu)d:E7

where € is the set-type variable and u the configuration-type one.

Given a function F' defined in a topological space, relaxation problems
deal with the study of representation formulas for the description of the
relaxed function of F'; namely of the greatest lower semicontinuous function
less than or equal to F', having in mind the qualitative property according
to which the greatest lower bound of a function agrees with the minimum
of its relaxed function.

By homogenization problems we mean those in which one tries to sim-
ulate the behaviour of composite materials finely grained in a “regular”
way (somehow comparable to a periodic distribution of two or more com-
ponents) by means of a homogeneous one, and vice-versa. In this book,
we restrict ourselves to the cases where such simulation can occur in the
sense that the minimum energy of the homogeneous material turns out to
be close, for every admissible external force, to the one of the composite
materials, as much as the graining is fine.

In the physical models inspiring unbounded functionals, the energies
involved have an integral form on “regular” configurations, but the energy
densities f are unbounded.

Thus, in the second part of the volume (Chapters 7 to 13), which is
the most original one, a tentative theory of unbounded functionals is devel-
oped according to the scheme proposed in Chapter 6, having in mind the
described models and focusing mainly on homogenization. This is done, at
least in the case of unique extension, integral representation and relaxation,
for “translation invariant” functionals, i.e. functions that don’t change their
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values when both the set-type variable and the configuration-type one un-
dergo translations.

Finally, in Chapter 14, the homogenization results obtained are ex-
ploited to provide some explicit descriptions of the homogenized materials
relative to the unbounded energies proposed in Chapter 6.

In our opinion, the theory developed in such a way allows to obtain
deeper results than the already known ones, and to address interesting new
problems, including ones in applied mathematics.

In memory of Ennio De Giorgi and Jacques-Louis Lions, we would like
to point out that several ideas contained in this book originated from their
scientific visions and mathematical concepts.

We are also indebted to Haim Brezis for his warm encouragements in
the preparation of the book and for some deep discussions, and to Sergio
Spagnolo for his friendly mathematical teachings.

Finally, we want to remark that the research activities on composite
materials can be considered as a common effort, to which a lot of mathe-
maticians contribute with different competencies. So we are also indebted
to many colleagues for several comments and discussions.

The book contains both published and new results. It is mainly aimed
at graduate students and researchers in mathematics, but we hope that it
may be useful to engineers and continuum physicists.

Naples, July 2001 Luciano Carbone
Riccardo De Arcangelis

povt)  TpPpéodos
ETLOT POPN
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Basic Notations and Recalls

The present chapter is devoted to the introduction of the general notations
and the basic facts that we are going to use throughout the book.

Basic Notations

Let X be a set. For every S C X we denote by xg the characteristic
function of S defined by

1 ifzesS
Xs(x) =19 g ifzeX\S,

and by Ig the indicator function of S given by

7 _J0 ifxes
s =1 4o ifzeX\S.

If f:X — [—o00,+0] and zp € X, we say that xo is a minimizer of
f if 2o is a minimum point of f. Given {z;} C X, we say that {z} is a
minimizing sequence of f if the limit limy,_, 4o f(xp) exists, and

lim f(xp) =inf{f(z):z € X}.

h—+o0o

For every r € R we denote by [r] the integer part of r, i.e. [r] =
max{m € Z : m < r}.

Let n € N.

We say that an element of (N U {0})" is a multiindex. For every
multiindex a = (a1, ...,a,) the length |a| of « is defined as |a] = ag +
oot Qg

We denote by R"™ the space of the n-tuples x = (z1...,xz,) of real
numbers, that we endow with the usual scalar product, euclidean norm,
and topology. For every z, y € R™ we denote by z - y, respectively by ||,
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the scalar product of x and y, respectively the norm of z. We also denote
by e; = (1,0,...,0),...,e, = (0,...,0,1) the elements of the canonical
basis of R™, and by 0 both the origin of R™ and the real number zero, in
general the meaning of 0 being clear from the context.

As usual, for every o € R™, S C R™ and r € |0, +o0[, we denote by
B,.(xo) the open ball of R™ centred at z¢ and with radius r, by Q..(xo) the
open cube centred at xy having sidelength 7, and set

dist(xg, S) = inf{|xg — x| : 2 € S},

S ={x € S:dist(x,05) >r} S ={xreR":dist(x,S) <r}.

For tradition reasons, we set Y = 10, 1[™.

We say that a subset of R" is a polyhedral set if it can be expressed
as the intersection of a finite number of closed half-spaces.

By Ay we denote the set of the bounded open subsets of R™. For every
open subset 2 of R™, we denote by A(Q) the set of the open subsets of .

We denote by L™ the Lebesgue measure on R". Given a Lebesgue
measurable set 2, we denote by £, () the family of the Lebesgue mea-
surable subsets of 2. When considering Lebesgue measure on subsets of
R", we generally write for simplicity “measurable,” “a.e.,” and so on in
place of “L,-measurable,” “L"-almost everywhere,” and so on. For tradi-
tion reasons, we also write dx in place of dL" in the integrals of measurable
functions.

Finally, we denote by [—o00,400] the extended real numbers system,
that we endow with the usual topological structure that makes it a compact
space.

Basic Topological Facts

Let (U, 7) be a topological space.

For every A C U we denote by int(A), A and OA respectively the
interior, the closure and the boundary of A.

Given E C R, g9 € E, a family {u.}.ex € U and u € U, we write
Ue — U as € — £o to mean that {uc}ecp converges to u in 7 as € — g9. In
particular, if {u} is a sequence of points of U, we write u;, — u to mean
that {up} converges to u in 7 as h goes to +oo.

For every u € U we denote by N (u) the set of the open neighborhoods
of u in 7.

Let {up} C U and u € U. We say that u is a cluster point of {up} if
for every I € N'(u) and every h € N there exists k > h such that uy € I.

It is clear that if {uy} converges, or if it has a converging subsequence,
then the limit of {uy,}, as well as the limit of every converging subsequence
of {up}, is a cluster point of {up}. The converse is not true in general
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topological spaces, in the sense that a cluster point of {u;,} need not be the
limit of a converging subsequence of {uy}. It is true if U satisfies the first
countability axiom.

We say that X C U is sequentially closed if for every {up} C X
converging to u € U it results that u € X.

It is obvious that a closed set is also sequentially closed, the converse
being, in general, false.

We say that K C U is compact if every open covering of K has a finite
subcovering, we say that K is sequentially compact if every {up} C K has
a subsequence that converges to a point of K. We say that K is relatively
compact if K is compact, and that K is relatively sequentially compact if
K is sequentially compact.

We recall that, in general, the notions of compactness and of sequential
compactness are independent (cf. for example [Ro, Chapter9,Problems
6 and 27]), and that they agree provided U satisfies the first countability
axiom.

If U is a metric space and X C U, we say that X is precompact if
every {up} C X has a Cauchy subsequence. It is clear that if X is relatively
sequentially compact, then it is also precompact. In general, the converse
is not true, but it holds if U is complete.

A topological space € is said to be locally compact if every point of
has a relatively compact neighborhood.

One of the most important topological notions with which the book is
concerned is the one of lower semicontinuity, that we recall briefly.

Let (U, 7) be a topological space and F:U — [—o0, +00].

We say that F' is T-lower semicontinuous, or simply lower semicontin-
uous if no ambiguity occurs, if for every A € R the set {u € U : F(u) > A}
is open.

For every u € U we denote by liminf,_,, F(v) the lower limit of F' at
u defined by

liminf F'(v) = sup inf F(v).
VU TEN (u) vel

Let u € U, we say that F' is lower semicontinuous at u if

F(u) < liminf F(v).

v—UuU

Then it turns out that F' is lower semicontinuous if and only if F' is lower
semicontinuous at u for every u € U. Consequently, lower semicontinuity
turns out to be a local property.

It must be remarked that, since it is obviously always true that F'(u) >
liminf,_,, F(v) for every u € U, it turns out that F' is lower semicontinuous
if and only if

F(u) = liminf F'(v) for every u € U.

v—Uu
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It is clear that if {Fp}ge7 is a collection of lower semicontinuous func-
tions defined on U, then u € U — supycs Fy(u) too is lower semicontinuous.
Analogously, if 7 is finite, then u € U — infge7 Fp(u) too is lower semicon-
tinuous, but, besides this case, in general the infimum of a family of lower
semicontinuous functions need not be lower semicontinuous.

It is clear that a set X C U is closed if and only if Iy is lower semi-
continuous.

We say that F' is sequentially T-lower semicontinuous, or simply se-
quentially lower semicontinuous if no ambiguity occurs, if

F(u) < liminf F(up) for every u € U, and every {up} C U with up — u.

h—-+4o00

It is clear that a lower semicontinuous function is also sequentially
lower semicontinuous. The converse is, in general, false, but it becomes
true if U satisfies the first countability axiom.

Finally, we point out that

(0.1) F(u) < limsup F(up)
h—-+4o0

whenever {up} C U, and u is a cluster point of {uy}.

Basic Facts about Topological Vector Spaces and Banach Spaces

We now describe the main properties of those spaces in which topological
structures interact with vectorial ones.

All the vector spaces that we are going to consider in this book will be
real.

A vector space W is said to be a topological vector space if W is
endowed with a topology for which the functions

() EWXxWrut+tveW, Au)eRxW—AueW

are continuous.

It is well known that in a topological vector space a set I is a neigh-
borhood of a point u if and only if its translated I —u={z —u:x € I} is
a neighborhood of the origin.

A sequence {u,} of points of a topological vector space is said to be
a Cauchy sequence if for every neighborhood I of the origin there exists
ny € N such that w,, — u,, € I whenever n, m > ny. A topological vector
space is sequentially complete if every Cauchy sequence converges to a
point of the space. In a metric space the notions of sequential completeness
coincides with the one of completeness.
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A particular class of topological vector spaces is the one where the
topology is generated by a family of seminorms.

Let W be a vector space.

A seminorm on W is a function p: W — [0, +-00[ such that

p(Av) = |Alp(v) for every A € R and v € W,

and
p(u+v) < p(u) + p(v) for every u, v € W.

Of course, a seminorm p on W for which p(u) = 0 implies ©u = 0 is a
norm on W. In this case, W is said to be a normed space.

Then, if {pp}ge7 is a family of seminorms on W, for every u € U the
family of the finite intersection of sets of the type {v € W : pg(v —u) < n},
with @ € 7 and n > 0, forms a basis of neighborhoods of u, thus generating
a topology on W that makes it a topological vector space.

In particular, if {pp}ger is made up of a single norm, the topology
generated by {ps}ge7 is nothing more than the one generated by the norm
itself.

A complete normed space is said to be a Banach space.

As usual, for every topological vector space W, we denote by W’ the
dual space of W, i.e. the set of the real continuous linear functionals on W.

If, in addition, W is also normed with norm || - ||, then W’ turns out
to be a Banach space, once we endow it with the dual norm

|- [lwr:L €W sup{L(u) : u € W, |jul| < 1}.

If W is a topological vector space, and for every § € W’ we define
po:u € W — |0(u)], then py turns out to be a seminorm on W, and the
topology generated by {pg}ocw- is the so called weak topology on W, and
is denoted by weak-W.

Analogously, if W is a topological vector space, and for every u € W
we define p,:0 € W' — |0(u)|, then p, turns out to be a seminorm on W,
and the topology generated by {py }uew is the so called weak* topology on
W', and is denoted by weak*-W'.

In a normed space W the norm is weakly lower semicontinuous since

llullw = sup{L(u) : |L||lw' < 1} for every u € W,

and, just by definition, in the dual of a normed space the dual norm is
weakly* lower semicontinuous.
We now recall the following weak and weak™ compactness criteria.
The basic result in this field is a weak™ compactness theorem based on
Tychonoff’s theorem.
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Theorem 0.1 (Alaoglu’s Theorem). Let W be a Banach space. Then
the strongly closed balls of W' are compact in the weak™*W' topology.

By using Alaoglu’s theorem, it is easy to deduce a weak compactness
criterium in reflexive spaces. Actually this criterium turns out to charac-
terize reflexive spaces, and this is the deepest part of the following result.

Theorem 0.2 (Bourbaki-Kakutani-Smulian Theorem). Let W be a
Banach space. Then W is reflexive if and only if its strongly closed balls
are compact in the weak-W topology.

Bourbaki-Kakutani-Smulian Theorem describes a weak compactness
property. The result below is the key to deduce a similar result for sequen-
tial weak compactness.

Theorem 0.3 (Eberlein-Smulian Theorem). Let W be a Banach spa-
ce, and S C W. Then the following facts are equivalent.

i) S is relatively sequentially compact in the weak-W topology,

ii) for every {up} C S the set of the cluster points of {uy} in the weak-W
topology in nonempty,

iii) S is relatively compact in the weak-W topology.

By Bourbaki-Kakutani-Smulian Theorem, and Eberlein-Smulian The-
orem, the result below follows.

Theorem 0.4. Let W be a Banach space. Then W is reflexive if and only
if the strongly closed balls of W are sequentially compact in the weak-W

topology.

We recall also the sequential version of Alaoglu’s theorem. It holds
under separability assumptions, and follows by exploiting the metrizability
of the weak*-W' topology of the strongly closed balls of the dual of a
separable Banach space W (cf. for example [Br2, Corollaire II1.26]).

Theorem 0.5. Let W be a separable Banach space. Then the strongly

closed balls of W' are sequentially compact in the weak*-W' topology.
Finally, we recall the following metrizability criterium (cf. for example

[Br2, Théoréme II1.25]).

Theorem 0.6. Let W be a Banach space. Then W is separable if and

only if for every ball B of W' the weak®W' topology on B is metrizable.
Basic Function Spaces
If  is a topological space, we denote by C°(Q) the set of the continuous

real functions on €, and with CP(£) the class of the bounded elements of
CY(Q). It is clear that, if  is compact, then C°(Q) = CP ().
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With a slight abuse of notations, we denote by || - ||co(q) the norm

I+ loogey:u € C() = sup [ul,

call again with C2(Q2) the topology on CP(€) induced by this norm, and
recall that, once we equip C2(Q) with it, C2(Q2) becomes a Banach space.

If u: Q — [—o00,+00], we define the support spt(u) of u as the closure
of {x € Q: u(x) # 0}, and set

Ci(Q) = {u € C°(Q) : spt(u) is compact } .

We also denote by C(€) the closure of C2(Q) in CY(Q). Then it is clear
that C9(2) is a Banach space with norm |- o), that C§(Q) C Q) C
C2(9), and that, when Q is compact, C3(Q) = C(€2) = CO(Q).

It is easy to prove that maxg |u| exists for every u € CO(Q).

The space 68 (Q) is usually called the space of the continuous functions
vanishing at infinity, since, when €2 is Hausdorff and locally compact, it is
easy to verify that u € CJ(f2) if and only if for every ¢ > 0 there exists a
compact subset K of Q such that supg |u| < e.

Let now Q be an open subset of R™.

Given m € N, we denote by C™ () the set of the functions having
continuous partial derivatives of order up to m in €2, and by C™(Q) the
one of the elements in C™(Q2) that can be extended, together with all their
partial derivatives of order up to m, to continuous functions on Q. If, in
addition, € is bounded, we endow C™ (2) with the usual topology induced
by the norm

|+ lom@):u € C™() — max
0<|a|<m

5=

co(Q) .

In general, we endow C™ () with the usual topology generated by the
family of seminorms pa:u € C™(Q) — |lul|gm(a), with A varying in the
set of the bounded open subsets of Q such that A C Q. We denote again
by C™(Q) such topology, and recall that, once endowed with it, C"(Q)
becomes a complete metrizable topological vector space.

We set C°(Q) = NpmenC™ (), and endow it with the usual topology
generated by the family of seminorms p,, 4:u € C*(Q) — |[|ul|cm(a), with
m varying in NU{0}, and A in the set of the bounded open subsets of 2 such
that A C . We denote again by C°°(Q2) such topology, and recall that,
once endowed with it, C*° () becomes a complete metrizable topological
vector space.

Finally, for every m € N, we denote by CJ*(£2) the set of the functions
in C™(Q) having compact support in €2, and set C§°(Q) = NpenCH ().
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We will always identify the functions in C§(£2), with their null exten-
sions to R".
For every z € R™ we denote by w, the linear function with gradient z,

u,:x € R" — z-x.

A function v on R" is said to be piecewise affine on R"™ if it is contin-
uous, and if

u(z) = Z (uz,(x) 4 ¢;) xp, (x) for every x € UL int(P;),
j=1

wherem € N, z1,...,2,, € R", ¢1,...,¢pn € R, and P, ..., P, are polyhe-
dral sets with pairwise disjoint nonempty interiors such that U7, P; = R".
We denote by PA(R™) the set of the piecewise affine functions on R". For
every u = Z;n:l(uzj +s;5)xp, in PA(R™) we set B, = UTzl(Fj\int(Pj)).

We will make use of the following approximation result (cf. for example
[ET, Chapter X, Proposition 2.1]).

Theorem 0.8. Let u € C'(R™). Then there exists {u,} C PA(R") such
that limy, . y o [|un — ul|co(x) = 0, and

hlir+n sup{|Vu(z) — Vup(z)| : 2 € K\ By, } =0

for every K C R™ compact.
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Chapter 1

Elements of Convex Analysis

The present chapter is concerned with the main notions and results of
convex analysis used in the book.

In the first section we present the basics of convex analysis in the ab-
stract setting of locally convex topological vector spaces. Then the treat-
ment goes on to the setting of R", even if some of the results are still valid
in more general frameworks.

In particular, the convex and the lower semicontinuous envelopes of a
function are introduced and described, and their compositions in the two
possible different orders are studied and compared. This study is moti-
vated by the deep importance that both these composite operators have in
calculus of variations.

For a deeper treatment of convex analysis, we refer, for example, to
the books [DuS], [ET], [R], and [RW].

§1.1 Convex Sets and Functions

Let V be a vector space over the reals.

Given k € N, z1,...,z, € V, and #1,...,t; € [0,+00[ such that
Zle t; = 1, we say that the point Z?:l tjx; is a convex combination of
Tlyeeoy T

In particular, if z, y € V, and ¢ € [0, 1], the point tx + (1 — t)y is a
convex combination of x and y. From a geometrical point of view, a convex
combination of x and y lies on the line through x and y, but between them,
thus the set {tz + (1 —t)y : t € [0, 1]} of the convex combinations of x and
y is the closed line segment joining x and y.

We say that C C V is convex if tx + (1 — t)y € C whenever z, y € C,
and ¢t € [0,1]. In other words, C is convex if C contains the closed line
segment joining x and y, whenever x, y € C.

©2002 CRC Press LLC



Equivalently, it is possible to say that C C V is convex if Zle t;x;
whenever k € N, z1,...,2, € C, and t1,...,t; € [0,400[ are such that
Z?Zl t; = 1. As above, it is possible to say that C is convex if C' contains
all the convex combinations of finitely many of its points.

It is clear that if {Cy}ocr is a collection of convex sets, then NyerCy
too is convex. On the contrary, the union of two convex sets need not be
convex.

A fundamental tool for the study of convex analysis is furnished by the
separation properties of convex sets.

To describe precisely such argument, we need to recall briefly the no-
tion of locally convex topological vector space.

A topological vector space is said to be locally convex if the origin
possesses a fundamental family of convex neighborhoods. For example,
every topological vector space whose topology is generated by a family of
seminorms is locally convex.

It is important to note that the converse is also true. In fact, by
using Minkowski functionals, it can be proved that, given a locally convex
topological vector space W, a family of seminorms on W can be constructed
that generates the topology of W. Thus, locally convex topological vector
spaces turn out to place, in some sense, intermediately between topological
vector spaces and normed spaces.

A subset H of V is said to be a hyperplane if H = {z € V : L(z) = ¢}
for some L € V' not identically equal to zero, and ¢ € R.

Given A, B C V, and a hyperplane H of V with H = {z € V : L(z) =
c}, we say that H separates A and B if L(z) < ¢ for every z € A and
L(z) > c for every x € B. We say that H strictly separates A and B if
L(z) < ¢ for every x € A and L(x) > ¢ for every z € B.

If now W is a topological vector space, it is well known that a hyper-
plane H of W is closed if and only if the linear functional that determines
H is continuous.

We can now recall the Separation Theorem.

Theorem 1.1.1 (Separation Theorem). Let W be a Hausdorff locally
convex topological vector space, C' C W be closed and convex, and xy €

W\ C. Then C and xg can be strictly separated by a closed hyperplane of
W.

One of the most significant consequences for our purposes of the Sep-
aration Theorem is deduced in the following result.

Theorem 1.1.2. Let W be a Banach space, and C C W be convex. Then
the following conditions

i) C is closed in the strong topology of W,

ii) C' is closed in the weak-W topology,

iii) C' is sequentially closed in the weak-W topology

are equivalent.
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Proof. It is clear that ii) implies i).

On the contrary, if i) holds, then, by the Separation Theorem, it turns
out that C agrees with the intersection of all the strongly closed half-spaces
that contain C itself. Let ¥ be one of such half-spaces, then W\ X is trivially
open in the weak-W topology, and therefore X is also closed in the weak-W
one. Because of this, C turns out to be closed in the weak-WW topology.

To complete the proof, let us assume that iii) holds. Then C' is sequen-
tially closed in W, and therefore it is closed in W. Because of this, and by
the previous equivalence, C' turns out to be closed in the weak-W topology,
and ii) holds. m

In a similar order of ideas, the result below holds when weak* topolo-
gies are considered. To prove it, we first need to recall the Krein-Smulian
closedness criterium.

Theorem 1.1.3 (Krein-Smulian Theorem). Let W be a Banach space,
and C C W' be convex. Then C is closed in the weak*- W' topology if and
only so does C N {y € W' : ||y|lw» < r} for every r > 0.

Theorem 1.1.4. Let W be a separable Banach space, and C C W’ be
convex. Then C is closed in the weak®W' topology if and only if C is
sequentially closed in the weak*-W' topology.

Proof. We only have to prove that if C' is sequentially closed in the weak*-
W' topology, then C is closed in the same one.

To do this, let us assume that C is sequentially closed in the weak*-TW’
topology.

By virtue of Krein-Smulian Theorem, to prove the claim it suffices to
verify that, for fixed k € N, CN{y € W' : |ly|lw+ < k} is closed in the
weak*-W’ topology.

Let k € N. Then, by Theorem 0.6, C N {y € W' : ||y|lw+ < k} turns
out to be closed in the weak™® W’ topology if and only if it is sequentially
closed in the same one.

To prove this last condition, we observe that || - ||y is weak™-W'-lower
semicontinuous, and that, consequently, {y € W' : |ly|lw+ < k} turns out
to be closed in weak®-W’. This, together with the sequential closure in
weak*-W’ of C, provides the proof. m

We now confine ourselves to the study of convex subsets of R™.

Convex subsets of R™ enjoy the special feature to possess always “in-
terior” points.

To see this, we recall that a subset M of R" is said to be affine if it is
the translate of a vector subspace of R™.

For a given S C R™ we denote by aff (S) the affine hull of S, defined
as the intersection of all the affine sets containing S. It is clear that aff(.S)
turns out to be the smallest affine set containing S.
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If C C R™ is convex, we denote by ri(C) the relative interior of C, i.e.
the set of the interior points of C, in the topology of aff (C'), once we regard
it as a subspace of aff(C), and by rb(C) the relative boundary of C, i.e.
the set C'\ 1i(C'). When aff(C) = R™ we write as usual 1i(C') = int(C) and
rb(C) = oC.

The following result summarizes the main properties of relative interi-
ors, and can be proved by means of standard techniques in convex analysis
(cf. for example [R, Section 6]).

Proposition 1.1.5. Let C' C R" be nonempty and convex. Then ri(C) is
nonempty and convex, C' is convex,

aff(ri(C)) = aff(C

~—
Il

aff(C),

1i(C) =C, ri(C) = ri(0),
and

xo + t(C — x) = z9 + t(C — z9) C 1i(C) for every zy € 1i(C), t € [0,1].

By the Separation Theorem, we deduce the following representation
result.

Proposition 1.1.6. Let C C R™ be closed and convex. Then there exists
a sequence of open half-spaces {Xp,} such that C = NpenXZp, ie. there
exist {zp} € R™\ {0} and {cx} C R such that

x € C if and only if zp, - x < ¢, for every h € N.

Proof. Let us first assume that int(C) # 0.

Let {zp,} be a dense sequence in R™\ C. Then, by the Separation The-
orem, for every h € N there exists a hyperplane Hj, that strictly separates
C and xj,. For every h € N let 3j be the open half-space containing C
whose boundary is Hj. Let us prove that C' = NpenZp.

It is obvious that

C C Mhenn,

hence we have to prove only that
R" \ CCR" \ NheN2h-
To do this, let x € R*"\ C, and set C, = {tx+(1—t)y : y € int(C), t €
[0,1[}. Then, since int(C) # @, C, turns out to be nonempty and open.

Since R™\ C is open, and {z},} is dense in R \ C, we can find h € N
such that z3 € (R"\ C) N C,.
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It is clear that C C Y, and z ¢ Y5 Moreover it turns out that
x ¢ Y, otherwise, since ¥ is convex, we would also have that z; € C, C
Y. Consequently, € R" \ NpenXp, and the proof follows under the
assumption that int(C') # 0.

Finally, if int(C) = (}, we can regard C as a subset of aff(C), where C
has “nonempty interior,” and repeat the above considerations by replacing
R™ with aff(C), and int(C) with ri(C), thus obtaining a sequence {¥} } of
half-spaces in aff (C') such that

(111) C= thNE;L'

For every h € N, we now take a half-space Xj, of R™ satisfying ¥} =
Yn Naff(C). Then, once we observe that a finite number of half-spaces
$1...,%, of R™ can be found such that aff(C) = ﬂ}":lij, by (1.1.1), it
follows that

C = (mheNEh) ﬂil N...NY,,

which proves the theorem. m

Let C'C R"™ be convex. A supporting half-space to C is a closed half-
space containing C' and having a point of C' in its boundary. A non-trivial
supporting hyperplane to C is a hyperplane not containing C' which is the
boundary of a supporting half-space to C.

The following result is well known (cf. for example [R, Theorem 11.6]).

Theorem 1.1.7. Let C' be a convex subset of R", and let x € C. Then
there exists a non-trivial supporting hyperplane to C' containing x if and
only if z & ri(C).

We now define convex functions.

To do this, we first have to specify some rules to properly carry out
arithmetic operations in [—o0, +00].

Of course the result of arithmetic operations between real elements of
[—00, +00] is well defined, as well as the one between elements of [—o0, +0o0]
when no reasonable ambiguity may occur. Thus, for example, we naturally
accept to define +o00 as the result of expressions like 2+ (+00), and A-(+00),
when z € | — 00, 0], and A € ]0,+00]. Analogously, we define —oo as the
result of expressions like z + (—00), and A+ (—o0), when z € [—00, +00[ and
A € [—00, +o0.

On the contrary, expressions like 0 (4+00), 0 (—00), —00 4 (4+00), and
+00 + (—00) present a higher degree of ambiguity, and their values may
depend on the general context in which they are considered.

In the context of convex analysis, it is customary to set 0 - (+00) =
(+00)-0=0-(—00) = (—00)-0 =0, and to adopt the so called inf-addition
convention in which —oo + (4+00) = 400 + (—00) = +00.
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Under these rules, extended arithmetic obeys associative, commuta-
tive, and distributive laws, with the only exception of the equality

A (+00+ (=00)) = A+ (+00) + A+ (—00)

that no more holds when A\ < 0.

In addition, in the sequel we will take into account last upper bounds
and greatest lower bounds of possibly empty sets. In this case, as usual,
we set inf ) = +o0, and sup ) = —o0.

For every set U, and every F:U — [—00,+00] we define the effective
domain of F' as

domF = {x € U: F(x) < 400},

and the epigraph of F as
epiF = {(z,\) e U x R: F(z) < A}
It is clear that domF is the projection of epiF on U, in the sense that
domF = {z € U : (x,\) € epiF for some A € R}.

Let V' be a vector space, and C' C V be convex.
A function F:C' — [—o00, +00] is said to be convex if

Fltx+ (1 —-1t)y) <tF(z)+ (1—1t)F(y) for every x, y € V, t € [0,1].

From a geometrical point of view, we can say that F' is convex if F
along the convex combinations of two points of its domain lies below the
convex combinations of its values.

Equivalently, it is easy to verify that F' is convex if and only if

k k
F thCj S thF(IJ)
j=1 Jj=1
k

for every k € N, z1,...,z € C, t1,...,1; € [0,4+00] such that th =1.
j=1

If F:C — [—00,400], then the function

F(z) ifzeC

F:er»—>{+OO ifreV\C

is convex if and only if C' is convex, and F' is a convex function. Con-
sequently, it is not restrictive to consider functions defined on the whole
V.
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A convex function F:V — [—o00,4+00| that takes the value —oo in a
point zg behaves in a very special way. In fact it is easy to verify that in this
case for every x1 € V there exists ¢t; € [0, 1] such that F((1 —t)zo+tz1) =
—oo for every t € [0, 1], F((1 — t)xg + tz1) = +oo for every t € |¢;, 1], and
F((1 —t1)zo + t121) may be any value in [—o0, +00].

It is clear that if {Fy}lecr is a collection of convex functions defined
on V, then © € V — supges Fy(x) too is convex. On the contrary, the
minimum of two convex functions need not be convex.

It is also obvious that, given C' C V| it results that C is convex if and
only if I¢ is a convex function.

Proposition 1.1.8. Let V' be a vector space, and F:V — [—o0,+00].
Then F' is convex if and only if epiF' is convex.

Proof. Let us first assume that F' is convex, and let (x1,A1), (z2,A2) €
epiF, t € [0,1]. Then

F(t$1 + (1 — t)(Ez) < tF(.’El) + (1 - t)F(ﬂ?g) <t\ + (1 - t))\g,

that is t(z1, A1) + (1 — t) (a2, A2) € epiF'. Because of this, the convexity of
epiF follows.

Conversely, let us assume that epiF’ is convex, and let z1, o € V,
t € [0,1]. We can clearly assume that x1, z2 € domF. Let A1, A2 € R be
such that (21, A1), (22, A2) € epiF. Then, because of the convexity of epiF,
we have that t(z1, A1) + (1 — t)(22, A2) € epiF, that is

F(t$1 + (1 — t)l‘g) <t + (1 — t))\g.

Because of this, the proof follows letting A; decrease to F(x1), and Ao
decrease to F(z3). B

Besides convexity, also lower semicontinuity properties can be charac-
terized by means of epigraphs.

Proposition 1.1.9. Let (U, 7) be a topological space, and F:U — [—o0,
+00]. Then F is T-lower semicontinuous if and only if epiF is closed in the
product topology of U x R.

Proof. Let us first assume that F' is 7-lower semicontinuous. Let us prove
that U x R\ epiF is open.

Let (ZII(), /\0) e U x R\epiF. Then )\ < F(Io), and let \ € ]/\o,F(JC())[.
By the 7-lower semicontinuity of F, there exists I, € N (zg) such that
A < F(x) for every x € I, and therefore I, x ]A\g — 1, A[ turns out to be
a neighborhood of (xg, A\g) having empty intersection with epiF. Because
of this, it follows that U x R \ epiF is open.

Conversely, let us assume that epiF is closed. Then {(z,\) € U x R.:
F(x) > A} is open in the product topology of U x R, and, consequently,
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for every A € R, {x € U : F(z) > A} is open in U. This yields the m-lower
semicontinuity of F'. m

We now study some properties of convex, lower semicontinuous func-
tions.

Proposition 1.1.10. Let W be a topological vector space, and F: W —
[—00, 400] be convex and lower semicontinuous. Assume that F takes the
value —co. Then F(W) C {—o0, +00}.

Proof. Let g € W be such that F(zp) = —o0, and let 1 € W. Then, by
the lower semicontinuity, and the convexity of F', it follows that

F(z1) <liminf F(z) < lim iEfF(txo +(1—-t)x) <
t—0

r—T1
< limégf{tF(xo) + (1 —t)F(x1)} = —c0 + F(x1),
s

from which the nonfiniteness of F'(z1) can be deduced.
By the arbitrariness of x1, the proof follows. m

The following result yields a characterization of convex, lower semi-
continuous functions.

Theorem 1.1.11. Let W be a locally convex topological vector space,
and F:W — [—o00,+0o0]. Then F is convex, lower semicontinuous, and
identically equal to —oco provided F(xz) = —oo for at least one x € W if
and only if

F(z)=sup{L(z)+c: LeW', ceR, L+c<F in W} for every z € W.
Proof. For the sake of simplicity, let us set

ssx €W sup{L(z)+c: LeW', ceR, L+c<Fin W}
Then it is clear that s is convex, lower semicontinuous, and that
(1.1.2) s(z) < F(x) for every x € W.

Consequently, if F(z) = s(z) for every x € W, it follows that F is
convex and lower semicontinuous. In addition, if F(z) = —oco for some
z €W, then {L(z)+c: LeW' ceR, L+c< Fin W} =0, and F,
being the pointwise supremum of the empty set, is identically equal to —oo.

Conversely, let us assume that F' is convex, lower semicontinuous, and
that, if F'(z) = —oo for some x € W. Then F(x) = —oo for every z € W.

We can assume that domF # (), otherwise the theorem is obvious.
Then, by Proposition 1.1.8, and Proposition 1.1.9, epiF’ turns out to be
nonempty, convex, and closed in the product topology of W x R.
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Let g € W. If F(x9) = —oo, then F(z) = —oo for every z € W
and {L(z)+c: Le W, ce R, L+c¢ < Fin W} = (. Consequently,
s(x) = —oo for every x € W, and the theorem follows.

If F(zg) > —o0, let A\g € | — 00, F(z0)[, then (zo, o) & epiF', and by
the Separation Theorem, there exist (L,a) € W’ x R\ (0,0) and ¢ € R
such that

(1.1.3) L(xo) + alo < ¢ < L(x) + a for every (z,\) € epiF.

Moreover, since (1.1.3) yields

1
a > % - XL(ac) for every x € domF, A > max{F(x),0},

we obtain that a > 0.
Let us consider separately the cases a > 0, and a = 0.
If @ > 0, we have that

c 1
(1.1.4) Ao < P EL(xO),

and by the second inequality in (1.1.3) with (z, A\) = (z, F(z)), that

1
(1.1.5) - —L(z) < F(zx) for every « € domF.
a a

By (1.1.4), and (1.1.5) we deduce that £ — 2L is just one of the func-
tionals appearing in the definition of s, thus, by (1.1.4), we conclude that

Ao < s(zg) for every A\g € | — o0, F(x0)],
and therefore that
(1.1.6) F(zo) < s(xo) for every xo € W, provided a > 0.
In particular, since (1.1.3) yields
L(zo) + aro < ¢ < L(zg) + aF(zg) if ¢ € domF,

we conclude that, if g € domF, then a > 0, and by the previously treated
case, that

(1.1.7) F(z) < s(x) for every z € domF.

If now a = 0, let yo € domF, and py € | — 00, F(yp)[. Then, by (1.1.7),
we get M € W', and b € R such that

(1.1.8) po < M(yo) +b M(zx)+b < F(z) for every x € W.
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Therefore, by (1.1.8), and (1.1.3) with a = 0 we conclude that
M(z) +b+~(c— L(z)) < F(z) for every z € W, v > 0,
and
(1.1.9) Ao < M(x0)+ b+ ~v(c— L(zo)) provided 7 is large enough.

Consequently, for -y sufficiently large, M +b+~y(c— L) is just one of the
functionals appearing in the definition of s, thus, by (1.1.9), we conclude
that

Ao < (o) for every Ao € | — oo, F(zo)],

and therefore that
(1.1.10) F(xo) < s(xg) for every g € W, if a = 0.

In conclusion, by (1.1.2), (1.1.6), and (1.1.10) the identity between F
and s follows. This completes the proof. m

When W = R™ Theorem 1.1.11 can be specified, as shown in the result
below.

Proposition 1.1.12. Let f:R™ — | — 0o, +0] be convex and lower semi-
continuous. Then there exist {ap} C R™ and {b,} C R such that

f(z) =sup{an - z+ b : h € N} for every z € R™.

Proof. Of course we can assume that f is not identically equal to +o0.

The proof is similar to the one of Proposition 1.1.6 with C' = epif, but
by using Theorem 1.1.11 in place of the Separation Theorem.

Let us first assume that int(domf) # @, and let us observe that in this
case int(epif) # 0.

Let {(zn, A1)} be a countable dense sequence in R"*1\ epif. Then, by
Theorem 1.1.11, for every h € N there exist a;, € R™ and b, € R such that

An <ap-zp+by, ap-z+by, < f(z) for every z € R™.
It is obvious that
(1.1.11) sup{ap -z + b, : h € N} < f(2) for every z € R™.
To prove the reverse inequality, let z € R™ and A < f(z), and set
E = {t(z,\) + (1 —t)y : y € int(epif), ¢t € [0,1[}, then E turns out to

be nonempty and open. Moreover, since R"*! \ epif is open, we can find
h € N such that (2, \;) € (R** \ epif) N E.

©2002 CRC Press LLC



At this point the same arguments of the proof of Proposition 1.1.6
apply, and we deduce that A < aj - 2 + by, and hence that

(1.1.12) f(z) <sup{ap-z+ by : h € N} for every z € R".

By (1.1.11) and (1.1.12), the proposition follows when int(domf) # 0.

If now int(domf) = @), we can regard domf as a subset of aff(domf),
and repeat the above considerations by replacing R™ with aff(domf), and
int(domf) with ri(domf), thus obtaining {a),} € R™ and {b},} C R such
that

(1.1.13) f(z) =sup{ay, - z + b}, : h € N} for every z € aff(domf).

In order to complete the proof, let us assume for the moment that
f(z) > 0 for every z € R™.
Let us take {a}} € R™ and {b}/} € R such that

(1.1.14) ajy - z+ by = 0 for every z € aff(domf),
(1.1.15) sup{ajy - 2 + bj} = +oo for every z € R™ \ aff(domf),
heN

then, since f(z) = 400 for every z € R™\aff (dom ), the proposition follows
from (1.1.13)=-(1.1.15) with {as} given by the union of {a},} and {a}}, and
{bn} by the one of {b},}, and {b}}.

Finally, if f changes sign, it suffices to take a € R™ and b € R such
that a -z + b < f(z) for every 2 € R", whose existence is guaranteed by
Theorem 1.1.11, and consider f —a-(-) —b. &

Finally, we discuss on the lower semicontinuity of convex functions in
Banach spaces.

Theorem 1.1.13. Let W be a Banach space, and F: W — [—o0,+00] be
convex. Then the following conditions

i) F is W-lower semicontinuous,

ii) F is weak-W -lower semicontinuous,

iii) F is sequentially weak-W -lower semicontinuous

are equivalent

Proof. Follows from Theorem 1.1.2, and the obvious remark that, if iii)

holds, then for every A € R the set {x € W : F(x) < A} is sequentially
closed in the weak-W topology. m

Theorem 1.1.14. Let W be a separable Banach space, and F: W' —
[—00,+00] be convex. Then F is weak*W'-lower semicontinuous if and
only if F' is sequentially weak*-W'-lower semicontinuous.

Proof. Follows from Theorem 1.1.4, and the obvious remark that, if F' is
sequentially weak™-TW’-lower semicontinuous, then for every A € R the set
{y € W’ : F(y) < A} is sequentially closed in the weak®-W' topology. m

Convex functions, even if defined just by means of vectorial properties,
naturally enjoy nice continuity properties.
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Proposition 1.1.15. Let W be a topological vector space, and F: W —
[—00, +00] be convex. Assume that there exists a nonempty open subset A
of W such that sup 4 F < +oo. Then int(domF') # (), and F is continuous
in int(domF).

Proof. It is clear that int(domF’) # 0.
First of all, let us prove that
(1.1.16) for every = € int(domF') there exists 4, € N(x)

such that sup F' < +o0.

x

To do this, let 9 € A. Then for every x € int(domF) there exists
r > 1 such that z = g + r(x — zg) € int(domF).

Let us set A, = 2z+ (1 —1)A. Then A, € N (), < (y — 2z) € A for
every y € A, and by the convexity of F, we have

F(y):F(%z+ (1—%) Til (y—%z)) < %F(z)—i— (1—%)sgpF

for every y € A,

from which (1.1.16) follows.

Let now z( € int(domF). Let us prove that F is continuous in x.

It is not restrictive to assume that zg = 0.

Let Ap be given by (1.1.16) with = 0, and set Iy = AgN(—Ap). Then
I is a symmetric neighborhood of 0.

Let € € ]0,1], and = € ely. Then, since %x and —%x € Iy, by the
convexity of F' it follows that

(1.1.17) F(z) <(1—-¢e)F(0) +¢eF (éx) <(1-¢)F(0) + €sup F,

from which the continuity of F' in 0 follows when F'(0) = —oc.
On the other side, if F'(0) € R, again the convexity of F' yields

F(z) > (1+¢)F(0) — eF <—éx> > (1+2)F(0) —sup F

from which, together with (1.1.17), it follows that |F'(z) — F(0)| < e(F(0)+
sup 4, F') whenever x € €1y, namely that F' is continuous in 0.
Because of this, the proof follows. m

The above continuity property of convex functions can be improved
under stronger assumption on the topology of W.
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Proposition 1.1.16. Let W be a normed space, and F: W — ]| — 0o, +00]
be convex. Assume that there exists a nonempty open subset A of W such
that supy F' < 4o00. Then int(domF') # (), and F is locally Lipschitz in
int(domF).

Proof. It is clear that int(domF’) # 0.
Let us prove that for every zy € int(domF') there exist 6 > 0 and
M > 0 such that Bs(xg) C int(domF'), and

(1.1.18) |F(z) — F(y)| < M|z —y| for every z, y € Bs(xo).

Let ¢ € int(domF'). Then, by Proposition 1.1.15, F' is continuous in
zo. Consequently there exists § > 0 such that supp, ;) F —infp,; () F <
+00.

If now z, y € Bjs(xo) satisfy = # y, let us set z = y + |besyl(y — ).

Then z € Bas(xo), and, since y = |,’E|i;|y-‘1‘-5

F we conclude that

z+ |z_‘;|+5ac, by the convexity of

|z — | J
F - F < — 2 F -  F _F —
(1) = (@) € AL P () 4 s F (@)~ F(2)
|z =y 1 .
=— 2 (F(z)-F(x)<=| sup F— inf F||z—

for every x, y € Bs(xo).

Because of this, up to an interchange of the roles of z and y, (1.1.18)
follows with M = %(supB%(mo) F —infp, 2y F). m

By Proposition 1.1.16 we deduce the following results.

Theorem 1.1.17. Let f:R™ — [—00, 00| be convex. Then f is continu-
ous in ri(domf).

If, in addition, f(z) > —oo for every z € R", then f is locally Lipschitz
in ri(domf).

Proof. By considering the restriction of f to aff (domf), it is not restrictive
to assume that int(domf) # 0.

Let zg € int(domf), and z1,. .., z9» be the vertices of an open cube Q
satisfying zp € @, and @ C int(domf). Then, since every point of Q is a
convex combination of z1,..., zon, by the convexity of f it follows that

on

flz) < Zf(zj) for every z € Q.

j=1

Because of this, it follows that supg, f < +o00. Consequently, Proposi-
tion 1.1.15 and Proposition 1.1.16 apply, and the theorem follows. m
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Theorem 1.1.18. Let W be a Banach space, and F: W — | — o0, +00| be
convex and lower semicontinuous. Assume that int(domF') # (). Then F is
locally Lipschitz in int(domF').

Proof. Let z9 € int(domF'), and, let us set C = {& € W : F(z) <
F(zo) +1}. Then C turns out to be convex, and closed.

For every y € W let us define f,:t € R — F(xo + t(y — 20)). Then,
fy turns out to be convex, and, since zg € int(domF'), it results that 0 €
int(domf,). Moreover, by Theorem 1.1.17, f, turns out to be continuous
in 0, and we have proved that

for every y € W there exists €, > 0 such that

{zo +tly — o) 1t €] —ey,ey[} € C.

Because of this, we have that W = Upenzo + A(C — z¢), where, for
every h € N, zg+ h(C — xy) is closed. Consequently, by the Baire Category
Theorem, there must be hg € N such that int(xzg + ho(C — x)) # 0, from
which we conclude that int(C') # 0.

In conclusion, since obviously supjy ) # < +oo, the proof follows
from Proposition 1.1.16. m

Finally, we introduce recession functions.

To do this, we first recall that g: R™ — [—o00, +00] is said to be posi-
tively 1-homogeneous if g(0) = 0, and g(tz) = tg(z) for every z € R™ and
t> 0.

Let f:R™ — | — 00, +00] be convex with domf # @, and zy € domf.
Then it is well known that, due to the convexity of f, for every z € R™ the
function ¢ € ]0, +oo[ — w is increasing. Consequently, the limit
lim; 4 oo % f(z0 + tz) exists for every z € R", and we define the recession
function f° of f by

[ 2R lim f(z0+tz) — f(20)
: Jim - .

In some sense, the recession function of f describes the growth speed
f(zo+2) _ +00

B

at infinity of f. In particular, it is obvious that if lim,_,
then
0 ifz=0
e ={

+o0o if 2 # 0.

In the following result the main properties of recession functions are
summarized.

Proposition 1.1.19. Let f:R™ — | — 0o, +00] be convex with domf # ),
zo € domf, and let f>° be the recession function of f. Then f°° is convex,
and positively 1-homogeneous.
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If, in addition, f is also lower semicontinuous, then f°° is independent
of zg, and is lower semicontinuous.

Proof. By the convexity of f it follows that
A t 1-A t —
£+ (1= Nzg) = lim LG ) L= Vi F ) = flzn)

t——+o0 t —
t——+oo t t—4oo t

=Af>(21) + (1 = A) f(22) for every z1, 20 € R™, A €]0,1],

and
Fo(A2) = A lim fleo +M2) = flzo) _y o flzo+52) = flz0)
t—4o0 )\t s——+o00 S
for every z € R™, A >0,

from which, once we observe that f°°(0) = 0, the first part of the proposi-
tion follows.

If now f is also lower semicontinuous, by Theorem 1.1.11 there exist
{a;}iez CR™ and {b;};cz C R such that a; - 2+ b; < f(z) for every i € T
and z € R", and sup;c7 a; - 2 + b; = f(z) for every z € R". Consequently,
it turns out that

t2) — - ta: - by —
foo(z) = sup f(ZO + Z) f(ZO) — sup sup a; - 20 +ta;-z+0; f(ZO) _
t>0 t t>0 i€T t
. + b, —
= sup {ai-z—&—sup di 20T 0 f(zo)} =supa,; - z for every z € R",
€T >0 t ieT

from which also the last part of the proposition follows. m

§1.2 Convex and Lower Semicontinuous Envelopes in R"”

For every S C R™ we denote by co(S) the convex hull of S, i.e. the
intersection of all the convex subsets of R™ containing S. It is clear that
co(S) is the smallest convex set containing S.

For example, a closed cube of R" is the convex hull of its vertices.

If £ < n, and xg,x1,...,2, are k + 1 points in R™ such that the
vectors x1 — xg,...,Tr — Tg are linearly independent, then the k-simplex
with vertices xg,x1,...,xx is the convex hull of the points zq, z1, ..., .

It is easy to prove that every k-simplex is closed, and that every n-
simplex has nonempty interior.

Actually, if S = co({zo,x1,...,2,}) is an n-simplex, then a point
x € int(9S) if and only if z = Z?:o tjx; where t1,...,th41 € ]0,+o00[, and
Z?:o t; = 1. Consequently, it is easy to verify that 9.5 = U}_gco({zo, .. .,
Tj—1,%j41,--.,Tn}), and therefore that 95 is made up by n+ 1 (n — 1)-
simplexes.

The structure of the convex hull of a set is described by Carathéodory’s
theorem.
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Theorem 1.2.1 (Carathéodory’s Theorem). Let S C R" be nonem-
pty. Then every point of co(S) can be expressed as a convex combination
of at most n + 1 points of S.

Proof. First of all, let us prove that

(1.2.1) co(S) = { zm:tjxj :m € N,

m
xj €8, t; €[0,400[ for every j € {1,...,m}, th = 1},
j=1

To see this, let us denote by ¥ the right-hand side of (1.2.1). Then it
is easy to verify that ¥ is convex, and that S C X, from which it follows
that co(S) C 3.

Conversely, again by the convexity of %, it follows that every convex
subset of R™ containing S must necessarily contain ¥ too, that is ¥ C co(S).
This concludes the proof of (1.2.1).

Let now z € co(S). Then (1.2.1) yields m € N, z1...,2,,, € S, and
t1 ..., tm € [0, 4+00[ satisfying Z;”:I t; = 1 such that x = Z;”:l tjz;.

If m = n + 1 the proof is complete.

If m < n+1 the theorem follows by choosing additional arbitrary points
Tty - s Tyl €5, and typ1 = ... = tpy1 = 0 to get that z = Z;L;l tiz;.

If m > n+ 1, the points 3 — x1, ..., %, — x1 are linearly dependent,

and we can find s}, ..., s, € R, not all equal to 0, such that sh(ze —z1) +

r m
...+ 8., (xm — 1) = 0. Consequently, there exist s1,...,sm € R, not all
equal to 0 and verifying 327", s; = 0, such that 327", s;2; = 0, and

m

(1.2.2) w=Y timj=Y timi—cy sjpi= > (t; —cs;)z;
j=1 Jj=1 J=1

Jj=1
for every c € R.

In particular, since s; # 0 for some ¢ € {1,...,m} and Z;nzl 55 =
0, there exists ¢ € {1,...,m} such that s; > 0. Therefore, by taking
c= min{% :j € {1,...,m} such that s; > 0} in (1.2.2), say for example
c= %, it follows that ¢t; —cs; € [0, +oof for every j € {1...,m}, Z;n:z(tj*
csj) =1, and x = 37705 (t; — csj)x;. We have thus expressed x as a convex
combinations of m — 1 points of S.

By iterating such argument m —n — 1 times, we arrive to express x as
a convex combinations of n + 1 points of S, thus getting the theorem. m

Remark 1.2.2. Carathéodory’s theorem can be improved if S C R” is
nonempty and connected. In fact it can be proved that in this case the
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elements of co(S) can be expressed as convex combinations of n points of
S (cf. for example [RW, 2.29 Theorem)]).

We now introduce some types of envelopes of functions.
For every f:R™ — [—00,+00] we denote by cof the convex envelope
of f,i.e. the function

cof:z € R" — sup{¢(z) : &: R" — [—00, +00] convex, ¢ < f in R"}
It is clear that cof turns out to be convex, and that
(1.2.3) cof(z) < f(z) for every z € R".

It is clear that, if S C R", then cols = I.(s)-

Proposition 1.2.3. Let f: R" — [—o00,+0o0]. Then
cof(z) =inf{\ € R: (z,\) € co(epif)} for every z € R".
Proof. For the sake of simplicity, let us set
i:z€ R" — inf{A € R: (2, \) € co(epif)}.

By exploiting the convexity of co(epif), it is easy to verify that i is
convex. Moreover, since obviously i(z) < f(z) for every z € domf, we
immediately deduce that i(z) < f(2) for every z € R™. Consequently

(1.2.4) i(z) < cof(z) for every z € R™.

Conversely, if ¢:R™ — [—o00,400] is convex, and ¢ < f in R™, then
epif C epi¢ and, being this last set convex, co(epif) C epi¢. Consequently,

¢(z) =inf{\ € R: (2, ) € epip} < i(z) for every z € domg,
from which, once we observe that dom: C domg¢, it follows that
(1.2.5) cof(z) <i(z) for every z € R™.
By (1.2.4), and (1.2.5) the proof follows. m

By Proposition 1.2.3 it follows that for every f:R"™ — [—o0,+0o0] it
results

(1.2.6) dom(cof) = co(domf).
Proposition 1.2.4 below yields also information about epigraphs of con-

vex envelopes.
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Proposition 1.2.4. Let f: R" — [—o00,+0o0]. Then
co(epif) C epi(cof) C co(epif).

Proof. Since epi(cof) is convex and contains epif, it turns out that
co(epif) C epi(cof).

Let now (z,A) € epi(cof). Then, by Proposition 1.2.3, it follows that
for every & > 0, there exists A; € |cof(2), A + [ such that (2, ;) € co(epif),
that is (z, A) € co(epif). Consequently, epi(cof) C co(epif), and the proof
follows. m

Remark 1.2.5. We remark that, in spite of Proposition 1.2.4, it is not
true, in general, that for a given f:R"™ — [—o00,+00], epi(cof) = co(epif),
as it can be easily checked by considering f:z € R" — { 2] ifz#0 for
which epi(cof) = {(z,\) € R2 : X > |z|}, whilst co(epif) = {(z,\) € R? :
A=z} \{(0,0)}.

By Carathéodory’s theorem we infer the following representation result

for convex envelopes.

Theorem 1.2.6. Let f:R"™ — [—00, +00]. Then

cof () =

n+1
:inf{thf(zj) :z; € R", t; €[0,+o0[ for every j € {1,...,n+ 1},
j=1

n+1 n+1
th =1, thzj = z} for every z € R".
j=1 j=1

Proof. Let z € co(domf). Then (1.2.6) yields cof(z) < 400, from which,
by using also Proposition 1.2.3, it follows that {A € R : (2,\) € epif} #
0. Let A € R be such that (z,A) € co(epif). Let us prove that there
exist (21, A1)+, (Znt1, Ans1) € co(epif), and sq,.. sn+1 € [0, +o00[ with
Z?;l sj = 1 such that z = fl s;z;, and A > Z"fll 5j

By Carathéodory’s theorem applied to epif we get that (z,A) can be
expressed as a convex combination of n + 2 points of epif, say (z1, A1), - -,
(Zn+2; An+2). Let S be the convex hull of {(z1, A1), ..., (zn+2, Ant2)}. Then
it may occur that (z,\) € 85, or that int(S) # 0 and (z,\) € int(S).

f (z,\) € 39S, and S is an (n + 1)-simplex, then, once we recall
that 95 is made up by n + 2 n-simplexes, we obtain that (z, ) belongs
to one of these. Consequently, (z,A) turns out to be a convex combina-
tion of at most n + 1 points of {(z1,A1),..., (#n+2, Ant2)}, say for ex-
ample (z1, A1), ..+, (#n+1, Ant1), from which we deduce the existence of
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S1y.++y8nt1 € [0 +o0[ with Z"il s; = 1 such that z = Z?Jrll s;2;, and
+1
A= Z"_l SjA;
(z A) € 65’, and S is not an (n + 1)-simplex, then the vectors
(z2,A2) — (21, A1), -« -y (Zna2, Anta) — (21, A1) are not linearly independent.

Therefore, by using an argument similar to the one exploited in the proof of
Carathéodory’s theorem, we infer that (z, A) can be expressed as a convex
combination of k + 1 vectors of {(z1, A1), ..., (2n+2, Ant2)}, where k is the
dimension of aff({(z1, A1), ..., (2n+2, Ant2)}), and k < n + 1. Because of
this, the same above conclusion holds also in this case.

On the other side, if int(S) # () and (2, \) € int(S), the line (in R"*1)
through (z,\) orthogonal to the hyperplane A = 0 meets 9S in two points
(z,M\1), (2,M2) with Ay < A < Ay. Consequently, since (2, A1) € 95, by
the previously considered case there exist n + 1 points of {(z1,A1),...,

(Zn+2; Ant2)}s bay fOY example (21,A1), -+, (Zng1, Ang1), and s1, ..o, s €

[0, +00[ with Zj 1 8; = 1 such that z = Z?Jrl sjz; and A > A =
n+1

Zj:l Sj)\j'

In conclusion, from what we have already proved, and (1.2.3) we get
that for every A € R such that (z, A) € co(epif) it results

n+1 n+1

A > ZS]‘)\J‘ > Zs]f(zj) >
j=1 j=1
n+1
> inf{ thf(zj) 1 tj € [0,400[ for every j € {1,...,n+ 1},
j=1

n+1 n+1
th:]., thZj:Z}>
j=1

Jj=1

n+1
> inf { thcof(zj) :t; € [0,400] for every j € {1,...,n+ 1},
j=1

n+1 n+1

th =1, thzj = z} > cof(z),
j=1 j=1

from which, together with Proposition 1.2.3, the proof follows when z €
co(domf).

If now z ¢ co(domf), then (1.2.6) implies that cof(z) = +o00. On the
other side, let us observe that, for every z1,...,2,41 € R", t1,...,th41 €
[0, +00[ such that Z”H t; =1, Z"Ht iz; = z, it cannot be f(zj) < +oo
for every j € {1,...,n+ 1}, otherwme z would be in co(domf). Conse-
quently z; ¢ domf for some j € {1,...,n + 1}, and the proof follows also
in this case. m
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We now introduce lower semicontinuous envelopes.
For every f:R"™ — [—o00,+0o0] we denote by sc™ f the lower semicon-
tinuous envelope of f, i.e. the function

sc fizeR" —
sup{o(z) : ¢: R" — [—00, +00] lower semicontinuous, ¢ < f in R"}.
It is clear that sc™ f turns out to be lower semicontinuous, and that
(1.2.7) sc” f(z) < f(z) for every z € R".
Moreover, it is easy to verify that

(1.2.8) sc” f(z) = liminf f(y) for every z € R",
y—z

from which it follows that
(1.2.9) domf C dom(sc™ f) C domf.
Given S C R", it results that sc™Is = I5.
Proposition 1.2.7. Let f: R" — [—o0,+0o0]. Then
sc” f(z) =inf{\ € R: (2, )\) € epif} for every z € R".
Proof. For the sake of simplicity, let us set
jiz €R" i~ inf{A € R: (2,\) € epif}.

If p: R™ — [—00, +00] is lower semicontinuous, and ¢ < f in R™, then
epif C epi¢g and, being this last set closed by Proposition 1.1.9, epif C epi¢.
Consequently,

¢(z) =inf{A € R: (2, ) € epip} < j(z) for every z € dome,
from which, once we observe that domj C dom¢, it follows that
(1.2.10) sc¢” f(z) < j(z) for every z € R™.

Let us now prove that j is lower semicontinuous. To do this, we take
z € R", {2} € R™ with z;, — z, and observe that, possibly passing to
subsequences, it is not restrictive to assume that the limit limp_, oo j(21)
exists and is in [—oo,+oo[. Call A such limit and let, for every h € N,
jn € R be such that j(zn) < jp, and limp— 100 jn = A. Then, for every
h € N, there exists A, € R such that (zp, \n) € epif, and J(zn) < A < Jn-
Consequently (z,\) € epif, and j(z) < A, i.e. j is lower semicontinuous.

In addition, since clearly j(z) < f(z) for every z € domf, we conclude
that j(z) < f(z) for every z € R", and therefore that

(1.2.11) Jj(z) <sc” f(z) for every z € R™.
By (1.2.10), and (1.2.11) the proof follows. m

By Proposition 1.2.7 we deduce the following corollary.
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Proposition 1.2.8. Let f: R" — [—o0,+0o0]. Then
epi(sc™ f) = epif.
Proof. Let (z,)\) € epif. Then A\ > inf{u € R : (z,1) € epif} and by
Proposition 1.2.7, it turns out that A > sc™ f(z), i.e.
(1.2.12) epif C epi(sc™ f).

Conversely, let (z,A) € epi(sc™ f). Then sc™ f(z) < A and, for every
p > X and € > 0 there exists z,. € R"™ such that |z,. — 2| < ¢, and
f(zu,e) < p. This yields (z,., ) € epif, from which we conclude that
(z,\) € epif, i.e. that
(1.2.13) epi(sc™ f) C epif.

By (1.2.12), and (1.2.13) the proof follows. m

§1.3 Lower Semicontinuous Envelopes of Convex Envelopes

In the present section we start the study of the composition of convex and
lower semicontinuous operators.
First of all we observe that, by using (1.2.8), it is easy to deduce that
the lower semicontinuous envelope of a convex function is again convex.
For every f:R"™ — [—o00,400] we denote by f** the function defined
by

(1.3.1) [ zeR"—

sup{a-z+c:a€R" ceR, a-(+c< f(C) for every ¢ € R"}.

It is clear that f** turns out to be convex and lower semicontinuous,
and that

(1.3.2) () < cof(z) < f(z) for every z € R™.
Moreover, by using Theorem 1.1.11, it is easy to prove that

(1.3.3) 7 (2) = sup{o(z) :
¢:R"™ — [—00, +00] convex and lower semicontinuous, ¢ < f in R"}
for every z € R"™.

Finally, we remark that f** agrees with the bipolar of f (cf. for exam-
ple [ET, Chapter I, Proposition 4.1]).

The following result provides a description of the structure of the func-
tion defined in (1.3.1).
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Proposition 1.3.1. Let f: R" — [—o0,+0o0]. Then
sc”(cof)(z) = f**(z) for every z € R™.

Proof. Since f** is convex, lower semicontinuous, and f** < f. it is clear
that

(1.3.4) 7 (2) <sc (cof)(z) for every z € R".

Analogously, since sc™ (cof) too is convex, lower semicontinuous, and
sc” (cof) < f, by (1.3.3) it follows that

(1.3.5) sc”(cof)(z) < f**(z) for every z € R™.
By (1.3.4), and (1.3.5) the proof follows. m

The following result collects some elementary properties of the function
defined in (1.3.1).

Proposition 1.3.2. Let f: R" — [—00,+0o0]. Then

ri(domf**) = ri(dom(cof)) = ri(co(domf)),
(1.3.6) {rb(domf**) = rb(dom(cof)) = rb(co(domf))

and
(1.3.7) [ (2) = cof(z) for every z € R™ \ rb(co(domf)),
(1.3.8) 7 (z) = lim cof(tz+ (1 —t)zp)

t—1—

for every z € R", zp € ri(co(domf)).
Proof. By Proposition 1.3.1, and (1.2.9) we obtain that

dom(cof) C domf** C dom(cof),

from which, together with Proposition 1.1.5 and (1.2.6), equalities in (1.3.6)
follow.

Equality in (1.3.7) comes from Proposition 1.3.1, and the continuity
properties of convex functions (cf. Theorem 1.1.17) from which it follows
that sc™ (cof) agrees with cof except perhaps in rb(dom(cof), and from
(1.3.6).

Finally, since by the lower semicontinuity and the convexity of f**,
and by (1.3.6) it follows that

7 (2) <liminf f**(tz 4+ (1 — t)zp) < limsup f**(tz + (1 — t)zp) <
t—1— t—1—
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< limsup{tf™(z) + (1 = 1)f"(20)} = [ (2)

t—1—
for every z € R", zg € ri(co(domf)),

equality (1.3.8) follows from (1.3.7), once we observe that for every z € R™
and zg € ri(co(domf)), tz+(1—t)zp € R™\rb(co(domf)) for every t € [0, 1]
sufficiently close to 1. m

In particular, given f: R™ — [—o00, +0o0], by (1.2.6), (1.3.2), and Propo-
sition 1.3.2 we deduce that

(1.3.9) co(domf) C domf** C co(domf).

By using Carathéodory’s theorem we can prove a representation result
for the function defined in (1.3.1), in the same order of ideas of Theorem
1.2.6.

Lemma 1.3.3. Let f:R" — [0,+00], and assume that hmz—wo% =

+00. Then there exists ¥: [0, +oo[— [0, +o00[ increasing, convex, and satis-
fying lim;_, 4o ¥(t)/t = +oo such that
I(|z|) < f(z) for every z € R".

Proof. The assumptions on f yield that for every k € NU{0} we can find

ri € [0, +00[ such that % > k for every z € R™\ B, (0). Moreover, it is

not restrictive to assume that {r;} is strictly increasing and diverging.
Because of this, the function

—+o0
it € (0,400~ > (k= )Xy ru((t)
k=1
turns out to be increasing, finite, and satisfying lim; . 4., ¥(t) = 400 and

(1.3.10) f(2) > |z|¥(|z|) for every z € R"™.

Let .
9:t €0, +oo[l—>/ P(s)ds
0

Then ¢ is increasing, finite, convex, and satisfies
(1.3.11) I(t) < tap(t) for every t € [0, 4o0].

Moreover, since the monotonicity of ¥ implies that

liminf 20 > Jim </ W(s)ds + (¢ —r)p(r )) — ()

t—+oco t——+o0 t
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for every r € [0, +o0],
and lim;_, 4o ¥(t) = 400, we immediately obtain that lim; o 9(¢)/t =
+o00.
Finally, from (1.3.10), and (1.3.11) we conclude that
¥(|z]) < f(z) for every z € R",
that completes the proof. m

Theorem 1.3.4. Let f:R"™ — ] — 00, +00]. Assume that f is bounded
from below, and that lim,_, o % = +400. Then

n+1
[ (2) = min{ thsc_f(zj) czj € R", tj €0, +00]
j=1
n+1 n+1
for every j € {1,...,n+ 1}, th =1, thzj = z} for every z € R".
j=1 j=1

Proof. First of all, let us observe that, possibly considering f —infgr~ f, it
is not restrictive to assume that f(z) > 0 for every z € R™.

Let us preliminarily prove the theorem under the additional assump-
tion that f is lower semicontinuous, i.e. f =sc™f.

Let us prove that cof is lower semicontinuous.

To do this, let z € R™, {z,} € R™ be such that z; — z. Let us observe
that, since cof(£) > 0 for every £ € R", possibly passing to subsequences
we can assume that the limit limp_, 4 cof(zp) exists and is finite.

By Theorem 1.2.6, for every h € IN there exist sp1,...,8,n41 €
[0, +00[, with Z?Jrll spy; = 1, and zp1..., 2041 € R” satisfying ;1:11

. . . 1 .
Sh,j%n,; = zp such that the limit limp_,4 o Z;Lil sn,; f(zn,;) exists, and
n+1

(1.3.12) hm Zshjf 2 ;) = hm cof(zp).

Let ¥ be given by Lemma 1.3.3. Then, by (1.3.12), and the finiteness
of limp_— 4 o cof(2p), we infer that

n+1
(1.3.13) lim sup Z sh,;9(|zn,4]) < 4o0.
h—+o00 =1
Possibly passing to subsequences, we have that for every j € {1,...,n+

1}, there exists s; € [0,4o00[ such that s, ,; — s;, and ZnH s; = L
Moreover, again possibly passing to subsequences, and by thtlIlg I={je
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{1,...,n+1}: 2z ; — ¢ forsome (f e R"}and J = {j € {1,...,n+1}:
liminfp_, 40 |21,;] = +00}, we can assume that TU J = {1,...,n+ 1}.
Therefore, by (1.3.13), and the growth properties of ¥J, it turns out that

lim sup Sh,i|2h,i| = lim sup Sh,i§(|zh’i|) lim |Zh z|
e h—too =oe D{lenl)
n+1
< lim sup Z St zpj]) lim ————= =0 for every i € J.
Mﬁ+a3j - 1,7 | JD +“>ﬁﬂZhA) s

from which we also conclude that s; = 0 for every i € J.

Because of this, and by setting (; = 0 for every i € J, we deduce that
anl s;(; = z, from which, together with (1.3.12), the lower semicontinuity
of f , and Theorem 1.2.6, we obtain that

(1.3.14) lim inf cof (25,) = 1,593;52 sh.gf(zn5) =
jel
n+1
>th1nfshjf Zh,j) >Zsjf ¢) Zsjf(Cj)ZCOf(z)a
Jjel j=1

that is the lower semicontinuity of cof.
In particular, (1.3.14) with z;, = z for every h € N, and Theorem 1.2.6,
yield that

n+1
1nf{2t f(zj) - z; € R", t; € [0,400] for every j € {1,...,n+ 1},

Jj=1

n+1 n+1 n+1
St 3t o[ = 3
j=1 j=1 j=1

from which it follows that for every 2 € R"™ the minimum Imn{X:""r1 tif ( )
:z; € R", t; € [0,+oc0[ forevery j € {1,...,n + 1}, Enﬂ
Z"'Ht iz; = z} is attained.

In conclusion, from what was just proved, Proposition 1.3.1 and The-
orem 1.2.6 we obtain that

?

n+1

7 (2) =sc (cof)(z) = cof(z —mm{ Zt f(z) 1z € R, t; € [0, 400]

n+1 n+1
for every j € {1,...,n+ 1}, th =1, thzj = z} for every z € R",
j=1 j=1
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that proves the theorem when f is lower semicontinuous.

In order to treat the general case, let us preliminarily observe that
f* <sc™f < f from which, since clearly (f**)** = f**, it follows that
(1.3.15) 7 (z) = (sc™ )" (2) for every z € R™.

Let us now prove that

(1.3.16) lim 5 ()

Z— 00 |Z|

:+OO

To do this, we know that for every k € N there exists 1, € [0, +o00]
such that f(z) > k|z| for every z € R™\ B,,(0). Consequently, since

0 ifze B, (0)
flz) > {k|z| if z € R"\ B,, (0) for every k € N,

we conclude that
sc” f(z) > max{0, k|z| — kry} for every k € N.
Because of this, (1.3.16) follows.

In conclusion, by (1.3.15), (1.3.16), and the previously treated case
applied to sc™ f, we obtain that

n+1
[7(2) = (sc™ )™ (2) = min{ thsc_f(zj) cz; € R, t; € [0,400]
j=1
n+1 n+1
for every j € {1,...,n+ 1}, th =1, thzj = z} for every z € R",
j=1 j=1

which proves the theorem. m

Remark 1.3.5. We observe that Theorem 1.3.4 can be no more true if

the boundedness from below condition on f is dropped, as it is verified by
0 if z=0

considering f:z € R — < In|z| if0<|z| <1. In this case it turns out
+oo if1<|z|

that f**(z) = —oo for every z € R, whilst min{tsc™ f(z1)+ (1 —t)sc™ f(z2) :

te0,1], 21, 22 €R, tzg + (1 —t)zg = 2} = +§ g'i‘;;

z € R.

On the other side, Theorem 1.3.4 becomes trivially true if f cannot take
the value +o00, and is not bounded from below in the sense that sc™ f(zp) =
—oo for some zg € R™. In fact, in this case, there can be no a € R",

for every
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¢ € R such that o - ¢ + ¢ < f(¢) for every ¢ € R", otherwise it would be
a-C+c<sc™ f(C) for every ¢ € R™ too. Therefore f**(z) = —oo for every
z € R™. Moreover, since for every z € R™ we can always take zp as one of
the vectors z; in the right-hand side of the claim of Theorem 1.3.4, it turns
out that the minimum described there is attained, and equal to —oo.

Remark 1.3.6. We point out that, in particular, the claim of Theorem

1.3.4 holds provided f: R™ — | — 0o, +-00] satisfies lim,_, o, f|(zz|) = 400, and

is lower semicontinuous.

§1.4 Convex Envelopes of Lower Semicontinuous Envelopes

In the present section, given f:R"™ — [—o00,+00], we carry out the study
of co(sc™ f) and, in particular, of its relationships with f**.

The following result collects some elementary properties of convex en-
velopes of the lower semicontinuous envelopes.

Proposition 1.4.1. Let f:R"™ — [—00,+00]. Then co(sc™ f) is convex,
and

(1.4.1) [ (2) <co(sc™ f)(z) < cof(z) for every z € R",

ri(dom(co(sc™ f))) = ri(dom f**) =

= ri(dom(cof)) = ri(co(domyf)),
rb(dom(co(sc™ f))) = rb(dom f**) =

= rb(dom(cof)) = rb(co(domf)),

(1.4.2)

(1.4.3) co(sc™ f)(z) = f*(2) = cof(z) for every z € R™ \ rb(co(domf)).

Proof. It is clear that co(sc™ f) is convex.
Since obviously sc™ f < f, we immediately obtain that

(1.4.4) co(sc™ f)(z) < cof(z) for every z € R™.

On the other side, being f** lower semicontinuous, we have that f** <
sc” f, from which, taking into account the convexity of f**, we conclude
that
(1.4.5) 7 (2) < co(sc™ f)(z) for every z € R™.

By (1.4.4) and (1.4.5), inequalities in (1.4.1) follow.

Conditions (1.4.2), and (1.4.3) follow from (1.4.1), and Proposition
1.32. m
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In spite of (1.4.3), the following examples prove that, in general, for a
given function f, co(sc™ f) and f** may be different.

Example 1.4.2. Let n = 2, and let f be defined by

20 — 2172 if 20 >0 and 0 < z1 < z0e™ 2
fi(z1,22) ER? = S 0 if zo0 > 0 and ze™** < 21
400 otherwise.

Then dom f is convex, f is upper semicontinuous in R? and locally Lipschitz
in dom f. Moreover, it is clear that

f**(21,22) = {

whilst it is easy to see that

0 if z7>0and 29 >0

. for every (21, 22) € R?,
+o00 otherwise very (21, 22)

22 if 22 >0and 2 =0
co(sc™ f)(z1,22) = ¢ 0 if 20 >0and z; >0 for every (z1,2) € R?.
+00 otherwise

Note that in this case co(sc™ f) is not lower semicontinuous.

In the example below we observe that co(sc™ f) and f** can be different
also when f is bounded in domf, and dom f is very regular.

Example 1.4.3. Let n = 2, and let f be defined by

+00 ) if 21 <0 ,
fi(z1,22) € R? — { 1—ze2 Hf0<zn §26722
0 if 23 > e 2,

then domf is convex, f is bounded and upper semicontinuous in R?, and
locally Lipschitz in domf. Moreover it is clear that

sk if 21 <0
(2, 22) = {(;LOO ;f : >0 for every (21,22) € R27

whilst co(sc™ f) is given by

+o0o ifz1 <0
co(sc™ f)(z1,22) = { 1 if 2y =0 for every (z1,2) € R%
0 if 21 >0

Also in this case co(sc™ f) is not lower semicontinuous.

In spite of the above examples, for a given f:R" — ] —o00,+0o0],
co(sc™f) can be constructed from f by means of a suitable use of the
** operator.

To do this, we say that f:R"™ — | — 0o, 400] is locally bounded from
below if for every compact set K C R’ there exists cxk € R such that
f(z) > ¢k for every z € K.
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Proposition 1.4.4. Let f:R" — | — 00, +00]. Assume that f is locally
bounded from below. Then

co(sc™ f)(z) = nllren;(f +1g,,0)) " (2) for every z € R".
Proof. It is clear that
(1.4.6) E (4 Ig,0)™(2) < (F + Tgu0)™* () <

<sc (f +1g,0))(2) =sc” f(z) for every z € R", k € N with z € Q(0).

Moreover, being {(f + Ig,,0))**(2)} decreasing for every z € R", the
function inf,en(f + Ig,,(0))"* turns out to be convex. Consequently, by
(1.4.6) we deduce that

(1.4.7) in%(f +1g,,00))(2) < co(sc™ f)(z) for every z € R™.
me

In order to prove the reverse inequality, we fix z € R™ and m € N,
and observe that f + I, (o) is bounded from below. Then by Theorem
1.3.4 applied to f +Ig, (o), and Theorem 1.2.6, we get 27*,..., 2% € R",

. tm € [0, 4oof with S =1, ZnH t2)" = z such that

j=1"%j Jj=1"J
n+1 n+1
(f +10,.0)(2) = > _t'sc™(f +1q,.0)(z Ztmsc [z
j=1

> co(sc™ f)(z) for every m € N.

Therefore, as m diverges, we conclude that

(1.4.8) nlbrg\l(f +1g,.0)) " (2) > co(sc™ f)(z) for every z € R".

By (1.4.7) and (1.4.8) the proof follows. m

Remark 1.4.5. We observe explicitly that Proposition 1.4.4 continues
to hold if we replace the cubes considered there with another increasing
sequence of sets covering R™. In particular, it is easy to see that

f(f+1g, )" = ,i%fq(f + Lgtm(A—z)

meN

whenever f:R"™ — [—o0,+00], A € Ag, 20 € A.

Let f:R™ — [—00,400]. We now propose some conditions in order to
have identity between the co(sc™ f) and f**.
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Remark 1.4.6. Let f:R"™ — [—00, +00]|. Then, by using the convexity of
co(sc™f), (1.3.3), and (1.4.1), we deduce that the following conditions are
equivalent

co(sc™ f)(z) = f**(z) for every z € R",

co(sc™ f) is lower semicontinuous.

Proposition 1.4.7. Let f:R" — [—o0,+00]. Assume that co(domf) is
an affine set. Then co(sc™ f) = f**.
In particular, co(sc™ f) = f** if co(domf) = R"™, or if domf = R".

Proof. By (1.2.6), cof turns out to be convex and finite in co(domf).
Therefore, since our assumptions imply that co(domf) = ri(co(domf)), by
using Theorem 1.1.17, cof turns out to be continuous in co(domf).

On the other side, our assumptions imply also that co(domf) is closed.
This, together with the continuity of cof in co(domf), yields the lower
semicontinuity of cof on the whole R™, and hence that cof(z) < f**(z) for
every z € R™

Because of this, and (1.2.7) the first part of the proposition follows.

The second part follows from the first one, since, by (1.2.3), domf C
co(domf). m

Proposition 1.4.8. Let f:R"™ — | — 0o, +00]. Assume that f is bounded
from below, and that lim,_, &) — 4 oo, Then co(sc™ f) = f**.

EN
Proof. By Theorem 1.3.4, and Theorem 1.2.6 we obtain that
n+1
f**(2) = min { thsc_f(zj) tz; € R, t; €10, 400]
j=1
n+1 n+1

for every j € {1,...,n+ 1}, th =1, thzj = z} = co(sc™ f)(2)
j=1 j=1

for every z € R",

which proves the proposition. m

Remark 1.4.9. Let f:R"™ — [—00,400]. Then, by (1.4.3) of Proposition
1.4.1, we deduce that

7 (2) = co(sc™ f)(z) = cof(z) for every z € R" \ rb(co(domf)),

therefore, to prove identity between co(sc™ f) and f**, we have to prove
only their coincidence in rb(co(domf)).
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In the following results, given f: R™ — [—00, +00], we prove that coin-
cidence of co(sc™ f) with f** depends, in some cases, only on some geometric
properties of domf. We also characterize the convex subsets of R™ that
are convex hulls of effective domains of functions for which such coincidence
holds.

We start with some results of local nature.

Proposition 1.4.10. Let f:R"™ — ] — 00, +00], and zo € rb(co(domf)).
Assume that f is locally bounded from below, and that there exists a
non-trivial supporting hyperplane to co(domf) having bounded intersec-
tion with rb(co(domf)) and containing zo. Then

co(sc™ f)(z0) = [ (20).

Proof. Let H be the non-trivial supporting hyperplane to co(domf) having
bounded intersection with rb(co(domf)) and containing zg, ¥ be the closed
half-space containing co(domf) whose boundary is H, and r > 0 be such
that

(1.4.9) H Nrb(co(domf)) C By(zo).

Let m € N be such that Bs,-(2z9) C Q. (0).

By using the local boundedness from below assumption, let us take an
affine function o with a(z) < (f + Ig,,(0))(2) for every z € R". Moreover,
let n € R with n < min{a(zg),0}, and, for every 7 > 0, let . be an affine
function verifying

ar,(z) < ar(2) < alz)

for every 1, T2 €0, 4+o00[ with 7 < 7, z € int(X%),
lim, 1o ar(2) = —o0 for every z € int(X),
ar(z) = a(z) for every 7 > 0, z € H.

(1.4.10)

Finally, for every 7 > 0, let us set P = {z € R" : a;(2) = n}, and denote
by X the closed half-space containing zy whose boundary is P;.
Let us prove that

(1.4.11)  there exists 79 > 0 such that ¥ N X, Nco(domf) C Ba,(20).

To do this we argue by contradiction. We assume that for every h € N
there exists z;, € ¥ N X Nco(domf) with |z, — 29| > 2r. Then, by the
convexity of co(domf), we get that

=2
(1.4.12) En =20+ QTﬁ € co(domf) for every h € N.
Zh — 20

It is clear that |£p, — 29| = 2r, that by (1.4.10) limp—, 4 oo dist (§p, H) = 0,
and that there exist {&5, } C {&n} and € € R™ such that limg— 1o &p, = &
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Then, once we observe that co(domf)N H = rb(co(domf))NH, by (1.4.12)
it follows that £ € rb(co(domf)) N H and |€ — 2| = 2r, contrary to (1.4.9).

Let 79 be given by (1.4.11). Then, since f(z) = 400 for every z € R"\X
and f(z) > 0> g for every z € X, it turns out that

(1.4.13) ar(2) < f(z) for every z € (R"\ Z)U (R™\ 24,).

Moreover, since Ba,(z0) C Qm(0), by (1.4.11) we get that f(z) = +oo for
every z € (XN X,) \ @n(0), and hence, taking into account also (1.4.10),
that

(1.4.14) aq(2) < f(2) for every z € XU,

In conclusion, by (1.4.13) and (1.4.14), we have that o, (z) < f(z) for
every z € R”, from which, together with (1.4.10), we infer that

(1.4.15) az0) = ar,(20) < f**(20).

By (1.4.15), since « is a generic affine function with a < f + I, (o)
on R"™, we conclude that (f + Ig, (0))"*(20) < f**(20) and, by (1.4.1) of
Proposition 1.4.1, that

[ (20) < co(se™ f)(20) < (f +1q,.0)) " (20) < f7"(20),
which proves the proposition. m

Proposition 1.4.10 can be inverted. To do this, let us first prove the
following result.

Lemma 1.4.11. Let C be a convex subset of R™, and H be a non-trivial
supporting hyperplane to C. Then H Nrb(C) is unbounded if and only if
H Nrb(C) contains a half-line.

Proof. It is clear that, if H Nrb(C') contains a half-line, then H Nrb(C) is
unbounded.

Conversely, let us assume that H Nrb(C) is unbounded, let zg € H N
rb(C), and observe that it is not restrictive to assume that zo = 0.

For every h € N there exists z;, € H Nrb(C) with |z,| > h, and set
& = zn/|zn|. Then, since 0 € HNC, by the convexity of H N C we deduce
that &, € H N C for every h € N. Let & € R” be such that |£| = 1 and,
up to subsequences, &, — &. Then, being H N C closed, we get also that
e HN C.

Let us prove that the half-line {t&y : t > 0} is contained in H N C, this
will conclude the proof since H N C = H Nrh(C).

Let ¢t > 0. Then it is clear that t£y € H, so we only have to prove that
téy € C.
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Let r > 0, and take h € N be such that |z,| > ¢, and &, € Br/ 2t)(&o0)-
Then, since 0 € C, by the convexity of C' we conclude that t£;, = T | 2, € C,
and that &, € B, 3(t£o). Because of this, we infer that B,.(t£o) ﬁrl( ) #0
for every r > 0, i.e. t§o € C. m

Proposition 1.4.12. Let C be a convex subset of R™, H be a non-trivial
supporting hyperplane to C, and assume that co(sc™ f)(z) = f**(z) for
every f: R™ — [0, +o00] with co(domf) = C and every z € HNrb(C). Then
H Nrb(C) is bounded.

Proof. If n = 1 the proposition is certainly true since rb(C) is empty or
bounded.
If n > 1 let us prove that if H Nrb(C) is unbounded, then

(1.4.16) there exist f:R"™ — [0, +00] with co(domf) =

and zZ € H Nrb(C) such that co(sc™ f)(Z) # [ (Z).

To do this let I be the half-line with I C H Nrb(C) given by Lemma
1.4.11, and assume for the moment that H = {z e R": 21 =0}, {r € R™ :
zZ1=23=...=2p1=0, 2z, > =1} Cl, and that C C{z € R™: z; > 0}.

As in Example 1.4.2, let fy be given by

Yo —y1e¥? if yo >0 and 0 < y; < yoe™¥2
foi (y1,92) €R* = 0 if y1 > max{yze™"2,0}
+o00 if 41 <O,

and set
fi(z1,.0,2n) € R = fo(z1,2n) + Ic(21,. .., 20).

Then co(domf) = domf = C.

Let zZ € ri(C') with Z, =0, and set S = {tZ4+ (1 —t)z : z € | with z, >
0, t €]0,1]}. Then it is clear that S C ri(C), and hence that
(1.4.17) for every z € S there exist &, {3 € S, 7 € [0, 1] such that

z=(1-7)& +7& and f(&) = f(&) = 0.
Therefore, by the convexity of cof, (1.2.3), and (1.4.17), we conclude that

(1.4.18) cof(2) < (1 —7T)cof(&1) +Teof(&2) < (1 —7)f(&1) +7f(&) =

for every z € S
and, by Proposition 1.3.1 and (1.4.18), that

(1.4.19) £7(0,0,...,0,2,) =0 for every z, > 0.
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Let now m € N, and observe that the affine function ay,: (21,...,2,) €
R" — z, — €™/?2 is such that a,, < fo + Ig,.0) < f+1g,.) on R", and
that this yields

(1.4.20) Zn = am(Z) < (f +10,.0))" ()
foreverymeN, ze{zeR":z1=20=... = 2,1 =0, 0< 2, <m/2}.
In conclusion, by (1.4.19), (1.4.20), and Proposition 1.4.4 we obtain
that
f7(Z) < co(se™ f)(Z)
foreveryze {zeR" 121 =20=...=2,-1 =0, 2z, >0}
provided that H ={z € R": 21 =0}, {z€R" 121 =29 = ... = 2,1 =
0, z, > —1} C I, and that C C{z € R": z; > 0}.

In order to prove (1.4.16) in the general case, let A: R™ — R™ be a one-
to-one affine mapping such that A(H) = {( € R": {1 =0}, A(l) D {¢C €
R':G=G=...=(-1=0, ¢, >—-1},and A(C) C{CeR": G >0}
Then, by (1.4.16) in the just considered particular case, we deduce the
existence of a function g: R™ — [0, 400] with co(domg) = A(C) such that

(1.4.21) co(sc™g)(¢) > g**({) for some ¢ € A(H) N A(C),

and set f = g(A(")).

By using Theorem 1.2.6 it is not difficult to verify that cof(z) =
cog(A(z)) for every z € R™, from which, together with Proposition 1.3.1,
we conclude that

(1.4.22) 7 (2) = g**(A(z)) for every z € R".

Analogously, for every m € N, we have that f + Ig, o) = g(A(:)) +
IA(Qm(O))(A('))a and therefore that (f-l—IQm(o))** = (g+IA(Qm(0)))**(A(~)).

Therefore by Proposition 1.4.4, and Remark 1.4.5, we infer that

(1.4.23) co(sc™ f)(z) = (f +1g,, )" (2) =

inf
meN

(9+La(Qum (o))" (A(2)) (9+1q,.0) " (A(2)) = co(sc™ g)(A(2))

for every z € R".
By (1.4.23), (1.4.21), and (1.4.22) we obtain that

inf = inf
meN meN

co(sc™ f)(Z) > f**(Z) for some Z€ HNC,
from which (1.4.16) follows. This completes the proof. m

By the previous results we deduce the following characterization of
global nature.
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Theorem 1.4.13. Let C' be a convex subset of R"™. Then the following
conditions are equivalent

(1.4.24) for every zy € rb(C') there exists a non-trivial supporting

hyperplane H to C containing zy such that H Nrb(C) is bounded,

(1.4.25) co(sc™ f) = f** for every f:R"™ — | — 00, +0]
locally bounded from below, with co(domf) = C,

(1.4.26) for every non-trivial supporting hyperplane H to C,

H Nrb(C) is bounded.

Proof. Let us prove that (1.4.24) = (1.4.25) = (1.4.26) = (1.4.24).

It is clear that (1.4.24), together with Remark 1.4.9, and Proposition
1.4.10, implies (1.4.25), and that, by Proposition 1.4.12, (1.4.26) follows
from (1.4.25).

Finally let zg € rb(C), and let H be the non-trivial supporting hy-
perplane to C containing 2o given by Theorem 1.1.7. Then (1.4.26) yields
(1.4.24). m

By Theorem 1.4.13 we deduce the following corollaries.

Corollary 1.4.14. Let f:R™ — ] — 0o, +0] be bounded from below, and
assume that domf is bounded. Then co(sc™ f) = f**.

Proof. Follows by Theorem 1.4.13 once we observe that, if domf is
bounded, so is also rb(co(domf)). m

Let C be a convex set, we recall that C is said to be strictly convex if
for every z1, z2 € rb(C) with 21 # 29 and ¢ € ]0, 1], it results tz1+(1—t)22 €
1i(C) (or, equivalently, if every point of rb(C) is an extreme point of C; cf.
for example [R, Chapter 18]).

Corollary 1.4.15. Let f:R"™ — | — 00, +00] be locally bounded from be-
low. Assume that co(domf) is strictly convex. Then co(sc™ f) = f**.

Proof. Follows from Theorem 1.4.13, once we observe that if co(domf)
is strictly convex, then for every non-trivial supporting hyperplane H to
co(domf), H Nrb(co(domf)) consists of only one point. m

Corollary 1.4.16. Let f:R — ] — 00, +00] be locally bounded from below.
Then co(sc™ f) = f**.
Proof. Let us observe that in one dimension rb(co(domf)) can be empty,
or made up by one or two points.

If it is empty, then co(domf) = R, and the corollary follows from

Proposition 1.4.7. Otherwise rb(co(domf)) is bounded, and Theorem 1.4.13
applies. m
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Chapter 2

Elements of Measure
and Increasing Set Functions
Theories

The present chapter is devoted to the treatment of set functions in a mea-
sure theoretic framework (cf. for example [Col, [DuS], and [Ru] for general
references on the subject).

In the first sections we recall the main concepts and results from mea-
sure theory needed in the book, together with the basics of LP spaces.

The final sections deal mainly with increasing set functions, that are
introduced, and whose main properties are established. In particular the
notion of inner regular envelope is recalled, and some abstract criteria ensur-
ing the identity of an increasing set function with its inner regular envelope
are established. The link between increasing set functions and measure
theory is furnished by the De Giorgi-Letta Extension Theorem (cf. [DM2],
[DGL]), which is also proved in our setting.

Applications are made to functionals, depending on open sets and func-
tions, that are increasing when the second variable is fixed.

§2.1 Measures and Integrals

Let Q be a nonempty set. We say that a collection £ of subsets of  is a
o-algebra on € if

0eé,
O\ A € & whenever A € &,
UpenA4yp € € whenever A, € € for every h € N.

Given a o-algebra on Q, we say that the couple (Q2,&) is a measure
space.
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If © is a topological space, we denote by B(Q2) the intersection of all
the o-algebras on  containing the open subsets of 2. It turns out that
B(2) is actually the smallest o-algebra on €2 containing the open subsets of
Q, and is called the o-algebra of the Borel subsets of §, and its elements are
called Borel sets. In this way, (2, B(€2)) becomes a measure space, called
Borel measure space.

Let (£2,£) be a measure space. In order to define what we are going
to call measures, we introduce the two different notions of positive mea-
sure and of real or vector measure, that, even if similar, enjoy different
peculiarities, and play different roles.

If 4u: £ — [0, +00], we say that p is a positive measure on £ (or simply a
measure if no confusion may occur) if () = 0, and p is countably additive
in the sense that

(2.1.1) n(Uf=A Z/‘ (Ap)

whenever Ay,...,Ap,... € £ are pairwise disjoint.

Ifm € N, and p: £ — R™, we say that u is a measure on £ (or simply a
measure if no confusion may occur) if (@) = 0, and p is countably additive
in the sense of (2.1.1). When m = 1, we say that u is a real measure, when
m > 1 we say that p is a vector measure.

We observe that, in the case of measures, the series in (2.1.1) must nec-
essarily converge absolutely since the union in the left-hand side of (2.1.1)
does not depend on the order in which the sets Aq,..., Ay, ... are listed.

For every (real or vector) measure p on £, we define the total variation
|| of u as the set function defined by

+o0
lp): A €& — sup{ Z |w(Ap)| : Ap € € for every h € N,
h=1

Ay, Ao, ..., Ap,... pairwise disjoint, UZ?iAh = A}.

Moreover, if p is a real measure, we define the positive part u* of p,
and the negative part u~ of p as the set functions defined by

) 1A e ) )

+. A4
purrAel— 5 , : 5

Then it is well known that the total variation of a measure turns out
to be a positive measure taking only finite values, and

|u(A)] < |u|(A) for every A € €.
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Consequently, so do the positive and negative parts of a real measure,
and

0< 1 (A) < [ul(A), 0 < = (A) < [ul(A) for every A € €.

It is also well known that the total variation is a norm on the set of
the measures on £, and that, once we endow it with the topology induced
by | - |, this set actually becomes a Banach space.

We say that a positive measure p is o-finite if Q@ = UpenAp, where,
for every h € N, Aj, € £, and u(Ap) < +o0.

If (1,&1), (Q2,&>) are measure spaces, the intersection of all the o-
algebras on 1 x Qg containing {A; x As : Ay € &, Ay € &} is denoted,
with an abuse of notation, by £1 X &;. It turns out that £ x &, is actually the
smallest o-algebra on Q0 x Q5 containing {4y x Ay : A1 € &1, Az € &}, and
is called the product o-algebra of £; and &;. In this way, (21 X Q2, &1 X &2)
becomes a measure space, called product measure space of (Q1,&;) and
(Qs,&9).

If Q is a topological space, a positive measure (respectively a measure)
w on B(Q) is said to be a Borel positive measure (respectively a Borel
measure) on §). A Borel positive measure on (2 that is finite on each compact
subset of (Q is said to be a Radon positive measure on {).

The restriction of Lebesgue measure to B(R™) is the classical example
of Radon positive measure on R".

For every E C R"™, and 6 > 0 let us set

400
n— Wnp—1 . . n— o0
HY H(E) = = 1nf{ > (diam(E;)" ' : E C UV E;,

Jj=1

diam(E;) < ¢ for every j € N},

where w,_; denotes the Lebesgue measure of the unit ball in R*~1.
Then, fixed E C R", it is easy to verify that § € ]0, +oo[ — Hy '(E)
is increasing, consequently the limit

n—1 : n—1
HHE) = tim Hy T (B)

exists and is in [0, +0c]. The value H"~!(E) is called the (n—1)-dimensional
Hausdorff outer measure of E, and the set function £ € B(R") — H""!(E)
is a Borel positive measure called (n — 1)-dimensional Hausdorff measure,
and denoted by H" 1.

Roughly speaking, H"~! measures “(n — 1)-dimensional” sets. The
meaning, and the analysis of such property is quite elaborate, and goes be-
yond the scopes of the present book. Nevertheless we recall that H*~1(E) =
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+oo for every E € B(R™) such that int(E) # 0, and that H"~'(E) agrees
with the classical surface area of E provided E € B(R") is regular smooth
surface.

Because of this, H"~! turns out to be a Borel positive measure on R”,
but not a Radon positive measure R".

We say that a subset S of a topological space € is o-compact if E =
U+°° K}y, where K}, is compact for every h € N.

We denote by M(2) the set of the Borel real measures on €2, and,
consequently, by (M(€2))™ the one of the Borel vector measures on 2 (with
values in R™). Analogously, we define Mioc(2) = Nkcompact, kcaM (K),
i.e. the set of the real valued functions defined in B(K) and that are in
M(K) for every compact subset K of Q. The meaning of (Mje.(Q2))™
is now obvious. The elements of (Mjec(2))™ are usually called Radon
measures on §2, to be more precise Radon real measures if m = 1, or Radon
vector measures if m > 1.

We emphasize that |pu|(2) < +o0o whenever p € (M(Q))™, and that
|| (K) < +oo for every compact subset K of  whenever p € (Mo (92))™

It is worth while to remark that Radon measures are not, in general,
measures in the sense of the above definition, at least because they are
defined on Ugcompact, kcoB(K), that can also not be a o-algebra. Never-
theless, the following result can be proved.

Proposition 2.1.1. Let p € (Mi.())™. Then |u| can be extended from
Ukcompact, kcoB(K) to B(Q), and the resulting set function is a Radon
positive measure on §2.

If in addition sup{|u|(K) : K compact subset of Q} < +oo, then u
can be extended from Uk compact, kcoB(K) to B(Q?), and the resulting set
function is a Borel measure.

Proof. For every B € B(Q) let us set
|ttle(B) = sup{|p|(BN K) : K compact subset of Q}.

Then it is clear that |u|.(B) = |u|(B) for every B € B(Q) such that B C K
for some compact set K, and that |p|.(K) < +oo for every compact set K.
If now {Bj} C B(Q2) are pairwise disjoint, we have that

+oo 400
(K U BR) = > |ul(K 0 By) <) |ple(Br)

for every compact subset K of

from which we obtain that

(2.1.2) |ule (U B Z |le(Bh).
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On the other side, it turns out that for every h € N, and every \;, € R
with A\, < |p|e(Br) there exists a compact set K, such that A\, < |p|(KpN
By,). Consequently, for every m € N, we deduce that

DA < D |ul(Kn 0 Br) = ul (Ui Kn) 0 (UFZy Ba)) < |ule (U2 Br),

from which, letting first \j, increase to |u|(By,) for every h € {1,...,m},
and then m increase to +oo, it follows that

“+oo

(2.1.3) > lple(Br) < |ule(Uf2S Bh).
h=1

From (2.1.2), and (2.1.3) we conclude that |u|. is also countably addi-
tive.

If now sup{|p|(K) : K compact subset of Q} < +o00, arguments simi-
lar to the one above exposed imply that the set functions

pl:B e B(Q) — sup{uT(BNK): K compact subset of Q},
and

p, B € B(Q) — sup{p~ (BN K) : K compact subset of Q}
are in M(Q), and extend respectively u™ and p~. Therefore u — u_ is
the desired extension of y. m

If p € (Mioc(2))™, we will always perform the extension process de-
scribed in Proposition 2.1.1, and continue to denote with the same symbols
||, and p the Radon positive measure, and the Borel measure given there
as extensions of |u|, and p. Consequently, given u € (Mjoc(2))™, we can
think to |p| as to a Radon positive measure, and, provided sup{|p|(K) :
K compact subset of Q} < +00, to p as to a Borel measure.

We now define integrals.

Let (©2,€) be a measure space.

A function u: Q) — R is said to be simple if there exist m € N,
c1,...,cn € R, and Sq,...,5, C Q pairwise disjoint such that u(z) =
dojey cixs; () for every o € Q. A simple function u = 3777 ¢;jxs; is said
to be simple £-measurable if Sj € £ for every j € {1,...,m}.

Let now u be a positive measure on .

In order to properly define integrals, we assume, as usual in measure
theory, that 0 - (+00) = 0.

For every simple £-measurable function u = Z;n:l cjxs,; we define the

integral [, udp of u over Q as

m

/ udpy = chu
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It is well known that such definition is well posed, in the sense that it
does not depend on the particular choice of the values ¢; and of the sets .S;
used to represent u.

If now u: Q2 — [0, 00|, we define the integral [, udy of u over Q as

/ud,u:
Q

= sup {/ sdp : s simple E-measurable, s(z) < u(x) for every z € Q} .
Q

When u: Q — [—00,+00], we say that u is y-summable on Q if [, [u|dp
< +o00.

Again when u: Q) — [—o0,+00], we say that u is p-integrable on € if
fQ uTdp < 400 or fQ u~dp < +oo, where ut and u~ are respectively the
positive and the negative part of u defined by

utix € Qv max{u(r),0} u :z € Q+— —min{u(z),0}.

In this case, we define the integral fQ udp of u over Q as

/udu:/u+du—/u_du.
Q Q Q

If uy,...,un are p-integrable, and u = (uq,..., uy), we set fQ udp =

(Jouadp, .., Jo umdp).

If now p is a real measure, and u is |p|-summable on 2, we have
obviously that [, udu®™ < [, uld|u| < +oo, and [, udp™ < [, |uldp| <
+o00. Consequently we can define the integral fQ udp of u over § as

/udu:/udu"'—/udu_.
Q Q Q

Finally, if 4 = (1, ..., ttm) is a vector measure, and u is |p|-summable
on Q, we set [udp = ([qudpr,. .., [qudpm). If = (p1,..., pm) is a
measure, and u = (uq,...,Uy) is such that |u| is |p|-summable on Q, we

set Jqudp =370 [o ujdp;.

In conclusion, we observe that if y is a positive measure on £ and w is
p-integrable on Q, or if u is a measure on £ and w is |pu|-summable on €2,
then the integral [ 4 udp is well defined for every A € £, and

/udu:/uXAdu.
A Q

We point out that, simply by looking at the above definitions, no as-
sumption on the functions involved seems to be needed, and in this setting
even some elementary properties of the integral can be proved. For exam-
ple, the result below follows directly from the definition of integral.
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Theorem 2.1.2 (Monotonicity and Additivity of the Integral). Let
(Q, &) be a measure space. Then,
i) if p is a positive measure on &, it results that

/udug/vdu
Q Q

whenever u, v are p-integrable on ), and u(x) < v(x) for every x € (Q,

/ud,ug/udu
A B

whenever u: Q — [0,4+00], and A, B € £, satisfy A C B,

/ udp = /udqu/ udp
AUB

whenever u: 2 — [0,4+00], and A, B € £ are disjoint.

ii) if p is a measure on &, and u is |p|-summable on Q, it results that

[t < [ fula

/ cudp = c/ udy for every ¢ € R,
Q Q

/ udp = / udp —|—/ udy whenever A, B € & are disjoint.
AUB A B

In spite of Theorem 2.1.2, other basic properties of the integral needed
in order to deal with a reasonable theory fail to be true if no additional
hypotheses are assumed on the functions to be integrated. For example this
happens for the linearity property, as it can be easily checked by means of
simple examples.

To overcome such difficulties, the notion of measurability of a function
is introduced. It provides a quite natural and general tool, that allows the
development of a complete and flexible theory of integration provided it is
concerned with measurable functions.

Because of this, we will deal mainly with integrals of measurable func-
tions, even if occasionally the integral of non-necessarily measurable ones
might be taken into account.

Let (Q,&) be a measure space. A function u:§) — [—o0, +00] is said
to be £-measurable if u=!(A) € £ for every open set A C [—o0,4+00]. It is
well known that the measurability property is equivalent to the requirement
that u=1(JA, +o0]) € & for every A € R, as well as u=1(B) € & for every
B € B([—o0, +0]). If §2 is a topological space, a B(2)-measurable function
is called a Borel function.
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It is easy to verify that, if u, v: Q) — [—o00, +00] are £-measurable, and
J: ][00, +00] — [~00, +-00] is Borel, then u + v, u - v, ¥, when defined, are
E-measurable, as well as f(u), max{u,v}, and min{u,v}. In particular so
is f(u) when f is continuous, and therefore so are |u|, [u|P with p > 0, u™,
and u™.

If {up} is a sequence of E-measurable functions on 2, then infpen up,
SUpyeN Uh, iminfy, .4 o up, and limsupy,_, o, un too are £-measurable. In
addition, it is easy to verify that a simple function u = 27;1 cjXs; is
E-measurable if and only if it is simple £-measurable.

Especially when in connection with integration theory, given a positive
measure p on &, equivalence classes of £-measurable functions are consid-
ered rather than £-measurable ones, being two £-measurable functions u
and ug defined on 2 equivalent if p({x € Q : ui(x) # u2(z)}) = 0. As
usual in this setting, equivalence classes of £-measurable functions are then
thought as functions defined in Q up to sets of zero measure.

Such feature suggests the introduction of the expression p-almost ev-
erywhere (p-a.e.) in §), to express that a given pointwise property holds for
every point in Q\ N with u(N) = 0.

So, given a sequence {up} of £-measurable functions on 2, and a &-
measurable function u on €, if limp_ 1 oo up(z) = u(x) p-a.e. in Q, then we
say that {up} converges to u p-almost everywhere in  (pu-a.e. in ).

The set of £-measurable functions on €2 can be endowed with a topology
that makes it a metric space, and, given a sequence {uy} of £-measurable
functions on €2, and a £-measurable function u on €2, it turns out that
up, — w in such topology if and only if

hliIE p{z € Q: |up(z) —u(x)| > e}) =0 for every € > 0.

When this happens, we say that {u,} converges to u in p-measure, or in
measure if no ambiguity occurs.

Convergence in measure of a sequence of £-measurable functions is
strictly linked to its almost everywhere convergence.

Proposition 2.1.3. Let (Q2,€) be a measure space, and u a positive mea-
sure on €. Let uy,...,up, ..., u be E-measurable functions on ). Then,

i) if () < 400, and up — u p-a.e. in Q, it turns out that up — u in
p-measure,

ii) if up, — w in p-measure, it turns out that there exists {up, } C {up} such
that up, — u p-a.e. in €.

The main properties of the integral of £-measurable functions are re-
called in the results below.

Theorem 2.1.4. Let (2, E) be a measure space, y a positive measure on £,
and u: Q — [0,+o0] be £-measurable. Then there exists a sequence {sp} of
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E-measurable, simple functions such that 0 < s1(z) < so(x)
limp,_s 4 oo sn(x) = u(z) for every x € 2, and

IN

A
£
&

lim spdp = [ udp.
h—too Jg hap /Q H

Proposition 2.1.5 (Linearity of the Integral). Let (2, &) be a measure
space, and 1 a measure on £. Then

/(au+bv)du:a/udu+b/vdu
Q Q Q

whenever u, v are £-measurable and |u|-summable on Q, and a, b € R.

Theorem 2.1.6 (Monotone Convergence Theorem). Let (£2,€) be a
measure space, and p a positive measure on €. For every h € N let up:Q —
[0,4+00] be E-measurable, and such that ui(z) < uz(z) < ... < up(z)...
for every x € Q. Then the limit limj,_, o [ undp exists, and

lim /uhd,u:/ sup updjs.
h=+o0 Jo Q heN

Theorem 2.1.7 (Fatou’s Lemma). Let (Q2,€) be a measure space, and
u a positive measure on €. For every h € N let up:Q — [0, +00] be &-
measurable. Then

/liminfuhdu Sliminf/ updp.
Q h— Q

h—+o0 +o0

Theorem 2.1.8 (Lebesgue Dominated Convergence Theorem). Let
(Q,€) be a measure space, and p a positive measure on €. For every
h € N let up: ) — [—00, +00] be E-measurable such that the limit u(z) =
limp, s 4 oo un () exists for p-a.e. x € Q, and supycn |un| 1S p-summable in
Q. Then

li — u|dp = 0.
i o =l

Consequently, the limit limj,_, | [, undp exists, and

li dyp = dp.
i = [

If now (21,&1), (Q2,E&) are measure spaces, and pi, e are o-finite
positive measures respectively on & and &, it turns out that, for every E €
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&1 x &y ppirirr € Y po({me € Qo @ (21,22) € E}) is £1-measurable,
vEp2xe € Qo — p1({z1 € Q@ (z1,22) € EY}) is E;-measurable, and

/SOE,ldMl:/ @E,2duz~
Ql QZ

The above equality allows the definition of a measure on &; x &, called
product measure of py and po, and denoted by p1 X pg, as

p1 X poi B € & x Ey vp1du =/ vE2ds.
Ql QZ

Of course the above definition implies that
p1 X po(E1 X Eg) = pu1(E1)pe(Es) for every By € &1, Ey € &s.

The following result describes integration in product measure spaces.

Theorem 2.1.9 (Fubini’s Theorem). Let (21, £&1), (Q2,&2) be measure
spaces, i1, 2 be o-finite positive measures respectively on £ and &, and
u be (&1 x E)-measurable. Then, the following facts hold:

i) if u takes its values in [0, +0o0], it turns out that the functions

T, € Qy — u(zy, xo)dps(xa), xo € Qg u(xy, xe)dp (x1)
Qz Ql

are respectively & -measurable and Ey-measurable, and that

(2.1.4) /Q (/Q u(ml,xz)dug(m2)> dpa (1) = /leszz wdpiy X iy =

= /Qz (/Ql u(xl,xz)dm(m)) dpa(w2),

ii) if u takes its values in R™, and [, ([q, [u(z1,22)|dpa(w2))dp(z1) <
+00 or [o ([q, lu(z1,x2)|dp (21))dpz(x2) < +oo, it turns out that

[ uldis i < e,
Q1 X0

iif) if [o, wq, luldpn x pa < 400, it turns out that [, |u(z1,22)|dus < 400
for pi-a.e. x1 € Q1 and le |u(x1,z2)|du1 < +oo for ps-a.e. xo € Qo, that

Ja, Ug, lu(@1, m2)ldpn (z1))dpz(z2) + [o, (Jo, [u(z, 22)dus(22))dpn (21) <
+00, and that(2.1.4) holds.

Finally, we recall the notions of translation of a function and of a
measure on a subset of R™.
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For every E C R”, every function u on E, and zy € R™ we define the
translated of u as

Tlxolu:x € E— x — u(z + 9).

For every 2 € B(R"), v € (M(2))™, and xzyp € R™ we define the
translated of v as

Tlxolv: A € B(Q — z¢) — v(zg + A).

Then it is easy to prove that for every v € (M(Q))™ and zy € R",
T[xo]v turns out to be in (M(Q2—x())™. Moreover, for every Borel positive
measure A on 2 and every A-summable function u on €2, it results that
T'[zo]u is T[zp]A-summable on Q —xzg, and by using standard approximation
results by means of measurable simple functions, that

(2.1.5) /Q | TlroJud(Tleo]) = / wd).

Q

§2.2 Basics on LP Spaces

This section provides a brief recall of the theory of LP spaces.

Let (Q,€&) be a measure space, {1 a positive measure on &, and p €
[1, +00].

If p € [1, +o00[, we denote by LP(£, ) the set of the (equivalence classes
of) &-measurable functions u on Q for which [, [u|Pdu < +o0. If p = 400,
L>(Q, i) is the set of the (equivalence classes of) £-measurable functions
u on £ such that esssupq|u| < +00. As usual, we think to the elements of
L?(Q, p) as to functions defined p-a.e. in .

Once equipped with the norm

1/p .
- | o (p: w € LP(Q, ) { (fq lulPdz) if p € [1, +o0[
’ €8s Supg|ul if p = 400,

LP(Q, u) turns out to be a Banach space. With an abuse of notation, for

every p € [1, +00] we denote again by LP(2, i) the topology of LP(Q, u).
For every p € [1, +00], we denote by p’ the conjugate of p defined as

+o ifp=1
p/:{ﬁ ifl<p<+oo

1 if p=+o0.

Fundamental in the study of LP spaces is Holder’s inequality.
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Theorem 2.2.1 (Hoélder’s Inequality). Let (2, &) be a measure space,
u be a positive measure on &, and u, v: Q) — [—o00, +0o0] be E-measurable.

Then
1/p , 1/p’
[ruvlde < ([ ) ([ pran)
Q Q Q

If u(2) < 400, from Holder’s inequality it follows that LP(Q, u) C
L1(Q, ) provided 1 < ¢ < p < +o0. In this case, given p € |1, +00], we de-
note again with Ngepr pL?(€2, 1) the topology on Nyep pL? (€2, 1) generated
by the family of seminorms u € Ngepy (L9 (2, 1) = |[ull Lo, as g varies
in [1,p[. Once endowed with the Ngep1 (L9 (€2, i) topology, Ngef1 p(L9(€2, 1)
turns out to be a complete metrizable topological vector space.

Convergence in LP is linked to p-a.e. convergence, as shown by the
following result (cf. for example [Br2, Théoreme IV.9]).

Proposition 2.2.2. Let (9, £) be a measure space, u be a positive measure
on &, {un} C LP(Q, 1), and u € LP(2, ). Assume that up, — w in LP(Q, p).
Then there exist {up, } C {un}, and g € LP(£2, 1) such that up, — u p-a.e.
in Q, and supyen |un, (2)| < g(x) for p-a.e. x € Q.

We recall that, for every p € |1, +oc[, the dual space of LP(Q, 1) can
be identified with LP’ (©, ). The same property holds also when p = 1,
provided g is o-finite. Therefore, given {uy} C LP(Q, u) and uw € LP(£2, p),
it turns out that, when p € [14+o00[, up — u in weak-LP(Q, 1), (respectively,
when p is o-finite and p = oo, up, — w in weak™®- L (£, u)) if and only if

/ upvdr — / wvdz for every v e LP (Q, ).
Q Q

If © is a topological space and u is a Borel positive measure, for ev-
ery p € [1,400] we denote by L¥ (Q,u) the set of the B(Q)-measurable
functions w on Q such that u € LP(K, p) for every compact subset K of .

We endow LIOC(Q, 1) with its usual topology, denoted again by

LY (Q, ), that is with the one generated by the family of seminorms
u € LY (Q,p) — |lullre(k,,) with K varying among the compact sub-
sets of ), that makes it a sequentially complete Hausdorff locally convex
topological vector space. In addition, if Q is o-compact, then LT (€, u)
turns out to be metrizable for every p € [1, +00].

Finally, given p € |1, +o00] we also denote with Ngej1, p[Lloc(Q,u) the
topology on Ngep1 piLi . (2, 1) generated by the family of seminorms u €

Ngei p Lt (2, 1) — |ull Lack ), with K varying among the compact sub-
sets of Q, and ¢ in [1, p[. Once endowed with the Ngep Ly, (€2, 1) topology,
NgelLp| 1OC(Q ) turns out to be a sequentially complete Hausdorff locally

convex topological vector space, metrizable if ) is o-compact.
We recall the following relative weak compactness criterion in L!.
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Theorem 2.2.3 (Dunford-Pettis-de la Vallée Poussin Theorem).
Let (2,&) be a measure space, p be a finite positive measure on £, m € N,
and X C (LY(Q,u))™. Then the following conditions are equivalent:

i) X is weak-(L'(Q, u))™ relatively compact,

ii) X is weak-(L*(2, u))™ relatively sequentially compact,

iii) X is bounded, and for every € > 0 there exists 6 > 0 such that

sup / |uldp < € for every A € €& with u(A) < 6,
ueX JA

iv) there exists 9: [0, +oo[— [0, +-00] Borel, and satistying lim;_, o U(t)/t =
400, such that

sup/ﬁ(|u|)du<+oo.
ueX JQ

Remark 2.2.4. If (0, &), u are as in Theorem 2.2.3, and X satisfies con-
ditions i) or ii), then, by Lemma 1.3.3, it can be assumed that the function
¥ produced by Theorem 2.2.3 takes its values in [0, +o0], is increasing, and
convex.

In particular, from Theorem 2.2.3 and Remark 2.2.4 the following re-
sult holds.

Corollary 2.2.5. Let (,€) be a measure space, u be a finite positive
measure on £, m € N, and u € (L*(Q, 1))™. Then there exists 9: [0, +o00[—
[0, +o0[ convex, and satisfying lim;_. 1, 9(t)/t = 400, such that ¥(|u|) €
LY, ).

Weak compactness in LP spaces when p € |1, +00] is less involved than
the one in L', as described in the result below.

Theorem 2.2.6. Let (2, E) be a measure space, p be a finite positive mea-
sure on €, p € |1,400], m € N, and X C (LP(Q, u))™. Then the following
conditions are equivalent:

i) X is bounded,

i) X is weak-(LP (€, u))™ (weak*-(L°>°(Q, u))™ if p = +00) relatively com-
pact,

iii) X is weak-(LP(Q, u))™ (weak*-(L> (2, u))™ if p = +o00 and (LP(Q, u))™
is separable) relatively sequentially compact.

If Qe L£,(R") and p = L", we simply write LP(S2), || - || 1»(q), and
(Q) in place of LP(Q, L™), || - [|Lr(a,cn), and Lj, (€, L™).

Theorem 2.2.7 (Continuity of Translations in LP). Let p € [1, +o0],
and u € I (R™). Then the function

loc

LP

loc

yeR"— Tlylue L (R™)

loc
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is continuous.

The uniform validity of the condition expressed by Theorem 2.2.7 is
the main tool to characterize strong compactness in LP(R™) spaces.

Theorem 2.2.8. Let p € [1,+o0], and X C LP(R™). Then X is relatively
compact in LP(R™) if and only if

i) X is bounded,

ii) for every € > 0 there exists § > 0 such that

/ |T[hu — ulPdx < € whenever u € X, h € R" satisfies |h| < 0,
iii) for every € > 0 there exists r. > 0 such that

/ |u|Pdx < € whenever u € X.
R™\ B, (0)

Let u € Li,.(R™). We say that u is Y-periodic if [, udy = [, udy
for every z € R™.

The result below analyzes the asymptotic behaviour of oscillating peri-
odic functions as the frequency increases. It is classical, and we prove it, in
the form that we need, because of the importance of the role that it plays
in homogenization theory.

Theorem 2.2.9. Letp € [1,+o00], u € L}, (R") beY -periodic, and set, for
every s > 0, ug:x € R™ — u(sx). Then, for every bounded Q € L, (R"),

Ug H/ udy
Y

in weak-LP () if p € [1,+00], in weak*-L>(Q) if p = 400, as s — +o0.

Proof. To prove the theorem it suffices to verify that for every [ > 0, and
every {sp} C 0, 400 strictly increasing there exists {sp, } C {sn} such that
ug,  — [y udy weakly in LP(Q;(0)) if p € [1, oo, weakly* in L>(Q:(0))
it p = +o0.

To do this, let [ > 0. Let us preliminarily prove that {||us|zr(q,(0)) }s>0
is bounded if p € |1, +00], or that there exists ¥: [0, +00[— [0, +o0[ increas-
ing, convex, and satisfying lim;_, ¥(t)/t = 400, such that the family
{Jou(0) 9(us|)dz} >0 is bounded if p = 1.

ThlS is obvious if p = +oo. If p € [1,+00[, we treat only the case in
which p = 1, the others being similar.

By Corollary 2.2.5 there exists 9: [0, +00[— [0, +-00[ increasing, convex,
and satisfying lim;_, 4o ¥(t)/t = 400, such that fQ ) I(ul)dr < +oo.
Then, the Y-periodicity assumption yields
(2.2.1) [ o= [ afjuldy <
Q:1(0)

$" JQu(0)
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1
<= 9(ul)dy =
§ Ufceznic+ynQg 0)#03¢+Y

1 < D
- > )y < CELE [ o(julyay

n
5 cezn i+ YNQu(0)£0) Y SHY

from which the desired boundedness follows.

Let now {sp} C ]0,+oc[ be strictly increasing. Then, by Theorem
2.2.3if p =1, or Theorem 2.2.6 if p € |1, +o0c] there exist {sp, } C {sx} and
Uso € LP(Qi(0)) such that us, — use in weak-LP(Q:(0)) if p € [1, +o0,
in weak*-L>°(Q;(0)) if p = +00. Therefore it only remains to prove that
Uoo = [y udy.

To do this, let us preliminarily observe that, possibly considering u™
and v, it is not restrictive to assume that v > 0 a.e. in Q;(0).

Let now xg, yo € Q;(0), and r > 0 such that Q,(zo) U Qr(yo) C Q:(0).
Then we have that

1 1
/ usdmz—n/ ude—n/ udy =
Qr (o) § sr(820) 87 JUfceznicaynQon(seg)#03 S Y

= i Z / udy =
+Y

Sn
{CEZ™:(+YNQsr (s20)#0}

™ 2 /syoszo+c+y

{CEZM:CHY NQur (s0) 0}

1
/ udy < ey udx =
87 JUceznic4Yn@ur(syo)#03CHY 7 JQlsr)+4(sy0)

= / ugdx for every s > 0,
Q [sr)+4 (Y0)

from which we conclude that

(2.2.2) / Usodz = lim U, dz <
Qr(w0) k=+00JQ, (wo)

< lim sup/ U, dx =
k—+oco Q[shkT]+4 (%0)

Shy,

= / Usodr + lim sup/ Us),, dx.
Qr(yo) k=00 JQ s, rl+4 (¥0)\Qr(¥0)

Shy
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We now observe that an argument similar to the one used in (2.2.1)
yields

1
/ usdr = — udxr <
Q [ep,, rI+4 (y0)\Qr(yo0) Shi Q[shkr]+4(shk yo)\Qshk ~(8hy,Yo)
T
n—1
FCETISY
s
I %
from which it follows that
(2.2.3) lim sup/ ug, dx = 0.
k—+o00 Q sy, 71+4 W0)\Qr(yo)

Shy

In conclusion, by (2.2.2), and (2.2.3) it results that fQ (o) Uood <
fQ (o) Usodx, and consequently, by replacing the roles of xy and yo, that

(2.2.4) / UpodT = / UoodT
Qr(z0) Qr(yo)

for every xp, yo € Qi(0), r > 0 sufficiently small.

Finally, by (2.2.4), and by Theorem 2.2.9 of the next section, we con-
clude that u is a.e. constant in @;(0).

In order to determine such constant value, we observe that, again using
an argument similar to the one in (2.2.1), it follows that

1
Uoo :/ Usody = lim us, dr = — udz:/ udy,
y k—+oo Jy Tk Shy, Jsn Y Yy

k

that completes the proof. m

§2.3 Derivation of Measures

Let (,€) be a measure space, 4 be a positive measure, and v a (real or
vector) measure on £. We say that v is absolutely continuous with respect
to p if

|v|(A) = 0 whenever A € £ satisfies p(A) = 0.

We say that v is singular with respect to p if there exists Ny € £ such that
#(Ng) =0, and |[v[(Q\ Ny) = 0.

It is clear that every measure is absolutely continuous with respect
to its total variation. Moreover, if u be a positive measure, and u €
(LY(Q, )™, the measure A € € — [, udp € R™ is absolutely continu-
ous with respect to u, and is usually denoted by up.
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Theorem 2.3.1 (Radon-Nikodym Theorem). Let (€, ) be a measure
space, |1 be a o-finite positive measure on £, and v: £ — R™ be a measure
on £. Assume that v is absolutely continuous with respect to j. Then there
is a unique u € (L'(Q, u))™ such that

v(A) = / udp for every A € £.
A

The function v in Theorem 2.3.1 is called the Radon-Nikodym deriva-
tive of v with respect to u, and is denoted by g—
By using Radon-Nikodym Theorem, the following results hold.

Theorem 2.3.2. Let (Q2,€) be a measure space, u be a o-finite positive
measure on £, and v: £ — R be a measure on £. Assume that v is absolutely
continuous with respect to y. Then for every u € L*(Q,v) it results that

ud# € L'(Q,u), and ]
/udl/:/u—ydu.
Q o du

Proof. If u = x4 for A € £ the theorem follows from Radon-Nikodym
Theorem.

Consequently, the theorem follows when u is a £-measurable simple
function, and by using Theorem 2.1.4 and the Monotone Convergence The-
orem, also when v is positive and u € L'(Q,v) is such that u(z) > 0 for
v-a.e. x € Q.

Because of this, the theorem follows also when u € L*(€, |v]) by con-
sidering separately v, v~, u™, and u~. m

Theorem 2.3.3. Let (2,&) be a measure space, u be a o-finite positive
measure on £, and v:£ — R™ be a measure on £. Assume that v is
absolutely continuous with respect to pu. Then

\1/|(A):/ ’d—y‘du for every A € €.
Aldp

Proof. By the Radon-Nikodym Theorem, it follows that for every A € &,
and every sequence {Ap} C & of pairwise disjoint sets whose union is A it

resull s t hat
/Ah Ap

Z|VAh|—Z

h=1

dv

d
|

du

and, consequently, that

d
(2.3.1) v|(A) < / 1 du for every A € €.
Aldp
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Let now A € &, {z} € R™ be dense in {z € R" : |z| = 1}, and
e>0. Let Ay ={x € A: (1 —5)|§—Z(m)| < g—Z(m) - 21}, and set, for every
he N\ {1}, 4y = {z € A: (1 —¢)|%(z)| < %(x) 2} \ U}Z{ 4;. Then
Ap € € for every h € N, Uh 1An = A, and

/ s zpdp =

—‘du_ 1_62/
A
—Z (Ap) - zh<Z|yAh|<|u| A) for every € > 0,

h=1

(1—¢)

h

from which, together with (2.3.1), the proof follows. m

The following decomposition theorem is classical in measure theory.

Theorem 2.3.4 (Lebesgue Decomposition Theorem). Let (Q2,€) be
a measure space, let j be a o-finite positive measure on £, and v a measure
on £. Then there is a unique measure v* on £ absolutely continuous with
respect to u, and a unique measure v° on £ singular with respect to pu such
that

v=rv*+1°

Formula in Theorem 2.3.4 yields the Lebesgue decomposition of v with
respect to p.

Finally, the result below provides an interpretation, at least when ) €
A(R™), of the Radon-Nikodym derivatives as limits of ratios of measures.

Theorem 2.3.5. Let Q@ € A(R™) and m € N. Then, for every v €
(M(Q))™ and for L™-a.e. x € Q) the limit lim, _ g+ % exists, and

. v(Qr(z) _ dv?
rli{g"' rn N dLn

().

By using Theorem 2.3.5 it can be proved that if @ C R"™ is open,
m € N, and u € (L*())™, then

lim — lu(y) — u(z)|dy = 0 for L-a.e. x € .

A point in which this occurs is called a Lebesgue point of .

Remark 2.3.6. It is important to observe that the Radon-Nikodym Theo-
rem allows the identification of LP spaces with suitable spaces of measures.
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More precisely, if (2,€) and p are as in the Radon-Nikodym Theorem, and
p € [1,+0o0], then the mapping

U — U

turns out to be an isomorphism between LP ({2, 1) and the set of the mea-
sures v: £ — R that are absolutely continuous with respect to p and such
that [9£|P is y-summable on € if p € [1, 400, or such that ess supQ|g—Z| is
finite ifp = +00.

This interpretations become more shrinking and expressive if p = 1.
In fact, in this case the above mapping becomes an Banach space isomor-
phism between L'(£, 1) and the space of the real measures on (2 that are
absolutely continuous with respect to p.

Analogously, if in addition €2 is a topological space and p is a Borel
positive measure, then LI, (€, 1) can be regarded as the space of the Radon
measures v: £ — R that are absolutely continuous with respect to p and
such that |fil—:: |P is p-summable on every compact subset of  if p € [1, +o0],

or such that esssup K\g—l’ﬂ is finite for every compact subset K of Q if p =
+o00.

In this order of ideas, also continuous functions on €2 can be thought
as Radon measures on B(€2), and in particular, when Q € A(R"™), so do the
elements of C*°(£2) by means of the mapping

u— ul”.

We will come back to this approach in §7.2.

§2.4 Abstract Measure Theory in Topological Settings

Let ) be a topological space. In the present section we describe how the re-
quirement of slight additional assumptions on the topology allows a deeper
description of the structure of Borel functions and measures.

To do this, we first need to select some special classes of Borel measures,
called regular measures.

Definition 2.4.1. Let ) be a topological space, p be a Borel positive
measure on ), and B € B(Q2). We say that p is
i) inner regular in B if

w(B) = sup{u(K) : K compact, K C B},

ii) outer regular in B if

w(B) = inf{u(A) : A open, A D B},
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iii) regular in B if it is both inner and outer regular in B.
We also say that u is inner regular, outer regular, regular if so it is in
B for every B € B().

Regular Borel measures form a subclass, in general proper, of the one
of Borel measures. We refer to [Co, Chapter 7] for an example in this
direction.

The result below shows that non-regularity of a measure seems to be
due to the lack of some properties of the space, rather than of the measure
itself.

Theorem 2.4.2. Let Q be a Hausdorff locally compact space in which
every open set is o-compact. Let y be a Radon positive measure on f).
Then p is regular.

It is worth while to deduce from Proposition 2.1.1, and Theorem 2.4.2
the following corollary.

Corollary 2.4.3. Let ) be a Hausdorff locally compact space in which
every open set is o-compact, and p € (Mioc(Q2))™. Then |u| is regular.
In particular, if p € (M(Q))™, then |u| is regular.

We observe explicitly that Theorem 2.4.2, and Corollary 2.4.3 hold
when 2 = R™.

Theorem 2.4.4 (Lusin’s Theorem). Let Q2 be a Hausdorff locally com-
pact space, u a regular Radon positive measure on 2, and u be Borel and
equal to 0 outside a set with finite measure. Then for every € > 0 there ex-
ists v. € CJ(Q) such that ||v.||coq) < esssupglul, and p({z € Q : ve(x) #

u(z)}) <e.

As consequence, the following approximation result in LP spaces holds.

Theorem 2.4.5. Let ) be a Hausdorff locally compact space, i a regular
Radon positive measure on Q, and p € [1,+o0o[. Then C{(Q) is dense in
LP(Q, ).

We now pass to the study of the structure of Borel measures, that is
described by the Riesz Representation Theorem (cf. for example [Ru, 6.19
Theorem]).

Theorem 2.4.6 (Riesz Representation Theorem). Let ) be a Haus-

dorff locally compact space, m € N, and let L: (6’8(9))’” — R be linear
and continuous. Then there exists a unique y € (M(Q))™, with |u| regular,
such that

L(u) = / udy for every u € (CO(Q))™.
Q
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Moreover

sup { L(u) : u € (G, Julloogey < 1} = ul(©).

As corollary, from Riesz Representation Theorem we deduce the fol-
lowing result that we prove for sake of completeness.

Corollary 2.4.7. Let 2 be a Hausdorff locally compact space, and v €
M(Q) be such that |v| is inner regular. Then

V+(Q):sup{/@duz<p€Cg(Q), 0<¢p(x) <1 for everyer},
Q

V(Q):sup{/gwdu:goecg(Q), —1 < p(z) <0 for everymEQ}.

In particular, if p is an inner regular Borel positive measure on {2, and
u € LY(Q,u), then

/qud/L:sup{/cpud,u:gong(Q), 0<<,0(9c)<1fo1revery:n€Q}7
Q Q

/ u dp = sup{/ oudp = ¢ € CY(Q), —1 < p(z) <0 for every x € Q}
Q Q

Proof. We prove only the formulas for v+ and u™, the proof of the one for
v~ and u~ being similar.
It is clear that

/apduz/@dﬁ—/ pdv™ §/<pdu+ <vt(Q)
Q Q Q Q

for every ¢ € CJ() satisfying 0 < ¢(z) < 1 for every x € Q,

from which we deduce that
(2.4.1)  sup { / @dv : p € CJ(N), 0< p(z) <1 for every x € Q} <
Q

<vt(Q).

On the other side, because of Riesz representation theorem, it turns
out that

@) ) _

(2.4.2) vt(Q) 5
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1 ~
:i{sup{/ﬂqﬁdy:¢eCg(Q)7 |p(z)| < 1 for everyer}—i—/Qdu} =

:sup{ %du:(beég(ﬁ), |p(z)| <1 for everyer}.
Q

Let now {5} C CJ(2) be given by Theorem 2.4.5 with p = 1 such
that 0 < ¢p(z) <1 for every h € N and x € Q, and ¢p(z) — 1 for |v|-a.e.
x € ). Then, Lebesgue Dominated Convergence Theorem provides that

2+l = lim /¢+11/1th§
(9] 2 h—>+00 9} 2

< sup{ / edv : p € CY(Q), |p(z)| <1 for every z € Q}
Q

for every ¢ € 6’8(9) satisfying |¢(x)| < 1 for every z € €,

from which, together with (2.4.2) and (2.4.1), the formula for v+ () follows.
In particular, if v = up, then Theorem 2.3.3 and the above formula for
v (Q) yield

|u +u V() + ()

= sup {/ oudp : o € CJ(Q), |p(z)] < 1 for every x € Q},
Q
that completes the proof of the corollary. m

When € is a Hausdorff locally compact space, and m € N, the Riesz
Representation Theorem allows the identification of (M (£2))™ with the dual
of the Banach space (6’8 (©))™. Consequently, a weak™* topology turns out
to be canonically defined on (M(€))™. As usual, we denote it by weak*-
(M)

We recall that, given {uy} C (M(Q2))™, and p € (M(Q))™, it results
that pj, — p in weak*-(M(2))™ if and only if [, pdur — [, edu for every
¢ € (CY(Q))™. We also observe that, by the Banach-Steinhaus Theorem,
if pp, — pin weak*-(M(Q))™, then {|pn|(€2)} turns out to be bounded.

In particular, by the Riesz Representation Theorem, the following
lower semicontinuity follows.

Proposition 2.4.8. Let 2 be a Hausdorff locally compact space, and m €
N. Then the functional v € (M(Q))™ — [v|(Q) is weak*-(M(Q))™ lower
semicontinuous.

Proof. Follows from Riesz Representation Theorem, once we observe that
for every v € (M(Q))™, |v|(R2) is the pointwise supremum of a family of
weak*-(M(Q2))™ continuous functionals. m

By using Alaoglu’s theorem, the following compactness result holds.
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Theorem 2.4.9. Let Q be a Hausdorff locally compact space, and m &€
N. Then the bounded subsets of (M(2))™ are weak™-(M(£2))™ relatively
compact.

In particular, under separability assumptions, the following sequential
version of Theorem 2.4.9 follows from Theorem 0.5.

Theorem 2.4.10. Let €2 be a Hausdorff locally compact space, and m €
N. Assume that (C§(Q))™ is separable. Then the strongly bounded subsets
of (M(2))™ are weak™-(M(Q2))™ relatively sequentially compact.

We remark that, in general, the assumptions of Theorem 2.4.10 are
fulfilled provided suitable hypotheses on {2 are assumed. For example,
Theorem 2.4.10 holds if 2 C R™.

If © is a Hausdorff locally compact space, m € N, p is a Borel positive
measure on €2, and {uy} is a bounded sequence in (L'(, 1))™, then The-
orem 2.4.9, and Theorem 2.4.10 applied with p; = upp yield the relative
compactness of {uy} only in the weak*-(M(£2))™ topology. Consequently,
in general, its cluster points need not be in (L(£2, u))™.

On the other side, if { [, 9(Jus|)dp} is bounded for some ¥: [0, +o00[—
[0, +00] Borel, and satisfying lim;_, o ¥(t)/t = 400, Theorem 2.2.3 ap-
plies, and the existence of a weak-(L' (€2, 1))™ converging subsequence of
{up} follows. In particular this holds if ¥(¢) = t? for every ¢ € [0, +oo[, and
some p € ]1, 400], case in which Theorem 2.2.6 applies, and {uy,} turns out
to have a weak-LP (€, 1) converging subsequence.

§2.5 Local Properties of Boundaries of Open Subsets of R™

The present section is devoted to a discussion on some types of convexity
properties of certain classes of open subsets of R” that we will use in this
book.

We say that Q € A(R"™) has Lipschitz boundary if for every = €
0 there exists a neighborhood I, of x such that I, N 0 is the graph,
in a suitable coordinate system, of a Lipschitz continuous function whose
epigraph contains I, N Q.

If Q@ € A(R"™) has Lipschitz boundary, then for H" l-a.e. x € 99
there exists the outward unit vector normal to 012, that we denote by ng.

Proposition 2.5.1. Let € A(R™) be convex. Then Q has Lipschitz
boundary.

Proof. Let zp € 2. Then, being 2 open, let r > 0 be such that B,.(z) C Q.

Let z € 0. Let us prove that there exists I, € N(z) such that
I, N 02 is the graph, in a suitable coordinate system, of a finite convex
function whose epigraph contains I, N (2.
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To do this, let us consider the half-line | = {z¢+t(z—x0) : t € [0, +00[},
take yo € [ such that the hyperplane Hj containing yo and orthogonal to [
has empty intersection with €, and set B, = {y € Hy : |y — yo| < 7}.

Let usset I, = {ty+ (1 —t)(xo —yo+vy) : y € B, t €]0,1[}. Then it
is easy to see that I, € N'(z).

Let us fix y € B}, and denote by S, the open line segment joining y
to xg — yo + y. Then, since S, has one endpoint in €} and the other in
R"™ \ Q, it must result S, N 9N # 0. Moreover it is clear that S, N 99
is made up by a single point, otherwise, taken z1, z2 € S, N 0 with
Z1 # o, it would necessarily occur that z1 = tpxs + (1 — to) (20 + ¥y — yo)
or xg9 = tox1 + (1 —to)(xo +y — yo) for some ¢y €]0, 1]. To fix ideas, let us
assume that x1 = toxe + (1 —to) (2o +y — yo) for some ¢y € ]0,1[. Then, by
the last item of Proposition 1.1.5, it would result that x; € Q, contrary to
the fact that 1 € 9.

Consequently, the application that to every y € B). associates the only
element of S, N2 defines, in the coordinate system centred in yo, with Hy
equal to the hyperplane of first n—1 coordinates, and with the line through
1o and xg equal to the n-th coordinate axis, a finite function whose graph
is contained in I, N 9.

On the other side, since every point in I, N 9§ is in S, N 0N for a
suitable y € By, it turns out that the graph of the above defined function
actually agrees with I, N 9. Moreover, it is immediately verified that such
function is convex, and that, just by construction, its epigraph contains
I, N

Finally, by possibly considering a smaller neighborhood of z compactly
contained in I, and by Theorem 1.1.17, the proof follows. m

We now introduce the class of the strongly star shaped open sets that
will play a crucial role in the proof of some regularity results of measure
type functions.

Definition 2.5.2. Let Q € A(R"), and x¢ € Q). We say that 2 is strongly
star shaped with respect to xq if it is star shaped with respect to xg, and
if for every x €  the half open line segment joining xo and x, and not
containing x, is contained in §2.

We say that an open set € is strongly star shaped if there exists g € {2
such that € is strongly star shaped with respect to xg.

In the following result some elementary properties of strongly star
shaped open sets are collected.

Proposition 2.5.3. Let € A(R™), z¢g € Q be such that Q is strongly
star shaped with respect to xo. Then

(2.5.1) xo + t(2 — x9) is strongly star shaped with respect to xg

©2002 CRC Press LLC



for every t € 10, +oo],

(2.5.2) zo+1(Q—120) CQ, QCxo+s(Q—x0)

for every r, s € [0,+oo] withr <1 < s.

Proof. We preliminarily observe that
(2.5.3) xo +7(Q — 20) = 20 +7(Q — 20) for every r € [0, +oo|.

To prove (2.5.1) we observe that, by (2.5.3), for every ¢ € ]0, +o0], and
Yy € xo + t(2 — xp) the half open line segment S joining xg and y, and not
containing y, agrees with xg + t((zo + Sk 2570) — xg), that zo + % is the
half open line segment joining z¢ and zo + 5%, and that g + 4522 € Q.
Because of this, it turns out that xy + % C Q, and therefore that S C
2o + t( — x¢), from which the star shapedness of xg + (2 — xg) follows.
Let now r € [0,1], and let y € xg + (2 — 2¢). Then, by (2.5.3), we
conclude that y = zg 4+ 7(z — x¢) for some z € Q. Consequently, y belongs
to the half open line segment joining xy and z, and not containing z, which
is a subset of Q. Therefore the left-hand side of (2.5.2) follows.
In conclusion, if s € ]1, +o00[, the right-hand side of (2.5.2) follows from
the left-hand side one, once we observe that Q = zo+ < ({zo +s(Q —z¢)} —
xo), and that xg + s(Q — xp) is strongly star shaped by (2.5.1). m

Moreover, by using Proposition 1.1.5, it is easy to verify that
(2.5.4) Q is strongly star shaped with respect to each of its points

whenever Q € A(R") is convex.

The class of the strongly star shaped open sets is sufficiently wide to
provide the following covering result.

Proposition 2.5.4. Let Q € Ag have Lipschitz boundary. Then there
exists a finite open covering {$;};e(1,...m} of Q such that, for every j €
{1,...,m}, Q; N Q is strongly star shaped with Lipschitz boundary.

Proof. Let z € 99, and let I, € N (z) such that I, N 9Q is the graph,
in a suitable coordinate system, of a Lipschitz continuous function whose
epigraph contains I, N €. It is clear that it is not restrictive to assume that
I, = Bx] — ¢,¢[, where B is an open ball of R"~! centred in the origin,
and ¢ > 0.

For every y € R" let us set § = (y1,...,Yn—1), and denote again by
|g] its norm. Then we can assume that

LNO={yeR": - <y, <9(), § € B}
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for some ¥: R"~' — R Lipschitz continuous, and that = = (0,9(0)), with

¥(0) > 0. Moreover, if ¢ is the Lipschitz constant of ), we can assume that
the radius of B is strictly smaller than %S).

Let us prove that I, N () is strongly star shaped with respect to 0.
To do this, let us first observe that I, N Q = (I, N9N) U (I, NQ), and

take y € I, N 9Q. Then y = (§,9(7)), and, since |j| < 192(2), we have that

0 < 9(0) — 2ct|y| < I(ty) — ct|g| for every t € [0,1],

from which we deduce that

(255)  9(5) = HO() — (1)) +t9(t7) < ct(1 — D] + t(tg) <
< (1 =t)d(ty) + td(tg) = V() for every t € [0,1].

By (2.5.5), once we observe that —e < ¥(), we conclude that the half
open line segment joining 0 and y, but not containing this last point, is
contained in I, N €.

Let now y € I,NQ. Then —¢ < y,, < ¥(§). Consequently, the half open
line segment joining 0 and y lies between the ones joining 0 and (g, —¢),
and 0 and (§,9(9)), from which we conclude that, also in this case, the half
open line segment joining 0 and y, but not containing this last point, is
contained in I, N €.

We have thus proved that I, N €2 is strongly star shaped with respect
to 0.

Let us now prove that I, N has Lipschitz boundary.

To do this, we observe that 9(1,NQ) = (I,NON)U(AT,NQ)U(AI,NIN),
and let y € 9(I, N Q).

It is clear that, if y € (I, N 9N) U (01, N Q), it is possible to find J, €
N (y) such that J, NA(I;NE) is the graph, in a suitable coordinate system,
of a Lipschitz continuous function whose epigraph contains J, N (I N€2).

On the other side, if y € 91, N 0L, by carrying out a slight space
rotation, it is possible to find again J, € N(y) such that J, N (I, N
Q) is the graph, in the new coordinate system, of the minimum between
two Lipschitz continuous functions, that is again Lipschitz continuous, and
whose epigraph contains J, N (I, N Q).

In conclusion, we have proved that for every x € 0S) there exists I, €
N (z) such that I, N is strongly star shaped, and with Lipschitz boundary.
Because of this, the proof follows once we observe that for every = € €2 there
exists a ball centred in x and contained in 2, that is certainly strongly
star shaped and with Lipschitz boundary, and by taking into account the
compactness of (1. m

§2.6 Increasing Set Functions

For every A, B € A(R"), we write A CC B if A is a compact subset of B.
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Definition 2.6.1. Let O C A(R"), and a: O — [0,+00]. We say that o
is increasing if

a() < a(Qq) for every Q1, Qo € O such that 1 C Qs.

Definition 2.6.2. Let O C A(R"), and a: O — [0, 400]. Forevery £ C O,
we define the E-inner regular envelope ag_ of a as

ag_: e AR") —

0 if{Ae€:Acc Q=0
sup{a(A): A€ &, AcCcQ} if{Ae&:AcCCQ}#0,

and say that « is E-inner regular, or simply inner regular when & = O, if
a(Q) = ag_ () for every Q € O.
When £ = O we write a_ in place of ap_.

Remark 2.6.3. It is clear that, if O C A(R"™) and a: O — [0, 4], then,
for every £ C O, ag_ is increasing. Moreover, if « is increasing, then

ag—(Q) < a_() < a(Q) for every Q € O.

Inner regular envelopes are inner regular, as proved by the following
result.

Proposition 2.6.4. Let O C A(R"), and a: O — [0,+00| be increasing.
Then «a_ is inner regular, i.e.

a_ () = (o) - () = (e )amm-(2) = (@) 4,- ()

for every Q2 € A(R™).

Proof. The second and the third equalities are nothing more than the
definition of av_, therefore we have to prove only the first one.

Since for every 2 € A(R™), and A € O we can find B € Ay satisfying
A CC B CC Q, we have that

a_ () =sup{a(d): A0, AccQ} <

<sup{a_(B): Be€ Ay, BCC Q} = (a_)_(R) for every Q € AR").
Because of this, and by Remark 2.6.3, the proof follows. m

In order to establish some inner regularity criteria, we need to give
some definitions.
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Definition 2.6.5. Let O C A(R"), and a: O — [0, +00|. We say that « is
i) weakly superadditive if

a(5) + () < a(®)
for every Q1, Qa, Q€ O with QN =0, Q; UQ, CC Q,
ii) weakly subadditive if
a(Q) < a() + a(s) for every Q, Qq, Q2 € O with Q CC Q1 U Qo,

iii) superadditive if
a(Q1) + a(Q) < a(Q)
for every Ql, QQ, Qe O with Q1N Qg = @, 01Uy C Q,
iv) subadditive if

a() < a(21) + a(g) for every Q, Q1, Qo € O with Q C Q; UQs.
If in addition O fulfils the following assumption
(2.6.1) Q\ A €O forevery Q, A€ O such that A CC Q,

we say that « is
v) boundary superadditive if

a(A) +a(Q\ B) < a() for every Q, A, B € O such that A CC B CC Q,
vi) boundary subadditive if

a(Q) < a(B) +a(Q\ A) for every Q, A, B € O such that A CC B CC .

Remark 2.6.6. It is obvious that, if O C A(R") and a: O — [0, +x]
is superadditive, then it is also weakly superadditive. Analogously, if « is
subadditive, then it is also weakly subadditive.

It is also clear that, if O satisfies (2.6.1), and « is superadditive, then
it is also boundary superadditive. Analogously, if O satisfies (2.6.1), and «
is subadditive, then it is also boundary subadditive.

Definition 2.6.7. Let O C A(R"™). A family D C A(R"™) is said to be
dense in O if for every Qq, Qo € O with Q1 CC Qs there exists D € D
satisfying £y CC D CC Qs.

A family P C A(R"™) is said to be perfect in O if for every Q0 € P,
A€ O with A CC ) there exists P € P such that A CC P CC ).

It is clear that if D is dense in O, and D C O, then D is also perfect
in O.
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Proposition 2.6.8. Let O C A(R"™) be dense in A(R"), and a: O —
[0, +00]. If « is weakly superadditive, then a_ is superadditive. Analo-
gously, if « is weakly subadditive, then a_ is subadditive.

Proof. Let us assume that a is weakly superadditive.

Let 1, Q2, Q € AR™) with QN Qs =0, O UQ C Q, and let Ay,
Ay € O be such that A; CC 4, and Ay CC Q9. Then, by the density of O
in A(R"™), there exists A € O satisfying A; U As CC A CC {2, from which,
together with the weak superadditivity of «, we conclude that

(2.6.2) 04(141) + Ol(AQ) < 04(14) < Oz,(Q)

for every Ay, Ay € O with 47 CC Qq, Ay CC Qs.

By (2.6.2) the superadditivity of a_ follows.

Let us assume now that « is weakly subadditive.

Let Q, 21, Q2 € AR"™) with Q C Q3 U Qy, and let A € O be such
that A CC Q. By using the density of O in A(R"™) it is easy to prove the
existence of two increasing sequences {A}} C O, and {A}} C O such that
Aj CC Q2 and AY CC Q for every h € N, Q; = US> A), and Qo =
U;ﬁ A, Consequently, by using the compactness of A, we conclude that
there exist A’, A” € O satisfying A’ cC Q;, A” cC Qy,and A cc A/UA".

Because of this, and by the weak subadditivity of «, we conclude that

(2.6.3) alA) < a(Ar) +a(Az) < a_ (1) + a— ()

for every A € O with A CC .
By (2.6.3) the subadditivity of ac_ follows. m

Proposition 2.6.9. Let O C A(R"), and a: O — [0, +0o0]. Then,
i) if P C A(R™) is perfect in O,

(ao-)p_ () = ap_(Q) for every Q € P,
ii) if «v is increasing, D C O, and D is dense in O,
ap—(Q) = ap_(Q) for every Q € O,
iii) if o is increasing, P C O, and P is perfect in O,
ao— () = ap_(Q) for every Q € P.

Proof. Let us prove i).
Being ap_ increasing, it is clear that

(2.6.4) (vo-)p_ () < ap—(Q) for every Q € AR™).
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On the other side, let Q € P, and A € O with A CC Q. Then, being
P perfect in O, there exists B € P such that A CC B CC Q. Therefore we
have
a(A) <ao_(B) < (ao-)p_ (92) for every Q € P,

from which, together with (2.6.4), condition i) follows.
Let us prove ii).
Since D is dense in O, and « is increasing, it is easy to deduce that

a(A) < ap_(Q) for every Q, A€ O with A CC Q,
from which it follows that
(2.6.5) ap—(Q) < ap_(N) for every Q € O.
By (2.6.5), since D C O and consequently
ap_(Q) < ap_(Q) for every Q € AR"),

condition ii) follows.
Finally the proof of iii) is similar to the one of ii), by taking Q € P. m

Given {Ap} C O, and Q € O such that A, C Q for every n € N, we
say that {Ap} is well increasing to Q if A, CC Apyq for every h € N, and
UfS Ay = Q. We say that {A),} is well decreasing to the empty set with
respect to Q if {Q\ A} is well increasing to .

We can now prove a first characterization of inner regular functions.

Proposition 2.6.10. Let O C A(R"™) satisfy (2.6.1), and a: O — [0, +00].
Assume that « is inner regular and boundary superadditive. Then
i) for every Q € O for which a()) < 400, « is vanishing along the sequences
in O that are well decreasing to the empty set with respect to 2,
ii) for every Q € O for which a(Q}) = 400, « is diverging along the se-
quences in O that are well increasing to €.

Conversely, assume that O is perfect in Ay, that « is increasing, bound-
ary subadditive, and that i) and ii) hold. Then « is inner regular.

Proof. We prove the first part of the proposition.

Let © € O be such that a(Q) < 400, and let {4} be a sequence in O
well decreasing to the empty set with respect to Q. Then by (2.6.1), and
the boundary superadditivity of « it follows that

a(Ani1) € a(Q) — a(Q\ Ap),
from which, together with the inner regularity of «, i) follows.

Moreover, the inner regularity of « implies condition ii), and the first
part of the proposition.
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Let us now prove the second part of the proposition.
Since « is increasing, from Remark 2.6.3 it follows that

(2.6.6) a_ () < () for every Q € O.

Let now Q € O, and assume for the moment that «(Q) < 4o00. Let
K € Ay with K CC Q. Then, being O perfect in Ay, there exist A, B € O
such that K CC A CC B cC Q.

Because of this, (2.6.1), the boundary subadditivity of «, and being «
increasing, we conclude that

a(Q) < a(B) +a(Q\ 4) <a-(Q) +a(Q\ A),

from which, together with assumption i), the opposite inequality to (2.6.6)
and the inner regularity of a at £ when () < +oo follow.

In conclusion, being by assumption ii) « inner regular at 2 also when
() = 400, the inner regularity of « follows. m

As corollary, we deduce the following result.

Proposition 2.6.11. Let O C A(R") satisfy (2.6.1), and a: O — [0, +00].
Assume that O is perfect in Ay, and that « is increasing, boundary subad-
ditive, and such that for every 2 € O there exists a Borel positive measure
o on S satisfying

a(A) < pa(A) < oo for every A € O N A(Q).

Then « is inner regular.

Proof. Follows from Proposition 2.6.10. =

The following result is a variant of the De Giorgi-Letta Extension The-
orem in our setting (cf. [DGL, Proposition 5.5 and Théoreme 5.6], [DM2,
Theorem 14.23]).

Theorem 2.6.12. Let O C A(R") be dense in A(R"), and a: O —
[0, +00] be increasing, weakly superadditive, and weakly subadditive. For
every EE C R" let us set

o*(E) = inf{a_(A): A € AR"), E C A}.

Then the restriction of a* to B(R™) is a Borel positive measure that agrees
with a— on O.
If, in addition, « is also inner regular, then o* agrees with o on O.

Proof. First of all we observe that, being « increasing, it is easy to verify
that o* agrees with a— on O. In addition, if « is also inner regular, the
coincidence of a* with a on O follows.
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Let us prove that the restriction of a* to B(R"™) is a Borel positive
measure.

Since « is increasing, Proposition 2.6.4 yields the inner regularity of
a_. Moreover, since « is weakly superadditive and weakly subadditive, and
O is dense in A(R™), Proposition 2.6.8 yields the superadditivity and the
subadditivity of a._.

If a_ (@) # 0, by using the superadditivity and subadditivity properties
of a_, it must necessarily result a_()) = +o00. Consequently, o* turns out
to agree with the Borel positive measure identically equal to +o0.

Because of this, we can assume that a_()) = 0, and, consequently,
that a*(0) = 0.

Let us first prove that «_ is countably subadditive, i.e.

+oo
(2.6.7) a_(Q) < a_ ()
h=1

whenever , Qq,...,Qp,... € AR") satisfy Q C U;ﬁQh.

To do this, let Q, Q1,...,Q,... be as in (2.6.7), and let A € A(R")
be such that A CC Q. Then, by using the compactness of A, and the
subadditivity of a._ it is easy to verify that

—+o0
a_(A) < Z a_(Qp) for every A € A(R™) such that A CC Q,
h=1

from which, together with the inner regularity of a_, (2.6.7) follows.
By (2.6.7) it follows that

+oo
(2.6.8) a*(8) < Yo (Sh)
h=1

whenever S, Si,...,Sh,... C R" satisfy S C UZ;Sh.

In fact, let S, S1,...,5%,... € R™ be as in (2.6.8). We can clearly
assume that Z;ﬁ? a*(Sp) < 400, so that, given £ > 0, for every h € N we
can find A, € AR"™) with S}, € Aj,, and a_(Ax) < a*(Sh) + 57. Because
of this, and (2.6.7) we conclude that

+oo +oo
a*(8) < a_ (UfN4,) < Za,(Ah) < Z a*(Sp) + ¢ for every € > 0,
h=1 h=1

from which (2.6.8) follows.
Since a*(0) = 0, by (2.6.8) it turns out that a* is an outer measure,
and consequently (cf., for example [Co, Chapter 1]) that the set S+ (R") =
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{BCR":a*(B) =a"(BNS)+a*(B\S) forevery S C R"} is a o-
algebra on R™, and that the restriction of a* to S,«(R"™) is a positive
measure. Therefore, in order to complete the proof, we only have to prove
that B(R™) C S, (R"™).
To do this, being S+ (R™) a o-algebra on R™, it suffices to prove that
AR™) C S, (R™).
Let 2 € A(R™). Then, by (2.6.8) we only have to prove that
(2.6.9) a*(SNQ) +a*(S\ Q) <a*(9) for every S CR™.
If this is not the case, let S C R™ be such that
a*(S) <a*(SNQ)+a"(S\Q),
and let A € A(R"™) be such that S C A, and
a_(A)<a_(ANQ)+a*(4\ Q).

Moreover, by exploiting the inner regularity of a_, let B € A(R"™) be such
that B CC AN K, and

(2.6.10) a_(A) <a_(B)+a*(A\ Q).
In conclusion, by the superadditivity of a_, we deduce that
a_(B) +a*(A\Q) <a_(B)+a_(A\B) <a_(4),
contrary to (2.6.10).
Because of this, (2.6.9) holds, and A(R"™) C S,~(R"™). This concludes

the proof. m

From Theorem 2.6.12 we deduce the following result.

Proposition 2.6.13. Let a: Ag — [0, +00] be increasing, Weakly superad-
ditive, and weakly subadditive. Then the limit A(z) = lim, o+ % a/(Q,(2))
exists for L™-a.e. x € R™, X\ is L,,-measurable, and

a_(Q) > / Mx)dzx for every Q € Aj.
Q
Proof. Let us preliminarily observe that, being a increasing, we have

hmsup a(Q,(x)) > limsup ioz (Qr(x)) > t"limsup —— a(Qy-(x)) =

r—0+ r—0t r—0t trrn

1
= t" limsup —a(Qs(x)) for every z € R", t €10, 1],
s—o+ S
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from which we deduce that

1 1
(2.6.11) limsup —a(Qr( )) = lim sup il (Qr(x)) for every zp € R™.

r—0+ r—0+

Since « is increasing, weakly superadditive, and weakly subadditive,
by Theorem 2.6.12 we deduce the existence of a Borel positive measure o*
on R™ that agrees with a_ on Aj.

Let now Q € Ap, and observe that we can assume that a_(£2) < 4o0.

Let 1: A € B(Q) — a*(A4). Then v is a Borel real measure on {2,
therefore, by the Lebesgue Decomposition Theorem, we can decompose v
into the sum of its absolutely continuous part with respect to Lebesgue
measure v* and of its singular part v/°.

By Theorem 2.3.5, (2.6.11), and Remark 2.6.3 we obtain that for £"-
a.e. = € R™ the limit A(z) = lim,_ o+ =a(Q,(z)) exists, and \(z) =

T
4= (x). In fact we have that

@) = lmsup - (Qu(r) = limsup —-a(Qu(x) >
acr r—0+t r—0+t

d a
> limjat 0@, (=) 2 lmiaf a-(Q:e)) = (o

for L™a.e. z € R".

In conclusion, taking into account that €2 is open, by the Lebesgue
Decomposition Theorem, and the Radon-Nikodym Theorem we conclude

that
0 (Q) = a*(Q) > 1H(Q) = /Q jzn( )z = /Q Az)dz.

which proves the proposition. m

Finally, we make some remarks about translation invariant set func-
tions, i.e. functions of the type a: A(R™) — [0, +00] satisfying

a(ro + A) = a(A) for every A € A(R"), o € R".

Proposition 2.6.14. Let a: A(R™) — [0, 4+00] be increasing, weakly su-
peradditive, weakly subadditive, and translation invariant. Then

(2.6.12) a_(A) = a_(Q1(0))L™(A) for every A € A(R™).

Proof. Let us first recall that, by Theorem 2.6.12, a._ turns out to be
the restriction to A(R™) of a Borel positive measure on R™ that results to
be translation invariant.
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In order to identify a_ let us consider separately the cases in which
a_(Q1(0)) < 400 and a_(Q1(0)) = +o0.

If _ (Q1(0)) < 400 we observe that, since every bounded open set can
be covered by a finite number of translated of 1(0) and a_ is translation
invariant, o turns out to be locally finite on R™. Because of this, and well
known properties of translation invariant measures (see for example [Co,
Proposition 1.4.5]), equality (2.6.12) follows.

If a_(Q1(0)) = +o00 we observe that, since for every r > 0 (1(0) can
be covered by a finite number of translated of Q,(0) and a_ is translation
invariant, it turns out that a_(Q,(0)) = 4+o00. Because of this, and again
the translation invariance of a_ we deduce that a_(A4) = +oo for every
A € A(R™) from which equality (2.6.12) follows. m

By Proposition 2.6.14 we trivially deduce the following result.

Proposition 2.6.15. Let a: A(R™) — [0,400] be increasing, weakly su-
peradditive, weakly subadditive, and translation invariant. Then

a(A) < a(Q1(0)L"(A) for every A € A(R™),

a(A) > a(Q1(0)L"(A) for every A € A(R"),
(2.6.13) a(4) = a-(4) = a(Q: (0))£"(4)
for every A € A(R™) with L™"(0A) = 0.

Remark 2.6.16. It is clear that (2.6.13) of Proposition 2.6.15 cannot
hold for every A € A(R™). To see this let us set, for every A € A(R™),

a(A) = L"(A). Then « fulfils the assumptions of Proposition 2.6.15 but
clearly (2.6.13) does not hold if £(0A) # 0.

§2.7 Increasing Set Functionals

Definition 2.7.1. Let O C A(R™), U be a set, and ®: O x U — [0, +00].
We say that ® is increasing if for every u € U, ®(+,u) is increasing.

Definition 2.7.2. Let O C A(R™), U be a set, and ®: O x U — [0, +00].
For every £ C O, we introduce the E-inner regular envelope ®¢_ of ¢ as
the function defined by

D (Qu) e AR") x U — ®(-,u)s— (),
and say that ® is £-inner regular, or simply inner regular when £ = O, if

D(Q,u) = Pe_(Q,u) for every (Q,u) € O x U.
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When €& = O we write ®_ in place of Pp_.

Definition 2.7.3. Let O C A(R"™), U be a set, and ®: O x U — [0, +o0].
We say that ® is

i) weakly superadditive if for every u € U, ®(-,u) is weakly superadditive.
ii) weakly subadditive if for every u € U, ®(-,u) is weakly subadditive.

For every E C R", every function u on F, and t € |0, +oo[ we define
the rescaled homothety of u as

Oiu:z € %E — %u(tw)
Let U be a set of functions on R"™ such that
(2.7.1) T[—x0]OT[zo]u € U whenever u € U, o € R", t € ]0,1],
let O C A(R™), and let ®: O x U — [0, 00| satisfy

(2.7.2) lim inf ®(Q, T[—z0)OT[xo|u) > (2, u)

t—1—

for every Q) € O strongly star shaped with respect to xg, u € U

and

(2.7.3) limsup ®_ (2o + t(Q — x0), T'[~20]O1 /4 T'[wolu) < (2, u)

t—1t

for every 2 € O strongly star shaped with respect to zg, u € U.
Then the following inner regularity result holds.
Proposition 2.7.4. Let O C Ag, U be a set of functions on R satisfying
(2.7.1), and let ®: O x U — [0, +o0] be increasing, and satisfying (2.7.2),
(2.7.3). Then
(2.7.4) ®(Q,u) = D_(Q,u) for every Q € O strongly star shaped, u € U.
Proof. Let Q, u be as in (2.7.4), g € Q be such that Q is strongly
star shaped with respect to g, and ¢ € |1,4+00[. Then, since Proposition
2.5.3 yields  CC zo + t(2 — x¢), we have that
(2.7.5) ®(Q, T[~x0]O1 s T[xoJu) < ®_ (20 +t(Q—x0), T[~20]O1 4 T[20]11),
hence as t decreases to 1, by (2.7.5), (2.7.2), (2.7.3), and Remark 2.6.3 we
deduce (2.7.4). m
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In order to extend Proposition 2.7.4 to wider classes of open sets let us
consider a set U, and ®: Ay x U — [0, +00]. Let us introduce the following
assumptions

(2.7.6) B(Q,u) < B(QN D, u) + QN Qy, )

whenever Q, Qq, Qs € Ay satisfy with Q CC Q1 UQs, u € U,

(2.7.7) for every Q € Ag, v € U with ®(Q,u) < 400

there exists a Borel positive measure g, on 2 satisfying
O(A,u) < pou(A) < 4oo for every A € A(Q).

Lemma 2.7.5. Let U be a set, and let ®: Ay x U — [0, +00| be increasing,
and satisfying (2.7.6). Then

(2.7.8) i (2N Qy,u)

whenever €2, Q,..., 0y € Ag satisfy Q@ CC UL 8y, u e U.

Proof. We argue by induction on m.

If m =2 (2.7.8) follows from (2.7.6).

If m > 2 let us assume that (2.7.8) holds with m replaced by m — 1,
and prove it with m. To do this, we first take ©, Qi,...,Q,, asin (2.7.8),
and, for every j € {1,...,m}, an open set A; with A; CC §; such that
Q CC UM Aj. Then, by (2.7.6), we have

(2.7.9) (Q,u) <@ (MU Aj, u) + B(QN A, w).
Let us now observe that Q N UTS'A; cC UP'Q;, hence by (2.7.9),
the induction assumption, and (2.6.11) we get

m—1
O ((QNUMTA) NQju) + @(2N Ay u) <

j=1

m—1
< ‘I)(QHQJ,U)+(I)(QQQ7H7U)a

j=1

which proves the lemma. =

Theorem 2.7.6. Let U be a set of functions on R"™ satisfying (2.7.1),
and let ®: Ay x U — [0, +00] be increasing, and satisfying (2.7.2), (2.7.3),
(2.7.6), and (2.7.7). Then

(2.7.10) B(Q,u) = D_(Q, )
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for every Q) € Ay with Lipschitz boundary, u € U.

Proof. Let Q, u be as in (2.7.10).

If ®(Q,u) < +oo let us set a: A € A(Q) — P(A,u) € [0,+00[. Let
us observe that (2.7.6) implies the boundary subadditivity of a. In fact,
let ', A, B € A(Q) be such that A CC B CC @, and let ; € A(Q),
Qs € A satisfy A cC Q; cC B, and Q' \Q; CC Qy. Then Q' CC Q;UQy,
and (2.7.6), once we recall that « is increasing, yields

a() <a(NQ) 4+ a2 NQ) <alB) + a2\ A).

Because of this, and of (2.7.7), Proposition 2.6.11 applies, and (2.7.10)
follows.

If ®(Q,u) = 400 let us prove that also ®_(Q,u) = +oo. If this is
not the case, being 2 with Lipschitz boundary, let {Q;};=1 . m be the
open covering of § given by Proposition 2.5.4. Then by Lemma 2.7.5,
Proposition 2.7.4, and the increasing character of ® we have

O(Qu) <Y R NQu) =Y d (N0 u) <mP_(Q,u) < +oo,

that contradicts our assumption. m
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Chapter 3

Minimization Methods
and Variational Convergences

In the present chapter we recall the notion and the main properties of De
Giorgi’s I'-convergence, introduced in the seventies to propose a framework
in which settle the study of the asymptotic behaviour of families of varia-
tional problems.

In this chapter we describe the abstract features of I'-convergence, and
refer to Chapters 6 and those from 10 onwards for its applications to more
concrete situations.

To properly introduce the subject, in the first section, we recall the
abstract framework in which settle the study of minimization of variational
problems. Then we introduce I'-convergence theory and describe its ap-
plications to the calculus of variations. The last section is devoted to the
study of a particular case of I'-convergence: the one of relaxation.

We refer to [DG7], [DGF1], [DGF2], [DM2], and [DG6] for a more
complete exposition on the subject.

§3.1 The Direct Methods in the Calculus of Variations

In this section we briefly recall the the main notions needed in order to
treat the abstract problem of the minimization of a functional over a set.

As usual, such notions will be of topological nature, and the final result
will be a variant of the well celebrated Weierstrass Theorem based on the
lower semicontinuity properties of the functional, and on the compactness
of the set. Nevertheless, in view of applications to the study of minimization
problems in I'-convergence theory, it seems to be more natural to follow an
approach based on the weaker notion of countable compactness in place of
compactness.

Let (U,7) be a topological space.
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Definition 3.1.1. We say that a subset K C U is countably compact if
every countable open covering of K has a finite subcovering.

We say that K is relatively countably compact if K is countably com-
pact.

It is clear that a compact set is countably compact, and that, in general,
the converse is false. Nevertheless, it becomes true if U satisfies the second
countability axiom.

In general, countably compact sets, even Hausdorff, need not be closed,
and the closure of a countably compact set need not be countably com-
pact. On the other side, closed subsets of countably compact sets are again
countably compact, and, provided U satisfies the first countability axiom,
countably compact sets are closed.

Countably compact spaces have the nice feature to enjoy the Bolzano-
Weierstrass property, as explained in the following result (cf. for example
[Ro, Chapter 9, Proposition 7]).

Theorem 3.1.2. A subset K of U is countably compact if and only if for
every {up} C K the set of the cluster points of {uy} in K is nonempty.

Proof. Let us first assume that K is countably compact, and let {u} C K.
For every k € N let us set Ay = U \ {up, : h > k}. Then, for every k € N,
Ay is open, and Ay C Ag4q. It is clear that {Ag} cannot be a covering of
K, otherwise, by the countable compactness of K, it would be K C Ay, for
some ko € N, contrary to the fact that ug,11 € K\ Ag,. Because of this,
K\USAL #0. Let u € K\ U{SA, # 0. Then u € Nf25{up : h >k}
and, consequently, is a cluster point of {uy,}.

Let us assume now that for every sequence in K the set of the cluster
points in K of the sequence is nonempty, and let {A,}ren be a countable
covering of K. If { A, }nen has no finite subcoverings, then K\ UF_  A), # 0
for every k € N. For every k € N let u, € K\ U’szlAh, and let u € K be
a cluster point of {uy}. Then, being for every k € N, K \ Ur_, A}, closed,
and K \UFT1A, C K\UF_ Ay, it turns out that u € N2 (K \UE_, Ap) =
K\ UZ‘:}Ah, contrary to the fact that K\ UZ?&A;I = (). This yields that
{Ap}ren has a finite subcovering, and therefore that K is countably com-
pact. m

By using Theorem 3.1.2, it is easy to see that a relatively sequentially
compact set is countably compact. The converse in false in general topolog-
ical spaces, but it becomes true if U satisfies the first countability axiom,
or, by virtue of the Eberlein-Smulian Theorem, if U is a Banach space
equipped with its weak topology.

We now come to the problem of the minimization of a function.

Definition 3.1.3. Let F:U — [—o0,+00]. We say that F is
i) coercive if for every A € R there exists a compact subset Ky of U such
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that {u € U : F(u) < A} C K,

ii) countably coercive if for every A € R there exists a countably compact
subset Ky of U such that {u € U : F(u) < A} C K},

iii) strongly countably coercive if for every A € R there exists a closed and
countably compact subset Ky of U such that {u € U : F(u) < A\} C Kj,
iv) sequentially coercive if for every A € R there exists a sequentially com-
pact subset Ky of U such that {u € U : F(u) < A} C K

v) strongly sequentially coercive if for every A € R there exists a closed and
sequentially compact subset Ky of U such that {u € U : F(u) < A} C K.

We can state now the main result on the minimization of a functional
over a set.

Theorem 3.1.4. Let F:U — [—o00,+00] be lower semicontinuous and
countably coercive (respectively lower semicontinuous and coercive, sequen-
tially lower semicontinuous and sequentially coercive). Then F has a min-
imum in U.

Proof. We deal only with the non-sequential case, the proof for the others
being similar with the obvious changes.

If F is identically equal to 400, the proof is obvious.

If not, let {\;,} C R be strictly decreasing and such that limp_ 1o Ay, =
infy F, and let {up} C U satisfy F(up) < Ay for every h € N.

Since {up} C {v € U : F(v) < A1}, the countable coerciveness of F
and Theorem 3.1.2 yield a cluster point u € U of {up}. Therefore (0.1)
applies, and we get

ir(}fF < F(u) <limsup F(up) < lim Ap = i%fF,

h— 400 h—+o00

from which we conclude that v is a minimizer of F'. m

Remark 3.1.5. It is worth while to remark that the part of Theorem
3.1.4 dealing with countable coerciveness still holds by replacing the lower
semicontinuity assumption on F' with the condition expressed by (0.1). It
is easy to verify that the lower semicontinuity of F implies (0.1), and that
(0.1) implies the sequential lower semicontinuity of F'.

From Theorem 3.1.4 we deduce the following corollaries in the case of
Banach spaces.

Theorem 3.1.6. Let W be a reflexive Banach space, X C W, and F: X —
[—00, +00]. Assume that X is convex and closed, that F' is convex and W -
lower semicontinuous, and that, if X is not bounded,

F(u) = +o0.

lluf|—+o00
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Then F' has a minimum in X.

Proof. Let F be defined as

= F(u) ifueX
FrueW = {—!—oo ifue W\ X,
then F' turns out to be convex and lower semicontinuous. Consequently, by
Theorem 1.1.13, it results to be also weak-W-lower semicontinuous.
Then, by using such property, and the assumption on the behaviour of
F at infinity if X is not bounded, it follows that for every A € R the set
{v e W : F(u) < A} is bounded and closed in the weak-W topology. Con-
sequently, by the Bourbaki-Kakutani-Smulian Theorem, it is also compact
in the same topology, and the coerciveness of F' in the weak-W topology
too follows. R R
Because of this, Theorem 3.1.4 applies to F', and we conclude that F
has a minimum in W. This trivially implies that F' has a minimum in X,
and concludes the proof. m

The results below deal with the case in which the functionals are de-
fined in a subset of a dual space.

Theorem 3.1.7. Let W be a Banach space, X C W', and F: X —
[—00, 400]. Assume that X is closed in the weak* W' topology, that F
is weak*-W'-lower semicontinuous, and that, if X is not bounded,

lim F = +00.
[lyl|—-+oo )

Then F' has a minimum in X.

Proof. Let F be defined as

F- ’ Fly) ifyeX
Fyew H{—!—oo ifye W'\ X.

Then, as in the proof of Theorem 3.1.6, by using the closure properties
of X, and the lower semicontinuity ones of F, the lower semicontinuity of
F in the weak*-W’ topology follows. Moreover, by using the assumption
on the behaviour of F' at infinity if X is not bounded, it follows that for
every A € R the set {y € W' : F(y) < A} is bounded and closed in the
weak*-W’ topology. Consequently, by Alaoglu’s theorem, it is also compact
in the same topology, and the coerciveness of F' in the weak™- W’ topology
follows. R N

Because of this, Theorem 3.1.4 applies to F, and we conclude that F'
has a minimum in W’. This trivially implies that F' has a minimum in X,
and concludes the proof. m
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Theorem 3.1.8. Let W be a separable Banach space, X C W', and
F: X — [—00,+00]. Assume that X is convex and sequentially closed in
the weak™*- W' topology, that F is convex and sequentially weak*-W'-lower
semicontinuous, and that, if X is not bounded,

lim F = +o00.
[lyl—-+oo )

Then F' has a minimum in X.

Proof. First of all, we observe that Theorem 1.1.4 yields the closure of X
in the weak*-W' topology.

Let F be defined as in the proof of Theorem 3.1.7, then, by the proper-
ties of X and F', and by Theorem 1.1.14, it follows that F', and consequently
F, are weak™-W'-lower semicontinuous.

Therefore, Theorem 3.1.7 applies, and the proof follows. m

§3.2 I'-Convergence

In the following, specially in view of the applications that we are going to
develop, we will need to utilize a notion of variational convergence slightly
more general of the usual one of I'-convergence for sequences of functionals.
It is the notion of multiple I'-limit introduced in [DG5], and [DG6].
We need it since we are going to work with families of functionals de-
pending on parameters that can be also real numbers varying in an interval.
Let (U,7) be a topological space.

Definition 3.2.1. Let E C [—o0, 4], 9 € E, and let, for every ¢ € E,
F.:U — [—00,4+00]. We define the I'™ (7)-lower limit, and the I'™ (T)-upper
limit of {F.}.cr as € goes to €q as the functionals defined by

I' (r)liminf F.:w € U +— sup liminf inf F,(v),
e—€o TEN (u) €¢€0 vel

I (r)limsup F.:u € U — sup limsup inf F(v).
e—€o IeN (u) e—eo vel

If in uw € U it results

I~ (7)liminf F.(u) = '~ (7) limsup F.(u),

e—€0 e—eo

we say that the family {F.}.cg I'~(7)-converges in u as € goes to £g, and
we define the I'™ (7)-limit in u of {F.}.cg as € goes to €9 by

I'~(7) lim F.(u) =T (7)liminf F.(u) = T~ (7) limsup F.(u).

E—EQ E—EQ e—ep
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When E = N we always take ¢g = +o00. In this case the above
definitions reduce to the usual ones of I'-upper limit, I’-lower limit, and
I-limit of a sequence of functionals proposed in [DGF1]. As usual in this
case, we write “I'™(7) liminf},, 4 o F},” in place of “I'™(7) liminf. o Fr,”
and use analogous notations for the remaining limits.

We observe explicitly that the I'™(7)-lower limit, and the I'~(7)-upper
limit of {F.}.cr as e goes to &g exist for every u € U.

It is clear that

(3.2.1) I' (7) liminf F,(u) < T (7) limsup F;(u) for every u € U,

e—eg e—eg
and that, if 7/ is another topology on U, finer than 7, it results that

'™ (7)liminf F.(u) < T~ (7) liminf F.(u),

e—eQ e—eg
'~ (r)limsup F.(u) < T~ (7') limsup F-(u)
£€—€0 £€—¢0

for every u € U.

I'-limits turn out to be stable with respect to continuous perturbations,
as proved by the following result.

Proposition 3.2.2. Let F C [—o0,+00], g9 € E, and let, for every € € E,
F.:U — [—00,400], and G:U — R. Assume that G is continuous. Then

I (7)liminf(F. + G)(u) =T () liminf F.(u) + G(u)

I~ (7)limsup(F; + G)(u) =T~ (7) limsup F.(u) + G(u)

for every u € U.

Proof. We prove only the second equality, the proof of the first one being
analogous.

Let u € U. Let us fix Iy € N(u), and let us observe that

I'~(7)limsup(F; + G)(u) = sup lim sup inf (F. + G)(v),
e—eo IEN (u), ICI, e—eo V€I
' (7)limsup F:(u) = sup lim sup inf F.(v).
e—eo IeN (u), ICI, e—eo VEI

Then we have that

'™ (7) limsup(F: + G)(u) > sup  limsup {inf F.(v) + inf G(v)} >
€—¢o IEN (u), ICIy e—eo (VEI vel
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> sup lim sup {inf F.(v) + inf G(v)} =
IeN (u), ICIy €—¢o vel vEly

=T (7)limsup F.(u) + inIf G(v) for every Iy € N(u).
velp

E—EQ

Because of this, and by taking into account also the continuity of G,
we conclude that

(3.2.2) I (7)limsup(F: + G)(u) >

E—EQ
>T7(7)limsup F.(u) + sup inf G(v) =T"(7)limsup F.(u) + G(u).
e—eo ToEN (u) v€Ely e—eg

In order to prove the reverse inequality, let u € U. Let us take Iy €
N (u). Then

I'"(7) limsup(F: + G)(u) < sup lim sup {Helfl F.(v) + sup G(v)} <

e—eg o IeN (u), ICIy &—¢o vel

< sup  limsup {inf F.(v) + sup G(v)} =
IEN (u), ICI, e—eo (V€I v€lp

=TI (7) limsup F.(u) + sup G(v) for every Iy € N (u),

£—€Q vely
from which, taking into account also the continuity of G, we conclude that

(3.2.3) '™ (7) limsup(F; + G)(u) <

E—EQ
< T (7)limsup F.(u) + inf sup G(v) =T"(7)limsup F.(u) + G(u).
e—eo TIoEN (u) vel, e—ep

By (3.2.2), and (3.2.3) the proof follows. m

It is clear that, if {5} C F is such that €, — ¢p, then, by using also
(3.2.1), it follows that

(3.2.4) I~ (7) liminf Fy(u) < T7(7)liminf F;, (u) <

E—&o h—+o00
<TI'"(7)limsup F, (u) <I'" (1) limsup F¢(u) for every u € U.
h— 400 £—eg
In particular, when F = N, g9 = 400, and {h;} C N diverges, it
results

(3.2.5) '~ (r) lgmjnf Fp(u) <T7 (1) lkim+inf Fy, (u) <

<T'7(r)limsup Fy, (v) < T~ (7)limsup Fj,(u) for every u € U.

k—+o00 h—+4o00

The I'"-upper limit of a family of functionals {F.}.cg can be charac-
terized by means of the I'"-upper limits of sequences in {F;}ccp.
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Proposition 3.2.3. Let E C [~o0,+00], g9 € E, and let, for every ¢ € E,
F.:U — [—00,400]. Then

I (7)limsup F.(u) =

£—€Q

= sup {F_(T) limsup F;, (u) : {en} C E, e — 60} for every u € U.
h—+o0

Proof. Let w € U. Then obviously

(3.2.6) '~ () limsup F.(u) >

e—eg

= sup {F(T) limsup F,, (u) : {en} C E, e — 60} .
h—+o0
Let now Iy € N(u), and {e9,} € E with g9, — €o be such that
limsupy, o infyer, Fr, ,, (v) = limsup, . inf,er, Fo(v). Then it is clear
that

limsup inf F.(v) < sup limsupinf F, , (v) <
e—eo V€D IEN(u) h—oo vEL 7

< sup {F_(T) limsup F;, (u) : {en} C E, e — 50} ,
h—4o00
from which, together with (3.2.6), the proof follows. m
When (U, 7) satisfies the first countability axiom, the following sequen-
tial characterization of I'-limits holds.

Proposition 3.2.4. Assume that (U, T) satisfies the first countability ax-
iom. For every h € N let Fj,: U — [—00,+00]. Then

r~(r) %Elngh(U) = min {%TiI;Oth(vh) Doy — u} ,

' (7) lim sup F(u) = min {lim sup Fy, (vp) s vp — u}
h—+4o00 h—+oco

for every u € U.

Proof. Let u € U. Let us preliminarily observe that, since for every
I € N(u), and every {vy} C U such that v, — u it results that vy, € I
definitively, it turns out that

(3.2.7) '~ (7)liminf Fy(u) < inf {%m_ii_anh(Uh) DU — u} .

h—+o00

©2002 CRC Press LLC



In order to prove the reverse inequality, it is not restrictive to assume
that I'™ (7) iminfy, .4 o0 Fj(u) < +00. Let {Ar} C R be strictly decreasing,
and such that limg_, 400 Ax = I'(7) liminfy,, o Fp(u), and let I; O Is D

. D I O ... be a countable basis of neighborhoods at w. Then, since
clearly

'™ (7)liminf Fj(u) > liminf inf Fp(v) for every k € N,
h—+oco h—-+oo vEI

we can find {hr} C N strictly increasing satisfying A\, > inf,ecs, Fp, (v)
for every k € N and, consequently, {vx} C U, such that vy € I and
Ak > Fy, (vg) for every k € N.

We now set hg = 0, and define a sequence {u,,} by setting wu,, = vi
whenever hy_1 < m < hi for some k € N. Then u,, — u, up, = vi for
every k € N, and

By (3.2.7), and (3.2.8) the first part of the proposition follows.
In order to prove the remaining one, we take v € U and, as before, we
observe that

(3.2.9) '~ (7) limsup Fp(u) < inf {hm sup Fy, (vy) : vy, — u} .
h—+o0 h—4o00

To prove the reverse inequality, it is not restrictive to assume that
I~ (7)limsup;,_, o Fr(u) < +o0o. Let {A\x} C R be strictly decreasing,
and such that limy_ 1o Ap = I'"(7) limsup,,_, | ., Fr(u), and let {1} be as
before. Then, since clearly

'~ (7) limsup Fp(u) > limsup inf Fj(v) for every k € N,
h—-+oo h—+oo VELK

we can find {h;} C N strictly increasing satisfying Ay > inf, ¢y, Fp(v) for
every k € N and h > hy. Because of this, for every £ € N we can find
{vk.nthen C Ii such that Ay > Fj(vg p) for every h > hy.

We now take uq,...,un,—1 € U, and set u,, = vk, whenever hy <
m < hyy1 for some k € N. Then u,, — u, A\ > Fj(uy) for every k € N
and hy < h < hg41, and

(3.2.10) '~ (7) limsup Fp(u) > limsup Fy(up).
h—+oco k— o0

By (3.2.9), and (3.2.10) also the last part of the proposition follows. m
It is worth while to observe explicitly that Proposition 3.2.4, when

(U, 7) satisfies the first countability axiom, and, for every h € N, Fj,: U —
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[—00, +o0], yields that for every w € U, and for every {vs} C U such that
v, — u it results

I~ (7)liminf Fp,(u) < liminf F}, (vp,),

h—4o00 h—+4o00
and that for every u € U there exists {up} C U such that uj;, — u, and

I (r )hmlanh( )>11m1anh(uh)

h—-+o0 h—+o00

Analogously, for every u € U, and for every {v,} C U such that v, — w it
results
'~ (7) limsup Fy(u) < limsup Fy, (vg),
h—4o00 h— 400

and for every u € U there exists {up} C U such that up — u, and

'™ (7) lim sup Fp,(u) > limsup Fy(up,).
h—+oco h—+o00

Proposition 3.2.5. Assume that (U, T) satisfies the first countability ax-
iom. For every h € N let Fj,: U — [—00,+00], u € U, and A € [—00, +00].
Then

(3.2.11) A=T7(7) hEr—&I-loo Fp(u)

if and only if
(3.2.12) for every {hi} C N strictly increasing

there exists {hy,} C {hy} such that A\ =T"(r )JETOO Fh, (u).
Proof. By (3.2.5) it immediately follows that (3.2.11) implies (3.2.12)
(actually with {hg;} = {h}).

Let us assume now that (3.2.12) is fulfilled. Let us prove that (3.2.11)
holds.

By Proposition 3.2.4, we can find {up} C U such that u;, — u and
I~ (7)liminfp_, 4 oo Fr(u) = liminfp,— 1 oo Fr(up), and let {hy} C N strictly
increasing satisfy I'™(7) liminfy, o Fj,(u) = limsup,_, , o F, (un, ). Let
{h&;} € {hx} be given by (3.2.12). Then

(3.2.13) '~ (r) lgminf Fp(u) > T~ (7)limsup F}, (u) >
—Too k—-+o0

>T (7 )hmsuthk (u) =\
Jj—+o0
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If we now assume by contradiction that A < I'™(7) limsup,, ., o Fn(u),
let I € N(u) be such that A\ < limsupy,_, , . inf,c; Fp(v), and take {h;} C
N strictly increasing satisfying limsup,_, . inf,er Fi(v) = liminfy_
inf,er Fp, (v). Let {hg;} C {hi} be given by (3.2.12). Then

A < I (7)liminf Fp, (u) <T7(7)liminf Fh,, (u) = A,

k——+o0 j—+o0
thus getting a contradiction. Therefore

(3.2.14) '™ (7) lim sup Fj(u) < A
h— 400

By (3.2.13), and (3.2.14) equality (3.2.11) follows. m

Proposition 3.2.6. Let (U, 7) satisfy the first countability axiom. Let
E C [~00,+)], €9 € E, and let, for every ¢ € E, F.:U — [~o0, +00].
Then

' (7)liminf F.(u) =

E—EQ

= min {F_(T) liminf F,, (u) : {ep} CE, e, — 50} for every u € U.

h—+o0

Proof. Let u € U. Then, by (3.2.4), it is clear that

(3.2.15) I~ (7)liminf F.(u) <

E—EQ

< inf {I‘(T) lgmjangh (u): {en} CE, e, — 50} .

To prove the reverse inequality, we assume that I'™ (7) lim inf._,., F.(u)
< 4o00. Let {A\;} C R be strictly decreasing, and such that limg_ oo A\ =
I'~(7)liminf._,., F-(u), and let {Ix} be as in the proof of Proposition 3.2.4.
Then, since clearly

I (7)liminf F.(u) > liminf inf F,(v) for every k € N,
e—¢€o e—eg veEl
we can find {e;} C FE satisfying ¢, — €9, and Ay > inf,ey, Fr, (v) for
every k € N. Consequently, there exists {vy} C U, such that vy € I, and
Ak > F., (vg) for every k € N.
It is clear that uy — u, therefore, by Proposition 3.2.4, it follows that

e—eg

(3.2.16) I'" (7) liminf F, (u) > lngirnf F. () >T" l’szirnf F., (u).

By (3.2.15), and (3.2.16) the proof follows. m

Finally, we prove that I'-convergence has nice compactness properties.

©2002 CRC Press LLC



Theorem 3.2.7. Assume that (U, T) has a countable base of open sets. For
every h € N let F}:U — [—00,400]. Then there exists {h;} C N strictly
increasing for which the limit I'~ (7) limy_ 4 o Fp, (u) exists for every u € U.

Proof. Let {A,,} be a countable base of open sets for 7.

Let {h}} C N be strictly increasing and such that the limit limy_, ;o
infyea, Fi1 (v) exists. For every m € N let us choose {hPT1} C {h} for
which the limit limy_, 4o infyea,, ., Fymaa (v) exists.

We now apply the classical diagonalization argument, and set, for every
k € N, hy = h¥. Then it turns out that the limit limg_ o infyeca,, Fr, (v)

exists for every m € N. Because of this, we conclude that

I' (7)) liminf F}, (u) = sup liminf inf F},, (v) =
) min B, ()= o Jmintinf £, ()

= sup limsup inf Fy, (v) = I'"(7) limsup Fy, (u) for every u € U,
TEN (W)N{Ap} k—+oo VET k—-+o0

from which the proof follows. m

§3.3 Applications to the Calculus of Variations

In the present section we establish the results on the asymptotic behaviour
of minima, and of minimum values of families of functionals defined on the
same space.

Let (U, 7) be a topological space.

Lemma 3.3.1. Let oz 7 — [—00,+00]. Then the function

ueUw— sup a(l)
IeN (u)

is lower semicontinuous.

Proof. Let us observe that for every ¢ € R, and every u € {v € U :
SUPrepr(v) @(I) > c} there exists I. € N(u) such that () > c. Con-
sequently sup;cp(,) a(f) > c for every v € I, and the set {v € U :
SUP;en(v) @(I) > ¢} turns out to be open. m

Proposition 3.3.2. Let E C [~00,+0], g € E, and let, for every ¢ €
E, F.:U — [—o00,+00]. Then the functionals T~ (7)liminf. .., F; and
'~ (7)limsup,_,., F. are lower semicontinuous on U.

Proof. Follows from Lemma 3.3.1 applied to v A € 7+ liminf,_,. inf,ca
F.(v), and to a: A € 7+ limsup, . inf,ca F:(v). ®
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Lemma 3.3.3. Let E C [~o0,+00], g € E, and let, for every ¢ € F,
F.:U — [—o00,4+]. Let A € 7. Then

inf I'7(7) liminf F.(u) > liminf inf F_(u),

u€A £—€Q e—ep u€A

inf T'"(7) limsup F.(u) > limsup injf;1 F.(u)

u€A e—eo e—eq UE
for every u € U.
Proof. Let u € U. Then we have that

T i ) — it (o)
R OTpR R = 1 o, R ) 2

> inf liminf inf F,(v) = liminf inf F_(u).

u€A e—eg vEA e—eo ucA

The proof of the second inequality is similar. m

Let E C [~00,+0], g9 € E, {u.}eer C U, and u € U. We say that
w is a cluster point of {u.}ecp as e — gg if for every I € N'(u), and every
neighborhood O of ¢ there exists ¢ € £ N O such that u. € 1.

Lemma 3.3.4. Let E C [~oc0,+00], eg € E, and let, for every ¢ € E,
F.:U — [—00,4+]. Let {u.}e.cr C U, and u be a cluster point of {u.}.ck
as € — eg. Then

I~ (7)liminf F.(u) < limsup Fe(u;).

€—¢o0 e—eo
Proof. Let I € N'(u). Let us prove that

liminf inf F.(u) < limsup F (uc).

e—eg wvel e—¢g

This will imply the lemma.

To do this, it is sufficient to note that for every neighborhood O of
€o there exists n € £ N O such that u, € I, and, consequently, such that
inf,er Fy(v) < Fp(uy,). m

Proposition 3.3.5. Let £ C [~o00,+], g9 € E, and let, for every
€ € E, F..U — [-00,+x]. Let K C U be countably compact. Then
I'~(7)liminf._,., F. attains its minimum on K, and

min '~ (7) liminf F.(u) < liminf inf F(u).

ueK e—e€q e—eg ueK

Proof. The existence of the minimum in K of I'"(7) lim inf._,., F. follows
from Proposition 3.3.2, and Theorem 3.1.4.
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Let {1} C E be such that

(3.3.1) lim inf F,, (u) =liminf inf F.(u),

h— 400 ue K e—eo0 ueK
and let {up} C K satisfy

(3.3.2) Jim F,(up) = lim - inf F, (u).

Since K is countably compact, Theorem 3.1.2 yields the existence of a
cluster point of {up}, say u, in K. Consequently, by (3.2.4), Lemma 3.3.4,
(3.3.2), and (3.3.1) we conclude that

min '™ (7) liminf F.(v) < T7(7) liminf F.(u) < T (7) liminf F;, (u) <

veK e—€0 £—¢€g h— 400

< IIILIE-T-I;E F., (up) = hli}r_ir_loo ulgf{FEh(u) = ligisrgfuig{FE(u),

which proves the proposition. m

We can now prove the results on the convergence of minima and of
minimizers.

Definition 3.3.6. Let E C [—o0,+00], and let, for every € € E, F.:U —
[—00, +00]. We say that the functionals {F.}.cg are

i) equi-coercive if for every A € R there exists a compact subset Ky of U
such that {u € U : F.(u) <A} C K forevery e € E,

ii) equi-strongly countably coercive if for every A € R there exists a closed
and countably compact subset K of U such that {u € U : F_(u) < A} C K,
for every € € E,

iii) equi-strongly sequentially coercive if for every A € R there exists a closed
and sequentially compact subset Ky of U such that {u € U : F.(u) < A\} C
K for everye € E.

Theorem 3.3.7. Let E C [—o00,+00], g9 € E, and let, for every ¢ € E,
F.:U — [—00,4+00]. Assume that the functionals { F. }.c g are equi-strongly
countably coercive. Then I'™(7)liminf._.. F. and I'"(7)limsup._, ., F.
are strongly countably coercive.

If in addition the limit T~ (7) lim._., F:(u) exists for every u € U, it
results that I'~(7) lim. ., Fr has a minimum on U, that the limit lim._,,
inf,cpy F:(v) exists, and that

minT'(7) lim F;(v) = lim inf F.(v).

vel £—EQ e—eoveU

Finally, iflim._,, inf,cp Fe(v) < +00, and if {uc }eep C U issuch that
lim. .., Fe(ue) = lim._., inf,cpy Fz(v), then the set of the cluster points of
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{uc}ecrp as € — ¢ is nonempty, and every such point is a solution of
min, ey I'™(7) lime ¢y Fr(v).

Proof. Let us first prove that the functionals I'"(7)liminf._., F. and
[~ (7)limsup,_, ., F. are strongly countably coercive. To do this, we treat
only the case of the I'"(7) limsup, . F:, the other being similar.

For every A € R let K\ be the closed countably compact set given by
the equi-countable coerciveness of {F.}.ck.

Let A€ R, and u € {v € U : I'"(7) limsup, ., F.(v) < A}. Then, for
every I € N(u), it turns out that limsup,__ inf,e; FL(v) < A and, by the
equi-countable coerciveness of {F.}.cg, that I N Ky # () for every 6 > 0,
namely, taking also into account the closedness of Kyi¢ for every 6 > 0,
that u € Nps oK r10.

We now observe that Ng~oK 1 is a closed subset of a countably com-
pact space, hence it is itself countably compact.

Because of this, the countable coerciveness of I'~(7) limsup,_, ., F. fol-
lows.

We now assume that the limit I'"(7) lim._,., F.(u) exists for every
u € U. Then, by Proposition 3.3.2, the countable coerciveness of I'™(7)
lim SUP. ¢, F., and Theorem 3.1.4 it follows that I'~(7) lim._,., F: has a
minimum on U.

If liminf._,, inf,ey Fe(v) = 400, then Lemma 3.3.3 yields T'"(7)
lim._,., F-(u) = 400 for every u € U, and, consequently, that

min '™ (7) lim F(v) = 400 = lim inf F.(v).

velU e—eg e—egvelU

On the contrary, if liminf._,., inf,cp Fo(v) < 400, let A € R satisfy
liminf._,., infyep Fr(v) < A, and {e;} C E be such that e, — ¢, and

(3.3.3) lim 1nf F,, (v) = liminf inf F.(v).

h—+4o00 vE e—eo veU

Let K\ be the countably compact set given by the equi-strongly count-
able coerciveness property. Then it is straightforward to verify that

(3.3.4) inf Fy, (v) = inf F,, (v) for every h € N sufficiently large.
velU : veEK )

Finally, by (3.2.4), Proposition 3.3.5, (3.3.4), (3.3.3), and Lemma 3.3.3,
we conclude that

inI'"(7) lim F; <minI'"(7) lim F;,
wpt (Ol RO st e, Iy W) <

< min I'"(7) lim F., (v) < lim inf F, (v)= lim inf F;, (v) =

vEK h—4o0 h—+ooveEK )y h—+oco velU
= liminf inf F.(v) < limsup mf F.(v) < inf T (7) lim F.(v),
e—eo veU e—eg velU £—€oQ
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from which the part of the theorem concerning the asymptotic behaviour
of {inf, ey F:(v)}ecr follows.

If now lim._,, inf,er Fo(v) < 400, and {uc}ecp is as above, let A € R
be such that lim._,., inf,ep Fe(v) < A. Then, for every ¢ € E sufficiently
close to e, it results that F.(u.) < A, and, consequently, by the equi-
strongly countable coerciveness of {F.}.cp, that u. € K.

Because of this, Theorem 3.1.2 yields the existence of at least one
cluster point of {u. }ecp as e — €9. Let u be one of such points. Then, by
Lemma 3.3.4, Lemma 3.3.3, and the first part of the present theorem, we
conclude that

min '™ (7) lim F.(v) <T7(7) lim F.(u) <

velU E—€Q E—¢€p

<limsup F.(us) = lim inf F.(v) =min'~(7) lim F;(v),

e—eg e—egvelU velU E—E&Q

that completes the proof. m

From Theorem 3.3.7 we deduce the following corollary in the case of
coerciveness, or of strongly sequential coerciveness.

Theorem 3.3.8. Let £ C [~o0,+c0], g9 € E, and let, for every € € E,
F.:U — [—00,400]. Assume that the functionals { F. }.c g are equi-coercive
(respectively equi-strongly sequentially coercive). Then I'”(7)liminf._,,
F. and '~ (7)limsup,_, ., F: are coercive (respectively strongly sequentially
coercive).

If in addition the limit T~ (7) lim._.., F:(u) exists for every u € U, it
results that I~ (7) lim. ., F. has a minimum on U, that the limit lim._,,
inf,epy F-(v) exists, and that

min '™ (7) lim F;(v) = lim inf F.(v).

vel £—EQ e—eoveU

Finally, iflim._,, inf,cp Fe(v) < +00, and if {uc teep C U issuch that
lim. ., Fe(ue) = lime,, inf ey Fo(v), then {uc}.cp has cluster points
as € — go (respectively there exists {e,} C E with ¢, — &g such that
{ue, } converges), and every such point (respectively the limit of {u., }) is
a solution of min,ey I'™ (7) lime ¢, Fe(v).

Proof. Let {K)}icr be the family of the compact (respectively closed
and sequentially compact) sets given by the equi-coerciveness (respectively
equi-strongly sequential coerciveness) of {F:}.cp.

The coerciveness (respectively strongly sequential coerciveness) of
I'~(7)liminf. ..  F. and of I'"(7) limsup,_,., F. follows exactly as in the
corresponding part of the proof of Theorem 3.3.7, once we observe that
a closed subset of a compact (respectively sequentially compact) space is
itself compact (respectively closed and sequentially compact).
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The part of the theorem dealing with the asymptotic behaviours of
{inf,ev F:(v) }eer, and of {u:}ccr as € — g¢ follows from Theorem 3.3.7,
once we recall that a compact (respectively sequentially compact) set is also
countably compact.

Finally, if lim._,., infyep Fr(v) < 400, and {uc}.cp is as above, let
A € R be such that lim._,., inf,cpy Fe(v) < A. Then, for every ¢ € E
sufficiently close to €y, it results that F.(u:) < A, and, consequently, by the
equi-strongly sequential coerciveness of {F.}.cp, that u. € K.

Let {en} C E with €, — €p. Then, by the sequential compactness of
K, the existence of a converging subsequence of {uc, }, still denoted by
{ue, }, follows. Let u be the limit of {u., }. Then, by (3.2.4), Lemma 3.3.4,
Lemma 3.3.3 and the first part of the present theorem, we conclude that

min ' (r) Elirrslo F.(v) < min I (7) l}igigcf) F., (v) <T7(7) légirg F,, (u) <

< I;Lrﬁili})) F,, (ue,) = Eli>r£:10 I}Ielzf] F.(v) = {)rg{r} I'~(r) hEriloo Fy,(v),

that completes the proof. m

§3.4 I'-Convergence in Topological Vector Spaces and of Increas-
ing Set Functionals

We conclude this chapter with some remarks on I'-convergence in the frame-
work of topological vector spaces, and in the framework of increasing set
functionals.

Proposition 3.4.1. Let U be a topological vector space, E C [—o0, +00],
€0 € E, and let, for every e € E, F.:U — [—00,400]. Assume that, for
every € € E, F_ is convex. Then I'"(7)limsup,_,_ F. is convex.
Proof. Let uy, ug € U, t € [0,1], and let I € N (tus + (1 — t)uz).

Since U is a topological vector space, the function (u,v) € U x U
tu + (1 — ¢)v € U is continuous, consequently there exist I; € AM(u1) and
I, € N(Uz) such that tI; + (1 — t)]g Cc 1.

Because of this, and by the convexity of each F., we have that

inf FL(v) < inf  F.(v)= inf  F(t 1—t)vg) <
‘11161[ E(U) - veth}gl(l—t)lz =Y v1€1§1v2€l2 6( Ul +( )’02) -

<t inf F.(v1)+ (1 —1t) inf F.(ve) for every € € E,
vi€ly vo €l
from which we deduce that

lim sup ing F.(v) < tlimsup inf F.(v) + (1 —¢)limsup inf F.(v) <

e—eg VE e—eo vEDN e—eg VEIL2
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<tI' (7)limsup Fe(u1) + (1 — )" (7) lim sup F (u2)

E—E0 E—E0
for every I € N (tug + (1 — t)us).

The convexity of I'"(7) limsup,_, ., F: now follows from the above in-
equality. m

Let Qy € A(R™), and (U, 7) be a topological space. For every h €
N let Fp: A() x U — [0,400] be increasing. Then, it is clear that
'~ (1) liminfy 4o Fj, and I'"(7) limsup,,_, , ., F, too are increasing.

Proposition 3.4.2. Let Qy € A(R"), and (U,T) be a topological space
satisfying the first countability axiom. For every h € N let F},: A(Qo) xU —
[0, +00] be increasing, and let F: A() x U — [0, +0o0]. Then

(3.4.1) F(Q,u) = sup {r—(T) lim inf F,(A,u) : A CC Q} =

= sup {F_('r) limsup Fj(A4,u) : A CC Q} for every Q € A(Qp), ue U
h—+o00

if and only if

(3.4.2) for every {hy} C N strictly increasing there exists {hy;} C {hx}

such that F(Q,u) = sup{ “(7)liminf Fp, (A, u): A CC Q} =

j—+oo
= sup {I‘ (1 )hszruthk (Au): AcCC Q} for every 2 € A(Qp), ueU.
j—+oo

Proof. It is clear that (3.4.1) implies (3.4.2).
Conversely, let us assume that (3.4.2) holds. For the sake of simplicity,
let us set

F': (Qu) € A(Qo) x U—T" (7 )hmmth(Q u),

—>+oo

F":(Q,u) € A(Q) X U T~ (7) limsup F(Q, u).
h——+oco

Then it is clear that F’ and F” are increasing.
Let (Q,u) € A(o) x U. Then, since F’ is 1nner regular, let {Q;} C
A(Q) satisfy Qp CC Qg1 CC Q for every k € N, U 21 =Q, and

(3.4.3) FL(Qu)= lim F'(Q,u),

k—+o00
and let, for every k € N, {uf} C U be such that uf — u as h diverges, and

(3.4.4) F'(Q, u) = lim inf Fj, (Q, ul).

h—+o0
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By using (3.4.3), and (3.4.4), we can construct {h;z} C N strictly
increasing such that uﬁk — u, and

F' (Q,u) = llifrnsup Fp, (%, u’ﬁk)
— 400

Consequently, by taking into account the properties of {2}, we obtain
that

F'(Q,u) > limsup Fy, (4, Uhk) > T (1) limsup Fp, (A, u)
k—+oco k—+oo

for every A CC €2,

from which, together with (3.4.2), we conclude that

(3.4.5) F" (Q,u) > sup{T'~ () limsup F, (A,u) : ACC Q} >
k—+oco

> sup{l'"~(7) lim sup Fhy, (Au): ACCQ}=F(Qu)

j—+oo
for every (Q,u) € A(2p) x U.

In order to prove the reverse inequality for F”, let, by contradiction,
(Q,u) € A(Q) x U be such that F(Q,u) < F”(Q,u), from which it follows
that there exists A CC Q satisfying F(Q,u) < F"(A,u). Let I € N(u),
and {h;} C N strictly increasing such that

F(Q,u) < limsup inf F(A,v) = hm inf mf Fp, (A v).

h—+oo VEI k— o0 vE
Then, by (3.4.2), we have that

F(Q,u) < T (7)liminf F, (A,u) < T (7 )hmmthk (A, u) <

k— o0 j—+o00
< sup{l' (1) ljlinig Fh, (A,u) : ACC Q} = F(Q,u),

thus getting a contradiction.
Hence, it occurs that

(3.4.6) F"(Q,u) < F(Q,u) for every (2,u) € A(Qo) x U.
By (3.4.5), (3.4.6), and (3.2.1), the proof follows. m
Finally, we prove the following abstract compactness result for se-

quences of increasing functionals.
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Proposition 3.4.3. Let Qy € A(R"™), and (U, 7) be a topological space
satisfying the second countability axiom. For every h € N let Fp,: A(Qp) x
U — [0,400] be increasing. Then there exists {h;} C N strictly increasing
for which

sup {I‘*(T) lklgingh’“ (Au): AcCC Q} =

= sup {F_(T) llimiupF;Lk(A,u) A cCC Q} for every Q2 € A(), ue U

Proof. Let {D;}jen C A(f2) be dense in A(€g). Then, by Theorem
3.2.7, and an iteration argument, for every j € N there exists {hfé} CN
strictly increasing, satisfying {hf:'l} - {hfﬂ} for every j € N, for which the
limit I'™ (7) img— 4 00 Fhi (Dj,u) exists for every u € U.

At this point, a diagonalization argument, and (3.2.5) provides the
existence of {hy} strictly increasing for which the limit T'~(7) limg— too
Fp, (Dj,u) exists for every j € N, u € U.

Because of this, the proof follows, since

sup {1"7(7) léglith’“ (A,u): AcCc Q} =
- Sup{F_(’r) liminf £, (4,u) : A € {D;}, Acc Q} =

= sup {F*(T) llicmsup Fp, (Ayu): Ae{D;}, AcCcC Q} =
— 400

= sup {F_(T) llifmsup Fp, (Au): ACC Q}
— 400

for every Q € A(Qp), u e U. [

§3.5 Relaxation

Let (U, 7) be a topological space.
In this section we analyze more deeply the particular case of the I'-
convergence of a constant family of functionals.

Definition 3.5.1. Let F:U — [—o00,+00]. We define the relaxed func-
tional sc™(7)F of F as

sc (7)F:u € U liminf F(v) = sup inf F(v).
v TeN (u) vET

When U agrees with R™ endowed with the usual topology, the relaxed
function of f:R"™ — [—00, 400] is denoted simply by sc™ f. By (1.2.8), it
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agrees with the lower semicontinuous envelope of f already introduced in
§1.2.

It is clear that
(3.5.1) s¢” (1)F(u) < F(u) for every u € U,
and that, by defining Fr:u € U +— F(u) for every h € N, the limit
T~ (7) limp— 4 oo F(u) exists for every u € U, and

(3.5.2) '~ (r) hlilf Fy(u) =sc™ (1) F(u) for every u € U.

Because of (3.5.2), many properties of relaxed functionals follow from
the corresponding ones of I'-limits. Thus, if 7/ is another topology on U,
finer than 7, it results that
sc(17)F(u) < sc™(7")F(u) for every u € U.
The results below follows from the corresponding ones of the previous
section.

Proposition 3.5.2. Let F:U — [—o00,+0], and G:U — R. Assume that
G is continuous. Then

sc” (T)(F 4+ G)(u) =sc™ (1) F(u) + G(u) for every u € U.

When (U, 7) satisfies the first countability axiom, the following sequen-
tial characterization of relaxed functionals holds.

Proposition 3.5.3. Let F:U — [—o00,+00|. Assume that (U, 1) satisfies
the first countability axiom. Then

sc¢” (7)F(u) = min {lim inf F(vp) : vp, — u} for every u € U.

h— 400

Proposition 3.5.4. Let F: U — [—00, +00]. Then the functional sc™ (7)F
is lower semicontinuous on U.

In particular, from (3.5.1), and Proposition 3.5.4 it follows that
(3.5.3) F is lower semicontinuous at w if and only if F'(u) = sc™ (7)F(u).

Theorem 3.5.5. Let F:U — [—o00,400]. Assume that F is strongly
countably coercive. Then sc™(7)F is strongly countably coercive, has a
minimum on U, and
insc (7)F(v) = inf F(v).
minsc™ (1) F(v) = inf F(v)
Moreover, ifinf,cy F(v) < +00, and if {up} C U is such that limp_, 4
F(up) = inf,cpy F(v), then the set of the cluster points of {uy, } is nonempty,
and every such point is a solution of min,cy sc™(7)F(v).

From Theorem 3.5.5 we deduce the following corollary in the sequential
coerciveness case.
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Theorem 3.5.6. Let F:U — [—00,+00|. Assume that F' is coercive (re-
spectively strongly sequentially coercive). Then sc™ (7)F is coercive (re-
spectively strongly sequentially coercive), has a minimum on U, and

min sc” (1) F(v) = Jg(ij(v)

Moreover, ifinf,cy F(v) < +00, and if {up} C U is such that limp_, 4
F(up) = inf,epy F(v), then {uy,} has at least a converging subsequence, and
every limit point of its converging subsequences is a solution of min,cy
sc™ (1)F(v).

The following result shows that, as happens when U = R", the relaxed
functional of F' actually agrees with its lower semicontinuous envelope.

Proposition 3.5.7. Let F:U — [—o0,+0o0|. Then
sc™(1)F(u) =

= sup{®(u) : ®:U — [—o00, +00] lower semicontinuous, & < F in U}
for every u € U.

Proof. By Proposition 3.5.4, and (3.5.1) it turns out that sc™(7)F is lower
semicontinuous, and that sc™(7)F < F in U. Consequently,

(3.5.4) sc” (1)F(u) <

< sup{®(u) : : U — [—00,+00] lower semicontinuous, ® < F'in U}
for every u € U.

On the other side, if ®:U — [—o00,+00] is lower semicontinuous, and
® < F in U, then, by using (3.5.3), it obviously turns out that

O(u) =sc (7)®(u) <sc (7)F(u) for every u € U,
from which, together with (3.5.4), the proof follows. m

Finally, we point out that the relaxation and the I'-limit operators
commute.
Proposition 3.5.8. Let E C [—o0,+00], &9 € E, and let, for every € € E,
F.:U — [—00,400]. Then

I~ (7)liminf F.(u) =T~ (7) liminf sc™ (1) F. (u)

e—eQ e—eQ

I'~(7)limsup F.(u) = I'"(7) limsup sc™ (7) F.(u)

e—¢€Q €—¢€0
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for every u € U.

Proof. Let ¢ € E, u € U, and I € N(u). Then the constant functional
w € U — infyer F-(v) is lower semicontinuous and less that F in I. Con-
sequently, by Proposition 3.5.7 applied to I in place of U, we obtain that

ing F.(v) <sc (7)F:(u) for every ¢ € E, u € U.
ve

Because of this, and by using also (3.5.1) the proof follows. m

Finally, given F:U — [—o00,400], we deduced from F another func-
tional, that we call sequential lower value of F' and denote by sq™ (7)F, that
enjoys intermediate properties between those of sc™(7)F and of F', in the
sense that it has some features of lower semicontinuity type, but inherits
the properties of F more directly than what sc™(7)F does. It is defined as

h—+o00

sq” (7)F:u € U + inf {Hmian(uh) fup — uin T} .
It is clear that
sc (1)F(u) <sq (1)F(u) < F(u) for every u € U.
We remark that, in general, sq~(7)F need not be either sequentially
lower semicontinuous. An example showing this will be given, in the frame-
work of variational integrals, in §10.9.

On the contrary, if U satisfies the first countability axiom, Proposition
3.5.3 yields the identity between sc™ F' and sq™ F'.
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Chapter 4
BV and Sobolev Spaces

In this book Sobolev and BV spaces are widely used as domains in which
variational problems are settled. In the present chapter we briefly intro-
duce them, at least in the case of derivatives of order one, together with
their main properties. We refer to [A], [AFP], [EG], [Gu], [Z] for general
references of the matter.

Nevertheless, the presentation that we are going to propose differs
slightly from those usually described in literature, in which Sobolev spaces
are firstly introduced, and BV ones are then studied as a generalization of
them. On the contrary, we follow an opposite scheme by placing ourselves
in the framework of Borel measures, and firstly looking at BV spaces as
special subsets of a particular space of Borel measures, and then deducing
Sobolev spaces by means of successive restrictions.

This unifying approach has the advantage of clarifying the relationships
between these spaces, and, in particular, allows a better understanding of
the structure certain weak type topologies they are equipped with.

§4.1 Regularization of Measures and of Summable Functions

To carry out the above program, we recall in this section the notion of
regularization of a Borel measure and, in particular, of a locally summable
Lebesgue measurable function, together with their main properties. We will
come back on the notion of regularization in Chapter 7, in a more general
context.

We say that p € C5°(B1(0)) is a symmetric mollifier if p(y) > 0 and
p(—y) = p(y) for every y € R™, and [, p(y)dy = 1.

Let p be a symmetric mollifier. Then for every Q € AR"), u €
Mioc(2), and & > 0 we define the regularization p. of u as

(4.1.1) pee 0z = [ o( T2 auto)

€
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We observe that the definition in (4.1.1) is well posed since, being p
with compact support in By(0), for every = € 27 the integral in (4.1.1) is
actually extended only over B.(x), whose closure is a compact subset of €2.

In particular, if u € L] _(£2), then (4.1.1) applied with ;1 = uL", defines
the regularization w. of w, that, by using Theorem 2.3.2, turns out to be

given by

(4.1.2) U € QO — iﬂ /Qp (m — y) u(y)dy.

[Sh 9

Because of this, it is clear that the regularization of a function enjoys
all the properties of the regularization of a measure.

We list now the main properties of the regularization of a function.

If © e A(R™), it turns out that

w, € C(Q7) for every w € L (), and € > 0,

(4.1.3) / |we|dx < / |w|dz for every w € Li.(Q), and & > 0,
o Q

=

and that
(4.1.4) spt(w.) C {x € Q7 : dist(z, S) < &} for every w € L .(Q),
S CQwithw=0a.e. inQ\S, ¢ €]0,dist(spt(w),N)[.
Moreover, it is easy to verify that

(4.1.5) gl_r% max |we () — w(z)] =0

for every w € C°(Q2), and every compact subset K of Q,

from which, by exploiting Theorem 2.4.5, and (4.1.3), it is possible to prove
that

lim [ |we —wldz =0
e—=0 Jp

for every w € Li (), and every compact subset K of (.

Finally, it is well known that

(4.1.6) lim w(z) = w(z) for every w € L, .(R), and a.e. z € Q.

e—0

Regularization processes provide a powerful tool to approximate mea-
sures by smooth functions, as proved in the following result.
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Theorem 4.1.1. Let Q € AR"), and p € Mioc(2). Then, for every
€>0, pe € C®(827),

| lo _
0 'ue(x): 1 / o%p (x y) du(y) for every x € Q7, a € N,
€

Oz gntlel [o 9ze
and
[ nelde < s
QF
Moreover
hm ppedr = / @dp for every ¢ € CY(Q),
Qc Q

and

a

dp
dcr

Proof. The part of the theorem concerning the smoothness properties of
the regularizations of p follows easily by induction on the length of the
multiindex «, by directly considering difference quotients, and by using
Lebesgue Dominated Convergence Theorem.

In addition, by ii) of Theorem 2.1.2, and by Fubini’s theorem, it comes

that _ e = in ) ) T—y du(y)
Q: € Jaz IJa €
<5 [ (22 diltae <
< _/Q/Q ( )d;vd,u|( ) = /leul(y)= |1l ()

for every € > 0.

liH(lJ pe(x) = (x) for L™-a.e. € Q.
E—

Let now ¢ € CJ(Q). Let us preliminarily observe that (4.1.4) im-
plies that spt(p.) C QF provided ¢ € 3]0, dist(spt(p), OQ)[. Therefore, by
Fubini’s theorem applied to the positive and negative part of u, and the
symmetry of p, we get that

) e ()dx = ) pe(2)dz =
Afw>u<> lmww<m<>

=

:Ein - )w(x)/ﬂpcjgy) dp(y)dz =

—/LW)<5)mwmm>
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/an/ ( ) (z)dzdp(y) = /Q%(y)du(y)

for every € € = ]0 dist(spt(p), OQ)].
Because of this, and by (4.1.5) we conclude that

e—0

lim [ ppede = / edp,
Q- Q

once we recall that, by (4.1.4), there exists a compact subset K of Q such
that spt(¢e) C K for every € > 0 sufficiently small.
Finally, once we observe that

1 -y
1 el <
er Bs(x)”< € > |W7](y) < maxp— \u\( (7))

for every x € Q, and ¢ € ]0, dist(x, 0Q)],

and that, by Theorem 2.3.5, limsup, o =|p°|(B:(z)) = 0 for L™-a.e. z €
Q, we conclude that

/Bs(x) p (x ; y) dap*(y)

Because of this, and by the Lebesgue Decomposition Theorem, we thus

infer that p
’ua
= hmmf (dﬁ”) () =
. d/’[/a . 1 r—y s
_ _ - <
b (), 0 [, o () 400 <

o 1 rT—y 1 rT—y
< liminf { — a(y) + — S(y) b =
< limin {5”/E<I)p( = >du (y)+€n/BE(I)p( = >du(y)}

= lim iglf e () < limsup pe(x) =
£ —>

e—0

1 T — 1 T —
= lim sup / p( y) dp*(y )+—n/ p( y) dus(y) ¢ =
e—0 en B (x) € € Be(x) €
. dua> 1 (:v—y)
= lim + lim sup — du® =
am <d£n E( ) nsup — Bs(x)p - 1 (y)

d a
= lim sup < dgn

from which, together with (4.1.6), the pointwise convergence result follows.
]

1
lim sup —
e—0 5’”

=0 for L -a.e. z € Q.

) (x) for L™-ae. z € Q,

The above approximation process can be specified by the following
result.
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Proposition 4.1.2. Let Q € A(R™), and p € (Mioc(€2))™. Then the limit
lime_q [ |pe|de exists, and

tim [l = [n](©).

e—0

Proof. By Theorem 4.1.1 we conclude that

(4.1.7) 1imsup/ |eldz < |p|(2).
e—0 Q-

€

On the other side, if A € A(Q) is such that A CC €2, then Theorem
4.1.1 yields that p. L™ — p in weak*- M(A), therefore, by Proposition 2.4.8,
it follows that

(4.1.8) |ul(A) < liminf/ |pe|da < liminf/ |pte |dz for every A CC Q.
e—0 A e—0 Qo

Therefore, once we recall that Theorem 2.4.2 yields the inner regularity of
||, by (4.1.8), and (4.1.7) we obtain that

() = sup{u(4) s A o ) < lmint [ Juldo <
e— Q-

< limsup/ |peldr < |p|(S2),

e—0 -

which proves the proposition. m
Finally, we prove the following properties of integrals of regularizations
of measures.

Proposition 4.1.3. Let u € Mi.(R"). For every ¢ > 0 let u. be the
regularization of u defined by means of (4.1.1). Then, for every ¢ € CJ(R™)

it results that
/ Ppedr =/ pedp,

olely, olely
Sde = (D)l [ 2y f N m,
/Rngo pye dz = (1) /n s du for every o € (N U{0})

and

Proof. Let ¢ be as above. Then by Fubini’s theorem applied to both the
positive and the negative parts of u, and the symmetry of the mollifier, it
follows that

/n phede = €in/ ¢($)/np<x6y>du(y)dx:
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= Ein/n/npc_y) w(w)dwdu(y)=/n%du-

If now o € (NU{0})", by Theorem 4.1.1, and again Fubini’s theorem
and the symmetry of the mollifier, it follows that

0l e 1 olelp (z—y
/n“’ fze 0= el /R o) | g ( e )d“(y)dx_

olel
- 5"+|a| / / azap ( y) ple)dzduly) =
olal
— (—1)lel g Pe
(-1) / 50 du. ]

The regularization process provides also approximation in energy, at
least for summable functions. However, as we will prove in Chapter 7, such
property holds also in the more general context of functions taking values
in a Hausdorff locally convex topological vector space.

The main tool needed to get such approximation is Jensen’s inequality,
whose proof will be given in Chapter 7 in the above mentioned context.

Theorem 4.1.4 (Jensen’s Inequality). Let (2, &) be a measure space,
u be a positive measure defined on € with () =1, and f: R™ — [0, +00]
be convex and lower semicontinuous. Then

f (/ wd,u) < [ f(w)du for every w € (L*(, p))™
Q Q

We can now prove the approximation in energy result.

Lemma 4.1.5. Let Q € AR"), and f:R™ — [0,+0o0] be convex and
lower semicontinuous. Then

flwe)dx < / f(w)dz for every w € (Li,.(2)™, € > 0.

Q: Q

Proof. Let w € (L .(2))™, and € > 0. Let = € 7, and let p., be the
positive measure defined for every E € L,,(Q) by pie o (E) = & [, p(5=4)dy
Then, since . ,(Q) = 1, by Jensen’s inequality applied to p. o, and by
Theorem 2.3.2 it follows that

) =1 (5 [0 (S22 wtan) =1 ([ wta.n) <
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for every x € Q_ .

By integrating the above inequality over 7, and by using Fubini’s
theorem we conclude that

N f(we(:c»dxs/m}n/ﬂp(x
>d;z:dy</f ))dy,

y) F(w(y))dyda =

which proves the lemma. m

Theorem 4.1.6. Let Q € A(R™), and f:R™ — [0, +00] be convex and
lower semicontinuous. Then the limit lim._,q fgf f(we)dx exists, and

lir% f(we)dx = / f(w)dx for every w € (Li,.(2))™.
e~VJas Q

Proof. Let u € (LL.(Q))™, and A CC Q. Then (4.1.6), Fatou’s lemma,

and Lemma 4.1.5 yield

limsup/ flw)dz < hmlnf/ fue)dx < hmlnf fue)dr <
e—0 JA Qo

< lim sup fue)dx < / fluw)dx
e—0 JQZo Q

from which the proof follows letting A increase to Q. m

§4.2 BV Spaces

Let Q € A(R").
For every p € M(Q), and ¢ € {1,...,n} we say that the i-th weak
partial derivative of p is in M(Q) if there exists v € M(Q) such that

/ Vipdu = f/ wdv for every ¢ € C5°(£2).
Q Q

If this is the case, we denote by D,u the i-th weak partial derivative of
u, and define the weak gradient of y as the Borel vector measure Dy =

(D1ps s D).
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Definition 4.2.1. Let Q € A(R™). We define the space BV () of the
functions of bounded variation in Q) as

BV(Q) = {(v) € M(Q) x (M(Q))" : v = Dy},
and the space of the functions of locally bounded variation in ) as
BVioc(2) = {(1, V) € Mioc(Q) x (Mioc(2))™

(u,v) € BV (A) for every A CC Q}.

According to Definition 4.2.1, given € A(R"™), BV(Q) is a vec-
tor subspace of (M())"*!1. Nevertheless, by using just the definition of
weak partial derivative, and the density of C§°(2) in C§(92) endowed with
the CP(£2) topology, it is easy to verify that, if (u, Du) € BV(§), then
Dy is uniquely determined by p. Consequently, the application (u, Du) €
BV(Q) — p € M(Q) turns out to be an injection, that allows BV (Q) to
be identified with {yx € M(Q) : (4, Du) € BV (Q)}, and therefore to see it
as a space of Borel real measures on Q.

Actually, even more can be said, and all is based on the following
inequality for smooth functions, that we prove for the sake of completeness.

Lemma 4.2.2. Let u € C3(R™). Then
/ |T[hlu — u|ldz < |h|/ |Vul|dx for every h € R™.
n R’!L
Proof. Let h be as above. Then obviously

1 1
lu(x + h) —u(z)| = /0 Vu(z + th) - hdt’ < |h|/0 [Vu(z + th)|dt

for every x € R",

from which, by using Fubini’s theorem, we obtain that

1
/ |u(z+ h) —u(x)|de < \h|/ / |Vu(z + th)|dtde =
R" J0

1 1
= |h\/ / |Vu(z + th)|dzdt = |h|/ / [Vu(y)|dydt =
0 JR"® 0 JRm

-y / Vu(y)|dy,
RTL

which proves the lemma. m
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Proposition 4.2.3. Let € AR"), and pn € BV (Q). Then p is abso-
lutely continuous with respect to L™.

Proof. By using Corollary 2.4.3 it suffices to prove that the restriction of
u to B(K) is absolutely continuous with respect to £ for every compact
subset K of 2, and it is clear that this holds if the restriction of u to B(B)
is absolutely continuous with respect to L™ for every open ball B CC €.

Let By(z¢) CC € be an open ball centred in zy €  and with ra-
dius r, and let, for every ¢ > 0 sufficiently small p.:x € B,_.(xg) —
= fBT(%) p(E)du(y) be the regularization of u defined in (4.1.1).

€
Let € > 0. Then, since for every x € B, _.(xg) the function p(*=) €
C§°(B(x0)), by Theorem 4.1.1 it follows that

Ve (z) = L - )Vyp (%) (y)du(y),

E’I’L

from which, since p € BV(Q), it results that

(4.2.1) Viie(z) = gin/B ( )p(x—y> (y)dDu(y) = (D)« (x)

3

for every z € By_.(xg).

Let now o € ]0,r[, and ¢ € C§°(B,(x0) be such that 0 < ¢
every x € R", and ¢(z) =1 for every & € B,._,(xp). Then, by (4
by Theorem 4.1.1, it thus comes that

z) <1 for
.2.1), and

@22 [ fopdde< [ judde< [ uolde < |ul (B (eo)
n spt(ep) Br_c(xo

for every e € 10, dist(spt(¢), OBy (xo0)],

and
/ IV (ope)lde < / IV e+ / el [Vepldzz <
n spt(p) spt(p)
<[ Owdde+ Velloss e [ e <
Bi_e(xo) r—e(xo0)

< [Dpl(Br(zo)) + [IVelllcos, o) |1l (Br(20))
for every e € 10, dist(spt(¢), 0B (o)],

from which, together with Lemma 4.2.2, it results that

(4.2.3) [ ITler) - oulde <
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< |h] (IDul(Br(w0)) + Vel oo (s, sy 11l (Br (20)))
for every € € ]0, dist(spt(v), 0B, (xo)], h € R™.

By (4.2.2) and (4.2.3), Theorem 2.2.8 applies, and the compactness
of {@pte }ee)o,dist(spt(e), 0By (z0)[ I L'(R™) follows. Because of this, also
{He Yoo, dist(spt (), 0B, (z)[ tUrNs out to be compact in LY(B,_4(x0)). This,
together with the weak*-(M(B,_,(zo))™-convergence of {p-L™}.50 to p
given by Theorem 4.1.1, in turn implies that, for every o € |0, r[, the re-
striction of p to B(B,_(x0)) is absolutely continuous with respect to £™.

Such property provides that the restriction of u to B(B,(z¢)) is abso-
lutely continuous with respect to £L", and hence the proposition. m

Let Q@ € A(R™).

If for every u € M() absolutely continuous with respect to £™ we
identify p with its Radon-Nikodym derivative, and vice-versa for every u €
LY(Q) we identify u with uL", and set, provided D(ul") € (M(Q))",
Du = D(uLl™), then by Proposition 4.2.3 we conclude that

BV(Q)={ue L'(Q): Duc (M(Q))"},
and of course that
BVioe(Q) = {u € Li,.(Q) : u € BV(A) for every A CC Q}.

We observe explicitly that, according to the definitions of Chapter 2,
if u € BV} (9, then Du turns out to be a Radon measure on €.

Since BV (2) is a subset of (M(2))"*!, it naturally inherits its topo-
logical structures.

In particular, BV () becomes a normed space with the (M(£))"+1-
norm. We denote such norm functional as

|- llBvia)y:u € BV(Q) = |lullL1(q) + [Dul (),

and, as usual, we denote again by BV () the strong topology of BV ().
In addition, BV () also inherits the weak*-(M(Q))"*! topology of
(M(£2))"+1. In this case, the following result holds.

Proposition 4.2.4. Let Q € A(R™). Then BV (Q) is a weak*-(M())"*!
closed subspace of (M(£2))"+1.

Proof. Follows immediately once we observe that

BV(Q) =

—Neeci { (1) € M) x (@) [ Vodn+ [ pav =0},
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and that the sets in the right-hand side of the above equality are weak*-
(M(Q))" ! closed since, for every ¢ € C§°(2), the functional (u,v) €
M(Q) x (M(Q)" — [, Vedu + [, pdv is weak*-(M(2))"+! continuous.
[

Proposition 4.2.4 has some important consequences. First of all, it im-
plies that BV () is weak*-(M(Q))"*! sequentially complete, since it is a
subspace of (M (£2))"+! closed in weak*-(M())"*!, and since (M (£2))"+!
is sequentially weak*-(M(Q))"*! complete by the Banach-Steinhaus The-
orem. Moreover, since BV (Q) is also a (M(Q))"*! closed subspace of
(M(£2))"*1, it turns out to be a Banach space too.

A sequence in BV () that converges in the weak*-(M(£2))"*! topol-
ogy turns out to be bounded in BV (). Conversely, the following compact-
ness result holds.

Proposition 4.2.5. Let @ € AR"), and {up} C BV(Q}) be BV (Q)-
bounded. Then there exist {hy} C N strictly increasing, and v € BV (1)
such that

— u in weak*-(M())" L,

uhk

Proof. Follows from Theorem 2.4.10, and Proposition 4.2.4. m

With an abuse of notation, we denote by weak*-BV () the topology
on BV(Q) induced from the one of M(2) x (weak*-(M(Q))"), namely
from the product of the strong topology of M(£2) and of the weak* one of
(M(Q))™. In particular, once we see BV () as a space of functions, given
{up} € BV () and u € BV (), it turns out that up — u in weak*-BV ()
if and only if up, — u in L*(2) and Duy, — Du in weak*-(M(Q))".

It is clear that the weak*-BV () topology is finer than the weak*-
(M())"! one. Because of this and of the completeness of M((2), once we
endow BV () with the weak*- BV () topology, BV (§)) becomes a sequen-
tially complete Hausdorff locally convex topological vector space. There-
fore, if {un} € BV(Q) is such that {u;} is a Cauchy sequence in L*(),
and for every 1 € (CO(Q)), {Jq@Du n} is a Cauchy sequence in R, then
there exists u € BV(§) such that u;, — u in weak*-BV(Q), namely such
that up — w in L1(Q), and Duy — Du in weak*-(M(Q))". We refer to
[ABF, Remark 3.12] for a description of BV spaces as a dual spaces.

Given 2 € A(R™), and u in BV (), Lebesgue Decomposition Theorem
yields Du = (Du)®+ (Du)®, where (Du)? is the absolutely continuous part
of Du with respect to Lebesgue measure and (Du)® is its singular part. For
the sake of simplicity, it is standard to set D*u = (Du)*, D% = (Du)®,
and denote by Vu = (Viu,...,Vyu) the Radon-Nikodym derivative of
D3y with respect to £, i.e. Vu = 4224  We also denote by VSu the

dL’rL
Radon-Nikodym derivative of Du with respect to |DSul, i.e. V5u = d(TlD)SZr
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If w e BV(R"), and o € R™ it results that T[xglu € BV(R"). In
fact

/ TlroluVipde = / u¥(T[=olp)dz = - / T{-aolpdDu =

= —/ wd(T[zo]Du) for every ¢ € C3°(R"),

from which we also conclude that D(T[zg]u) = T[zo]Du. Because of this,
and by Theorem 2.3.5, we thus deduce that VT'[zxglu = T[zo]Vu, and
VT [xo|u = T[xo] Viu.

A quite different way to introduce BV functions is by mean of varia-
tions.

Let © € AR™). For every u € Li, () the symbol [, |Du| denotes
the variation of u on € defined as

/ | Du| = sup {/ udivipdz = o € (C3(Q))", |p| < 1in Q}

For every u € Ll _(9), the variation of u on Q in general belongs
o [0,+00], and it can actually assume the value +oo. Nevertheless, the
following result characterizes, by means of BV spaces, the set where it is
finite.

Proposition 4.2.6. Let Q € A(R"), and u € L*(Q2). Then

IDul(Q) ifue BV(Q)
/'D“‘ { ifu e LY(Q)\ BV(Q).

Proof. If u € BV (), then the density of C}(2) in 6’8(9) yields
/ | Du| = sup {/ ©-dDsu: ¢ € (CYQ))", |p| <1in Q} = |Du|(92).
Q Q

If now u € L'(Q)\ BV (), we assume by contradiction that [, [Du| <
+00. Then the functional ¢ € (C§(Q))" — [, udivedz turns out to be
linear and continuous on (C3(9))" endowed with the (CP(Q2))™ topology,
and, again by the above density argunient, it can be extended to a linear
and continuous functional, say L, on (C§(£2))"™ such that ||L|| = [, |Dul.

On the other side, the Riesz Representation Theorem provides p €
(M(Q))™ for which L(p) = [, pdu for every ¢ € (CO(Q)™, and ||L|| =
|| (€2). Consequently, 1t turns out that

/ pdp = / udivpdz for every ¢ € (CF(Q))",
Q Q

from which we conclude that w € BV(Q), thus getting a contradiction.
Therefore [, |[Du| = 400, and the proof follows. m

In particular, by Proposition 4.2.6 it follows that, for a given Q €
A(R™), u € BV(Q) if and only if u € L'(Q) and [, |Du| < +o0.

Again by Proposition 4.2.6, the following lower semicontinuity result
for the variation of L' functions holds.
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Theorem 4.2.7. Let Q € A(R™). Then u € L*(Q) — [, |Du| is L*(2)-
lower semicontinuous.

Proof. Follows once we observe that the variation functional is the point-
wise supremum of the family of L(Q)-lower semicontinuous functionals
u € L) — [,udivedz, as ¢ varies among the elements of (Cj(Q2))"
satisfying || < 1in Q. m

BV spaces may possess genuine discontinuities. For example, if Q € Aq
has Lipschitz boundary, and satisfies H"~1(9) < +o0, then it is pos-
sible to prove that xo € BV(R"), and that Dxq(B) = D°xq(B) =
— [5noq DadH" ! for every B € B(Q).

Since the gradients of BV functions, in general, need not be absolutely
continuous with respect to L™, we conclude that smooth functions cannot
be dense in BV spaces endowed with their norm topology. Nevertheless
the following weaker results hold.

Proposition 4.2.8. Let Q € A(R"™), and u € BV},(Q2). For every e > 0
let u. be the regularization of u defined by (4.1.2). Then u. — u in weak*-
BV (A) for every A CC Q. Moreover, the limit lim._,q fQ_ |Vuclde exists,
and :

lim |Vue|dx = |Dul|(£2).
e—0 Q-
Proof. The same argument used in the proof of Proposition 4.2.3 yields
Vue(x) = (Du)(x) for every x € Q2. Consequently, the part of the proof
concerning the convergence of {uc}eso follows from Theorem 4.1.1, whilst
the remaining one from Proposition 4.1.2. m

Theorem 4.2.9. Let Q € AR"™), and u € BV (Q2). Then there exists
{un} € BV(Q) N C*(Q) such that u, — u in L'(Q), and

li Vup|dx = |Du|().
Jim [ [Fulds = 1Dul)

As already sketched in Lemma 4.2.2, the property of BV functions to
posses weak gradients that are measures with finite total variation implies
a higher summability property on the functions themselves.

Theorem 4.2.10. Let Q € Ay have Lipschitz boundary. Then BV ()
continuously embeds in L#-1 (), and there exists C, o > 0 such that

||u||Lﬁ(Q) < Ch.allull v q) for every u € BV (Q).

The above imbedding theorem is specified by the following compactness
result.
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Theorem 4.2.11. Let Q € Ay have Lipschitz boundary, and let {uy} be
bounded in BV (Q2). Then there exist {hy} C N strictly increasing, and
u € BV (Q) such that

Up, — U In ﬂqe[L%[Lq(Q).

If Q has Lipschitz boundary, then it turns out that the functions in
BV () have traces on 0f in the sense that for every u € BV(Q) it is
possible to define a function on 9 that can be thought as giving the values
of u on 9. Its properties are summarized by the following trace theorem
for BV spaces.

Theorem 4.2.12 (Trace Theorem for BV Functions). Let Q € A,
have Lipschitz boundary. Then there exists a surjective bounded linear
operator yo: BV () — LY(992, H"~1) such that

(yau)(x) = u(z) for every u € BV(Q)NC°(Q), and for H™ '-a.e. x € Q.

Moreover

/ udivpdr = —/ @-dDu —|—/ ©you - nodH" 1
Q Q a0

for every u € BV (Q), ¢ € (CY(R™))",

and
1

i, IGRYAE)) /mBr(m) [u(y) — (vau)(z)|dy = 0

for every u € BV (Q), and for H" -a.e. 2 € 9Q.

Given €2 as in the Trace Theorem for BV Functions, the operator vq
is called the trace operator on 99, and, if u € BV (Q2), the function yqu is
called the trace of u on 0f).

BV functions behave quite nicely with respect to extension processes,
as proved by the following result.

Proposition 4.2.13. Let Q, Q' € Ay have Lipschitz boundary be such
that Q CcC ¥, u € BV(Q), and v € BV(Y' \ Q). Then the function w

_Ju inQ ,
defined as w = {v in \ @ is in BV (§Y'), and

Dw(E) = / (vav — WQ,\ﬁu)nQd'H"_l for every E € B(01).
E

©2002 CRC Press LLC



In particular, by Proposition 4.2.13 it follows that, if Q € Ay has
Lipschitz boundary, and u € BV (Q), then the function w defined as w =

{3 iE ﬁn \Q is in BV(R"™), and

Dw(FE) = —/ YoungdH" ! for every E € B(99).
E

84.3 Sobolev Spaces

Once defined BV spaces, it is straightforward to define Sobolev spaces as
their particular subspaces.

Definition 4.3.1. Let Q@ € AR"™), and p € [1,400]. We define the
Sobolev space W1P(Q) as

Wl’p(Q) ={u e BV(Q):ue L), D’u=0, Vu e (LP(Q))"},
and

WLP(Q) = {u € BViee(Q) : u € WHP(A) for every A cC Q}.

loc

In other words, given Q € A(R™), and p € [1, +o0], WHP(Q) is the set
of the functions u in LP(2) such that the weak gradient of uL™ is absolutely
continuous with respect to £, and has its Radon-Nikodym derivative in
(LP(£2))™. We call such functions Sobolev functions.

The examples of the previous section of functions in BV (€2) with sin-
gular weak gradient prove that, in general, BV (Q) # WhH1(Q).

Given Q € A(R"), and p € [1,+oc], WIP(Q) is a vector subspace of
(LP(2))" . Moreover, since a BV (€2) function u uniquely determines Du,
it is immediately verified that a W1P(Q) function v uniquely determines
Vu, and therefore that W () can be identified with a subspace of LP((2).

Since W1P(Q) is a subset of (LP(£2))"*!, it naturally inherits its topo-
logical structures.

In particular, W1P(§) becomes a normed space with the (LP(£2))"+1-
norm. We denote such norm functional as

[ - Hlep(sz)iu € Wl’p(Q) = HUHLP(Q) + |HVU|HLP(Q)7

and, as usual, we denote again by WP () the strong topology of W1?(Q).
We also denote with Wﬁ)’f (Q) the topology on VVliCp(Q) generated by
the family of seminorms u € W;-?(Q) — lullwrp(ay as A CC Q, and with

loc
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1,9
oc

Nael1p W)
norms u € ﬂqe[Lp[Wﬁ)’f(Q) — |lullw1.acay as g € [1,p[, and A CC Q. Once

Q) the one on Nyepr  W;-2(Q) generated by the family of semi-
q€(1,p[ "V 10c

endowed with their respective topologies, WL?(), and ﬁqe[lyp[Wﬁ)’Cq(Q)
turn out to be complete metrizable topological vector spaces.

If in addition Q € Ay, we denote again with Ngep ,(W9(Q) the
topology on ﬂqe[l)p[Wl’q(Q) generated by the family of seminorms u €
ﬁqe[lm[Wl’q(Q) — |lullwracq), as ¢ varies in [1,p[. Once endowed with
the Ngep1 W) topology, Ngepr (W 4() turns out to be a complete
metrizable topological vector space.

If @ € AR"), and p € [1,+oo[, WLP(Q) also inherits the weak-
(LP(Q))"*! topology of (LP(Q))"*1, whilst, if p = +o00, W1 (Q) inherits
the weak*-(L>°(Q))"*! one of (L°°(Q2))"*1. In all the cases, it is easy to
prove the following result.

Proposition 4.3.2. Let Q € A(R"). Then WP(Q) is a weak-(LP())"+!
closed subspace of (LP(Q))"*1, for every p € [1,+oc[, and W1°(Q) is a
weak*-(L°°(Q))" ! closed subspace of (L>(Q))"*!.

Proof. Follows immediately once we observe that

Whe(Q) =

= Npeo(@) {(u,v) e LP(Q) x (LP(Q)" : /

uVdr +/ vpdr = O} ,
Q Q

and that the sets in the right-hand side of the above equality are weak-
(LP(Q))" L closed for every p € [1,+oo[, and weak*-(L>(2))" ™! closed
if p = 400 since, for every ¢ € C5°(f), the functional (u,v) € LP(£2) x
(L))" — [quVede + [, vedr is weak-(LP(€2))" ! continuous for every
p € [1, +oo[, and weak*-(L>())"*! continuous if p = +cc0. m

As consequence, given Q € A(R"™), from Proposition 4.3.2 it follows
that, for every p € [1,40c], WHP(Q) is also a (LP(2))" ! closed subspace
of (LP(Q))"+!. Consequently it turns out to be a Banach space.

Moreover, being for p € |1,+oo[ WP(2) a closed subspace of the
reflexive space (LP(2))" T, it turns out to be reflexive too. Because of this,
from Banach-Steinhaus Theorem and Proposition 4.3.2, it also follows that,
for p € |1, 4+oc], WHP(Q) is sequentially complete once we endow it with the
weak-(LP(Q))" ! topology if p € |1, 400, or with the weak*-(L>°(£2))"+1
one if p = 4o0.

If p € [1,+oc[, we denote by weak-W!'P(£2) the topology on W1P(£)
induced from the weak-(LP(£2))" ™! one of (LP(£2))"*1. Once endowed with
the weak-W1P(Q) topology, WP(£2) becomes a Hausdorff locally convex
topological vector space, sequentially complete if p € ]1,4o00[. With an
abuse of notation, we denote by weak*-W>°(Q) the topology on W1:°°((2)
induced from the weak*-(L°(€))"*! one of (L>°(Q))"*!. Once endowed
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with the weak*-WW1°°(Q) topology, W>°() becomes a sequentially com-
plete Hausdorff locally convex topological vector space.

It is worth while to remark that, if p € [1,+oo[, the weak-W1P(Q)
topology is just the weak topology of the Banach space W1P(Q), as ex-
plained by the following result.

Theorem 4.3.3. Let Q@ € AR"™), and p € [1,4o00[. Then, for every
L e (WhP(Q)) there exist vg € L (Q), v € (LP' (Q))" such that

L(u) = / voudx +/ vVudz for every u € W'P(Q).
Q Q

If p = +oo, we denote, with an abuse of notation, by weak*-WW ()
the topology on W1°(Q) induced from the weak*-(L>(Q))"*! one of
(Lo (@),

Therefore, if p € [1,4+oc], and {u,} C W'P(Q) is such that for
every v € LP(Q), and w € (LP (Q))" the sequences {Jovundz}, and
{Jq wVupda} converge, then there exists u € WHP(Q) such that up, — u
in weak-W1tP(Q) if p € [1, +o0[, or in weak*-W1°°(Q) if p = +oc0.

Finally, we observe that a sequence in WP(Q) that converges in the
weak-W1P(Q) topology if p € [1,+0c0[, or in the weak*-W>°(Q) one if
p = +00, turns out to be bounded in W? (), and deduce from Proposition
4.3.2 the following compactness result.

Proposition 4.3.4. Let Q € AR"), p € |1,+00], and {u,} C WhP(Q)
be W1P(Q)-bounded. Then there exist {hy} C N strictly increasing, and
u € WHP(Q) such that

up, — u in weak-WhP(Q) if p € |1, +oo[, in weak*W>(Q) if p = +oo.
Proof. Follows from Theorem 2.2.6, and Proposition 4.3.2. m

The following results describe the structure of Sobolev spaces with
p = +00, and the Chain Rule in Sobolev spaces.

Theorem 4.3.5. Let Q € A(R"™), then
VVI})’COO (Q) = {u: Q2 — R : u is locally Lipschitz continuous in §} .
If, in addition, ) is bounded and has Lipschitz boundary, then
Wh(Q) = {u:Q — R : u is Lipschitz continuous in Q} .
Theorem 4.3.6 (Chain Rule). Let 2 € A(R"), pe [l,+], fR— R

be Lipschitz continuous, and u € WHP(Q). Assume that fou € LP(Q).
Then fou € WHP(Q), and

V(fou)(x) = f'(u(z))Vu(z) for a.e. z € Q.
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In particular, from the above result we deduce that, if u € WH?(Q),
then |u|, u™, u™ are in W'P(Q2). Moreover, if L*(Q) < +oo, and k €
[0, 4+00[, the truncation Tru of u at levels k and —k given by Tpu = u —
(u—k)F — (u+ k)~ is in WEP(Q), and

VTiu(z) = {Vu(x) if —k < u(z) <k for a.e. x € Q.
0 otherwise
We now turn our attention to density results for smooth functions in
Sobolev spaces.

Theorem 4.3.7. Let Q € A(R"™), and p € [1,+o0[. Then C*(Q) N{u €
WhP(Q) : ||ullwre() < +oo} is dense in WHP(€).

In addition, if ) is bounded and has Lipschitz boundary, then C*°(R™")
is dense in W1P(Q).

Smooth functions with compact support are not dense, in general, in
Sobolev spaces.

Given Q € A(R™) and p € [1, 400, we denote by W, *(Q) the closure
of Cg°(Q) in WhP(Q). If p = +o0, we set Wy () = {u € Who(R") :
u(z) = 0 for every x € R™ \ Q}.

It is clear that for every p € [1,4+00], once we endow it with the
WLP(Q) topology, Wy () is a Banach subspace of W'P(Q), in general
proper.

We observe that, if u € Wol’p(Q), then the null extension of u to R™
given by z € R" — { g(x) ii i g gn \Q is in WHP(R™). We will always
identify the functions in WO1 P(Q) with their null extensions to R"™.

The above extension result is a trivial case of a more general one hold-
ing for Sobolev functions under smoothness assumptions on 9f).

Theorem 4.3.8. Let ) € Aj have Lipschitz boundary, and p € [1,+00].
Then there exists a bounded linear operator E: WP (Q) — W1P(R") such
that Eu = u a.e. in Q for every u € W1P(Q).

As for BV functions, also Sobolev ones enjoy higher summability prop-
erties, or even smoothness ones, due to the presence of p-summable deriva-
tives.

For every p € [1, +00] we denote, as usual, by p* the Sobolev conjugate

of p defined as
. n"—_pp %pr[Ln[
+oo if p € [n,+o0].

If Q € Ap, and a € )0, 1], we denote by C%*(£2) the space of the Hélder
continuous functions in ) defined as

Co(Q)=dueC’%Q): sup B 7« oo
m,g;ée&l ‘.’L‘ - y|a
THy
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We recall that the functional

” ' ||Co,a(9):u € CO’Q(Q) — max |u| + sup M

is a norm on C%“({2) that makes it a Banach space.

Theorem 4.3.9 (Sobolev Imbedding Theorem). Let Q € Ay have
Lipschitz boundary, and p € [1,+00]. Then the following facts hold:

i) if p € [1,n[, W"“P(Q) continuously embeds in LP" (), and there exists
Ch,0,p > 0 such that

[ull Lo+ (@) < Crpllullwnay for every u € WHo(Q),

ii) if p = n, WP (Q) continuously embeds in Nyep1 100 L9(Q), and for every
q € [1,+o0[ there exists Cy, .4 > 0 such that

llullLa(o) < Cn,a.qllullwinq) for every u € VVL"(Q)7

iii) if p € |n,+oo], WHP(Q) continuously embeds in C*'~ % (Q), and there
exists Cy, o,p > 0 such that

HUHCO’I’%(Q) < Cn’Q,p”u”Wl,p(Q) for every u € Wl’p(Q).

If WHP(Q) is replaced by Wy (), the same conclusions in i), ii), and
iii) continue to hold without assuming that Q0 has Lipschitz boundary.

Remark 4.3.10. We remark explicitly that in case ii) of the Sobolev
Imbedding Theorem the embedding of W1 (Q) in L>°() does not hold.
On the other side, a more shrinking result can be proved in the framework
of Orlicz spaces in which it can be proved that, if Q € Ay has Lipschitz
boundary, then there exists C), o > 0 such that

inf {)\ >0: / lexp (&;)l) — 1] dr < 1} < Challullwrn
Q
for every u € WhH™(Q).

Sobolev Imbedding Theorem can be specified by means of the following
compact imbedding result.
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Theorem 4.3.11 (Rellich-Kondrachov Compactness Theorem).
Let Q € Ag have Lipschitz boundary, p € [1,4o0c], and let {up} be bounded
in WHP(Q). Then there exists {hy} C N strictly increasing such that the
following facts hold:

i) if p = 1, there exists u € Ngep1,1-[L9(2) such that

Up,, — w In Ngepr,1-[ L),
i) if p € ]1,n], there exists u € WP(Q) such that

Up, — U In mqe[l,p*[ Lq(Q)v

k

iii) if p € Jn, +00|, there exists u € WP () such that
Up, — U in C%*(Q) for every a € ]0, 1-— % [ if p € |n, +o0],

for every a € ]0,1[ if p = +o0.

If {un} € Wy (), the same conclusions in i), ii), and iii) continue to
hold without assuming that €0 has Lipschitz boundary. In this case it turns
out that also the limit points in ii) and iii) are in Wol’p(ﬂ).

Let Q € Ay have Lipschitz boundary, and p € |n,+o0c]. Then the
Sobolev Imbedding Theorem ensures that, if u € W1P(Q), then u € C°(9Q),
and consequently that it makes sense to speak of the values of w on 9.
Actually such values enjoy deeper properties, even if p € [1,n], as shown
by the following result.

Theorem 4.3.12 (Trace Theorem for Sobolev Functions). Let Q) €
Ay have Lipschitz boundary, and p € [1,+o00]. Then the following facts
hold:

i) if p € [1,n], there exists a bounded linear operator vyo:WHP(Q) —

(n=1)p

L™= (0Q,H""') such that

(4.3.1) (vou)(z) = u(z)

for every u € WHP(Q) N C°(Q), and for H" *-a.e. x € 99,

ii) if p = n, for every q € [1,+o0[ there exists a bounded linear operator
yo: WE(Q) — L4(9Q, H™~1) such that (4.3.1) holds,

iii) if p € Jn + oo], there exists a bounded linear operator vyo: WP(Q2) —
CY(09Q) such that

(yau)(x) = u(z) for every u € W P(Q), and every x € 95).
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Moreover, in all the cases,

/ udivepdr = — / Vu - pdx + / ©yau - ngdH" !
Q Q o)

for every u € WHP(Q), ¢ € (CH(R™))™,

and
1

i A o, 1)~ G0y =0

for every u € WHP(Q), and for H" '-a.e. 2 € 9Q.

Finally, if p =1, ~q is surjective.

Given ) and p as in the Trace Theorem for Sobolev Functions, the
operator g is again called the trace operator on 99, and, if u € WP (),
the function yqu is again called the trace of u on 0f).

It is not for a case that the trace operator for W1 functions is denoted
with the same symbol used to describe the corresponding operator for BV
functions, since the latter extends the first, as it can be easily checked by
using Theorems 4.2.12 and 4.3.12.

Proposition 4.3.13. Let Q € Ay have Lipschitz boundary, and p €
[1,+00[. Then {u € WHP(Q) : you = 0} = W, P(Q).

If @ € AR"), p € [1,+00], and T C 99 we denote by Wy E(Q) the
closure in WHP(Q) of {u € WLP(R™) : u = 0 a.e. in a neighborhood of T'}.
If p = +o0 we set Woll?o(Q) = {u € W-P(R") :yqu=0in T'}.

It is clear that, for every p € [1, +0o0], Wolff(Q) is a Banach space, and
that Wy 5, (Q) = Wy ().

Proposition 4.3.14. Let Q@ € A(R™). Then, if p € [1,+00], Wolff(Q)
is closed once we endow it with the weak-W'?(Q) topology, and, when
p = 400 and Q € Ay has Lipschitz boundary, VV01F°O (Q) is closed in weak*-
Whee(Q).
Proof. If p € [1,400[, by Theorem 1.1.2, it follows that W&’IE(Q), as a
strongly closed convex subspace of W1?(€2), is closed in the weak-W1P(Q)
topology.

If p = 400 and 2 € Ag has Lipschitz boundary, by virtue of the Rellich-
Kondrachov Compactness Theorem, it follows that Wgﬁo(Q) is sequentially
closed in weak*-W1:°°(Q). Therefore, since (L'(Q2))"*! is separable, and

WOII?O(Q) is convex, the desired closure follows from Theorem 1.1.4. m
If Q € Ap and has Lipschitz boundary, then Wolff(Q) C{ueWhr(Q):
you = 0 H" l-a.e. in '}, and the following result holds.
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Proposition 4.3.15. Let Q € Ay have Lipschitz boundary, I' C 092 and
p € [1,+00]. Then

Woll]f(Q) NCYQ) = {uc WP Q)N C*Q) : yqu =0 H" t-ae. inT}.

Proof. The proposition is obvious if p = +o0.
If p € [1,400], it is clear that

Wolff(Q) NC%Q) C{u e W?(Q)NC*(Q) : you =0 H" '-ae. in T}.

On the other side, let u € WP(Q) N C°(Q) be such that yqu = 0
H" l-a.e. in I'. Then, by Theorem 4.3.8, it is not restrictive to assume
that u € WHP(R"™).

For h € N let ¥),:t € R — max{t — +, min{t + +,0}}. Then, by using
the uniform continuity of u in 99, it follows that J,(u) € WHP(Q), and
that ¥p,(u) = 0 in a neighborhood of I" in {2 for every h € N. Moreover

lim sup [[9p (u) — ullwir@) <
h—+oco

1
< limaup {_En(m +/ |Vu|de} —0,
hotoo LD {z€Q:0<|u(z)|<}}

from which we conclude that u € Wolf (Q)NCOQ).
Because of this, and by the above inclusion, the proof follows. m

We now report on another important feature of Sobolev functions: the
Poincaré and Poincaré-Wirtinger type inequalities.

Both these results follow from the abstract result below due to N.G.
Meyers (cf. [Me], [Z, 4.1.3. Lemmal). To state it precisely, we recall that,
if U is a a normed space with norm ||-||, and P:U — U is a bounded linear
operator, we denote by ||P|| 2,y the usual operator norm of P defined as
| Pllzw,oy = supd||P(w)]|/||u| : w € U\{0}}, and say that P is a projection
if P(P(u)) = P(u) for every u € U.

Proposition 4.3.16. Let Uy be a normed space with norm || - ||o, and let
U be a Banach subspace of Uy with norm || - || = || - |lo + || - |1 for some
seminorm || - ||y on U. Assume that the bounded sets in U are precompact

in Uy. Then there exists C' € ]0, +o0[ such that
lu—P(u)llo < ClIP|l cw,v llullx
for every projection P satisfying P(U) = {v € U : |jv||; =0}, and u € U.
A direct application of Proposition 4.3.16, and of Sobolev Imbedding
Theorem yields the following general form of the Poincaré and Poincaré-

Wirtinger inequalities, where, for every r € R, we identify r with the
function identically equal to r.
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Theorem 4.3.17. Let Q) € Aj be connected and with Lipschitz boundary,
p € [1,+0oc], and let T be a linear continuous functional on W?(€2) such
that T(1) # 0. Then the following facts hold:

i) if p € [1,n[, there exists Cy, o p 1 > 0 such that

)

(1) < Ch,ap,1ll|Vull| rq) for every u € Wl’p(Q),

Lr™(Q)
ii) if p = n, for every q € [1,4+o0[ there exists Cy q,q1 > 0 such that

T
Hu ) < CngqrlIVulllLn () for every u € WH"(Q),
T(1) || page

i) if p € |n, +00], there exists Cp o 7 > 0 such that

0]

T(1) < Crap,7ll|Vull[e (o) for every u € whP(Q).

CO,I—%(
Proof. Let p € [1, +o0].
First of all, let us observe that the operator

Piu e WHP(Q) % € Whr(Q)

is a projection, and that, by using the connectedness of €2, it is easy to
prove that

P(WhP(Q) =R ={ueW"P(Q): |[|Vull| Lr@) =0}

Moreover, by Rellich-Kondrachov Compactness Theorem, it soon fol-
lows that the assumptions of Proposition 4.3.16 are fulfilled with the choices
Uo = LP(Q), || lzo(e), U = WHP(Q), and [[[V - [[|Lr(0)-

Because of this, Proposition 4.3.16 applied to the P above yields

T (u)

1T [l )
7 < oW TRl
(1) ¢

= 0 [IVul|| 1o (o) for every u € WHP(Q),

u —

LP(Q)

from which, the proof follows by applying the Sobolev Imbedding Theorem.
]

In particular, the classical Poincaré and Poincaré-Wirtinger inequali-
ties below follow from Theorem 4.3.17.
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Theorem 4.3.18. Let Q € Ay, and p € [1,400]. Then there exists
Chn,0,p > 0 such that

|Vul|| L (o) for every u € Wol”’(Q)_

[ull o= (@) < Cnp

Moreover, if Q) is also connected and has Lipschitz boundary, and T €
B(0%) satisfies H"~!(T') > 0, then there exists Cy, o,pr > 0 such that

[ull Lo (@) < CraprllVulllLe @)

for every u € W'P(Q) such that yqu = 0 H" '-a.e. inT.

Theorem 4.3.19. Let Q2 € Aj be connected and with Lipschitz boundary,
and p € [1,+o00]. Then there exists Cy, o, > 0 such that

@
U— —— udx
H L) Jo

Finally, we recall the following differentiation result for Sobolev func-
tions.

Theorem 4.3.20. Let p € [1,+00], and u € W,-P(R™). Then the following
facts hold:

< CnaplllVulllLe(q) for every u € Whr(Q).
Lr* (Q)

i) ifp € [1,n],
1/ 1 ) 1/p*
lim - (rn /Q ) ) = Vule) = P dy> ~0
for a.e. x € R",
ii) if p = n,

1/q
1(1
1 —_ [ — — . —_ q =
Lm( / i)~ () = Vu(e) - (g =) dy> 0

for a.e. x € R™, and every q € [1,400],
iii) if p € In, +0]

i 10) = 4(@) = Vu(@) - (g — )
y—x ly — x|

=0 for a.e. z € R".

§4.4 Some Compactness Criteria

In the present section we establish some compactness properties for subsets
of BV and Sobolev spaces that will also be useful in the sequel.
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Proposition 4.4.1. Let Q2 € A have with Lipschitz boundary, r € |1, 1%,
and A, b, ¢ € ]0,4o00[. Then the set

{u € BV(Q) : [Dul(Q) + AullLr () — bllull o) < ¢}

is sequentially compact in weak*BV (Q), and in L"(2).

Proof. It is clear that, if {un} C {u € BV(Q) : [Du|(Q) + Allull}. o) —
bllull L) < c}, then {up} must be bounded in L"(f2), otherwise, since
r > 1, it would result that

400 = I}ilmsup{)\||uh| 27-(9) - bHuh”L”(Q)} =
— 400
< lim sup{|Dup|(€2) + Aljus|
h— 400

rr@) — bllunlr @)} <e

Because of this, we get that also {|Duy|(Q)} is bounded, and therefore
that actually {up} is bounded in BV (). Consequently, by Proposition
4.2.5, and Theorem 4.2.11, there exists u € BV () such that, up to subse-
quences, up — u in weak*-BV (), and in L™(12).

Finally, by the weak*-BV (Q)-lower semicontinuity of v € BV () —
|Dv|(£2), we conclude that

[Dul(Q2) + Mul|zr ) — bllu]

(@) <

< lim inf {[Dun () + Alun -0y = bllunllire | <.

from which the desired compactness follows. m

Lemma 4.4.2. Let p € ]1,+00], Q € Aj be connected and with Lipschitz
boundary, {u} C W1P(Q), and u € L*(§). Assume that u;, — u in L*($),
and that {Vuy} is bounded in (LP(2))". Then uj, — u in weak-WP(Q) if
p € ]1,400[, or in weak*-W1>(Q) if p = +oo0.

Proof. We prove the lemma when p € ]1, +00[, the proof in the other case
being similar.
By Theorem 4.3.19, there exists C,, , o > 0 such that

lunllLe @) <

1 1
uh—m/uhdx —&-ﬁ/ |up|dx <
() Ja e (L)' Jo

< Chpa (|||vuh|||Lp(Q) + ||uh||L1(Q)) . for every h € N.

Consequently, {uz} turns out to be bounded in W1?(€2), hence rela-
tively compact in the weak-W?(Q) topology. Because of this, and by the
convergence of {uy} to u in L1(£2), the lemma follows. m
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Proposition 4.4.3. Let p € 1,400, Q € Ay have Lipschitz boundary,
r € ]1,p*[, and \, b, ¢ € ]0,+00[. Then,
i) if p € |1, n], the set

{u e WH(Q) < [IVulll7, ) + Allullzr @) — bllullwir@) < ¢}
is relatively sequentially compact in weak-W'?(Q), and in Ngep1 - L* (),
ii) if p € |n,4o0[, the same set is relatively sequentially compact in weak-
WP(Q), and in L>(Q),
iii) if p = +o00, and R > 0, the set

{u e WH(Q) : || Vulll 1) < R, Allul

L) — bllullwie @) < c}

is relatively sequentially compact in weak*-W°°(Q), and in L> ().

Proof. We prove the proposition only in case i), the proof of the other
ones being analogous.

Let ' € Ay be connected and with Lipschitz boundary such that
Q C, and let E:WHP(Q) — W1P(R™) be the extension operator given
by Theorem 4.3.8.

Lot {un} € {u € WIP() : [[Vall,q + Mlully. q) — blullwis) <
c}. Then (for the sake of simplicity we continue to use the same symbols
for the constants involved) it turns out that

H|VE(uh)|||1£p(Q,)+)\||E(uh)HTLT(Q,)—bHE(uh)HWl,p(Q/) < ¢ for every h € N.

Moreover, by Sobolev Imbedding Theorem, and again by using the same
symbols for the constants, it also follows that

(4.4.0) IV E )10y + MEn)ll7,

=
=0V E(un)|l| Loy — DI E(un) || ry < ¢ for every h € N.

Condition (4.4.1) yields that {E(up)} is bounded in L"(©?’), and that
{VE(up)} is bounded in (LP(£2))™. In fact, if this does not occur, since r >
1 and p > 1, asin Proposition 4.4.1 condition (4.4.1) would be contradicted.

Consequently, by the Rellich-Kondrachov Compactness Theorem, it
follows that, up to subsequences, there exists u € Wh™ir{r.r} () such that
E(up) — w in L™™P7 Q) and, by Lemma 4.4.2, that u € WP(Q),
and E(up) — u in weak-WP(Q)'). Because of this, we conclude also that
E(up) — win Neep p=(L° ('), from which the desired compactness follows.
[

Proposition 4.4.4. Let p € |1,4+c0], Q € Ag, and b, ¢ € ]0,400[. Then,
i) if p € |1, n], the set

{uwe WoP(Q) : IVull}, ) — bllullwir@) < c}
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is relatively sequentially compact in weak-W1? (), and in NseppL°(Q),
i) if p € |n,4o00], the same set is relatively sequentially compact in weak-
WhP(Q), and in L>=(Q),

iii) if p = +o00, and R > 0, the set

{ue Wy>(Q) : ||Vull| =0y < R}

is relatively sequentially compact in weak*- W (Q), and in L>(Q).

Proof. We prove the proposition only in case i), the proof of the other
ones being analogous.

Let {us} € WHP(Q) be such that H|Vuh||\’zp(m = bllun|lwr.p(0) < cfor
every h € N, and let C), o, be given by Theorem 4.3.18. Then, since by
Theorem 4.3.18

IVunllls@) = (1 + Crap) bl VunlllLe) <

< IVunlllzn gy = bllunllwre@) < ¢,

it follows that {|Vuy|} is bounded in LP(€2), and, by Theorem 4.3.18, that
{up} is bounded in W'P(Q). Consequently, by the Rellich-Kondrachov
Compactness Theorem, it follows that, up to subsequences, there exists
u € Wy(Q) such that up, — u in Nyepr - L*(Q), and in weak-W1P(Q).
This completes the proof. m

Proposition 4.4.5. Let ) € Ay be connected and with Lipschitz bound-
ary, I € B(9Q) satisfy H" }(T') > 0, ¢: R" — [0,+0cc] be Borel with

lim, 400 I(ZI) = 400, and b, ¢ € ]0,+o00[. Then the set

{u € Wy (Q) : /Qd)(Vu)dx — bllullwraq) < c}

is relatively sequentially compact in weak-W'1(Q), and in L'(Q).

Proof. Let C,, o1, be the constant appearing in the second part of Theo-
rem 4.3.18 with p = 1, and let ¥’ > 2b(C), o,1,r +1). Then the assumptions
on ¢ guarantee the existence of R > 0 such that ¢(z) > V'|z| for every
z € R™ with |z| > R, from which we obtain that

(4.4.2) ¢(z) > V'|z| — RV for every z € R™.

Let {up} C {u € WHHQ) : [, ¢(Vu)dz — bllullyr1(q) < ¢}. Then
(4.4.2) implies that

V|| [Vun|| 1) — RY'L™(Q) — bljun|lwiio) < ¢ for every h € N,
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from which, together with Theorem 4.3.18, we infer that

/

b
2Ch.01,0
for every h € N,

b/
§|||Vuh|||L1(Q) + lunllzr @) — RV L™(Q) = bllup|lwri) < ¢

that is
Y y /
—=b — b 1) — RV'LT(Q) <
(5 —0) Vel + (5o ) lunlos — RYLY@) < c
for every h € N.

By keeping into account that b’ > 2b(C), o,1,r+1), the above inequality
provides that {uy} is bounded in W11(Q), from which we conclude that
actually { [, #(Vup)dz} too is bounded. Therefore, by using the Rellich-
Kondrachov Compactness Theorem, and the Dunford-Pettis-de la Vallée
Poussin Theorem, it follows that, up to subsequences, there exists u €
WH(Q) such that up, — uin L1 (Q), and in weak-W11(£2). This completes
the proof. m

§4.5 Periodic Sobolev Functions

In this section we make some remarks on periodic Sobolev functions, that
are of particular interest in homogenization theory.
Let p € [1,4+00], and set
Wgéf(Y) = {v € WHP(Y) : vy v takes the same values

on the opposite faces of Y'}.
We call the elements of WLE(Y') periodic Sobolev functions.

per
It is clear that W, 2(Y) is vector subspace of W' (Y).
Proposition 4.5.1. Let p € [1,4oc]. Then W LE(Y) is closed in the weak-

WLP(Y) topology if p € [1,+00], or in the weak*W1:°°(Y") one if p = +o0.
Proof. If p € [1,+o0c], the proof follows from the convexity of W2(Y),
from its closure in WP(Y'), and from Theorem 1.1.2.

If p = +o00, WH2(Y) turns out to be sequentially closed in weak*-
Whe(Y) by virtue of Rellich-Kondrachov Compactness Theorem, there-
fore, since (L'(Y))"*! is separable, and W:°(Y) is convex, the desired
closure follows from Theorem 1.1.4. m

Functions in W, 2(Y) can be extended by means of periodic replicas

to the whole of R", getting periodic functions in Wli)’cp (R™).
To see this, for every m € N, and every function u € (L}(Y))™ let us
denote by u# the function defined a.e. in R™ as

u#(aj) =u(x — (i1, -,in))
provided x € (i1,...,i,) + Y for (i1,...,i,) € Z".

Then obviously u# turns out to be Y-periodic.
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Proposition 4.5.2. Let p € [1,40c], and u € W)E(Y). Then u# €
WLP(R"), and Vu# = (Vu)#.

Proof. To prove the proposition, it suffices to verify that
(4.5.1) / u?Vodr = —/ o(Vu)#dzx
Qr(0) Qk(0)
for every k € N, and every ¢ € C5°(Qx(0)).

Let k, ¢ be as in (4.5.1), and set I, = {—k,—k+1,...,k — 1}. Then
by the Trace Theorem for Sobolev Functions we obtain that

/ u*Vods = Z / u?Vodr = Z / u (x4 i)Vo(x +i)dr =
Qr(0) i+Y Y

ielp eIy

-2 / (Tlilp) Vude + 3 /8 TlilgyyunydH" " =

=— Z /YQO(er i)Vu(x +1)dx + Z /(9YT[i]80’YYunde’L_1 _

eIy ielp

=— Z / o(Vu)#da + Z / T[iloyyunydH™ ' =
ity ay

el ielp
:_/ o(Vu)#dr + Z/ T[i]pyyunydH™ L.
Qk(o) ie[;" oY

To complete the proof, we now observe that, if Sy, ..., S, are the faces
of Y so that S,41 is opposite to S1, S,42 to Sa, and so on, it turns out

that
Z/ Tli)eyyunydH™ ™ =0,
oY

iy
since, by using the properties of yyu, for every h = 1,...,n, and i € I}/
there exists jp, ; € I}} such that

/ T[ilpyyunydH" ! +/ Tjn.ileyyunydH™ ' = 0. -
Sh

Snth

By virtue of Proposition 4.5.2, the elements of W,2(Y') can be thought
as periodic functions defined a.e. in R™. In the sequel we will always assume
such identification.
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Chapter 5

Lower Semicontinuity
and Minimization
of Integral Functionals

In this chapter we introduce the study of some types of integral functionals
of the calculus of variations, i.e. those of the kind

F(Q,u):/ﬂf(x,Vu)d:r

on “regular” functions, that will be our energy functionals.

We prove some lower semicontinuity and minimization properties of
certain convex functionals of this kind, when they are defined in BV and
Sobolev spaces.

§5.1 Functionals on BV Spaces

Let Q € A(R™), and f:R™ — [0, +00] be convex and lower semicontinuous.
Then the study of the lower semicontinuity properties of a functional of the

type
ur—>/f(Vu)d:177
Q

when settled in the framework of BV spaces, naturally leads to the problem
of the “correct” definition of the functional itself, due to the presence of
singular parts in the gradients of BV functions that are not taken into
account in the above integral.

A possible approach to this problem has been proposed by C. Goffman
and J. Serrin in 1964 (cf. [GS], and Theorem 6.3.3 in the next chapter)
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with the introduction of suitable convex functionals defined on spaces of
measures, according to the point of view expressed in Remark 2.3.6.

In this section we consider a convex functional defined on the space of
Borel measures and strictly linked to those considered in [GS] (cf. [Bu2] for
additional references on the subject), of which we study the lower semicon-
tinuity properties with respect to weak* topology. This approach allows us
to deduce a lower semicontinuity result for the corresponding functionals
defined in BV spaces.

Let © be a Hausdorff locally compact space, p be a o-finite Borel
positive measure on 2, and f: R™ — [0,400] be convex and lower semi-
continuous. Then f°° turns out to be well defined, convex and lower semi-
continuous. Consequently, we can consider the functional F' defined as

dv®
d —|—/ o ( ) d|v®|.
Yau [ = () av
First of all, let us observe that

o= [+()

whenever v € (M(Q))™ is absolutely continuous with respect to p,

(5.1.1) F;ye(M(Q))mH/Qf@f

and that, if lim,_, f|(zz|) = +o00, then f*(0) =0, f*°(z) = 4oo for every
z # 0, and

F(v) = +00 whenever v € (M(2))™ satisfies [v/°|(2) # 0.

Let us now prove some preparatory results.

Lemma 5.1.1. Let (2, &) be a measure space, and u be a positive measure
on €. For every h € N let gp:Q — [0,+00] be E-measurable, and set
g:x € Q> supyen gn(x). Then

/ gdp = sup { Z/ g;du : {Bj}jes C & finite partition on}

jedJ

Proof. It is clear that

(5.1.2) / gdu >
Q

> sup { Z/ gjdp : {Bj}jes C & finite partition of Q}
jes? Bi
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For every h € N we set fr:x € Q +— max{gi(z),...,gn(x)}. Then it is
clear that limp_ 4 fr(z) = g(z) for p-a.e. x € Q, and, by the Monotone
Convergence Theorem, that

/ gap =, hm / Jndp.
Q

Because of this, once we observe that for every h € N a finite partition
{B,...,Bl,} C & of Q can be found such that f; = g; in B} for every

je{Bh ..., BﬁLh}, we conclude that

mhp
1 — <
(5.1.3) /Q gdp = h}fwz / gjdp <

< sup { Z/ g;dp : {Bj}jes C & finite partition of Q}

JjeJ

By (5.1.2), and (5.1.3) the lemma follows. m

Lemma 5.1.2. Let Q) be a Hausdorff locally compact space. Then, for
every couple of disjoint compact subsets K1, and Ko of € there exist two
open sets Ay, and As having compact closures such that K1 C A1, Ko C A,
and A; N4y = 0.

Proof. Let zo € Kj3. Then, being 2 Hausdorff and locally compact,
for every z; € K there exist I, € N(z1) having compact closure, and
I, € N(x2) having compact closure such that I, NI, = 0.

It is clear that the family {I,, : 1 € K3} forms a covering of Kj,
therefore, by extracting a finite subcovering, we can construct an open set
B, depending on 3 and having compact closure, and J,, € A/ (z2) having
compact closure such that K; C By, and By N J,, = 0.

We now observe that the family {J,, : 2 € Ko} forms a covering
of K5, therefore, by extracting a finite subcovering, we can construct two
open set A; and By with compact closure such that K1 C Ay, Ko C Bs
and A; N By = (. Moreover, it also turns out that A; N Ky = 0.

Because of this, and by repeating the same above arguments applied
to Ko and A in place of K7 and K5, we construct an open set A, with
compact closure such that Ko C Ao, and A; N Ay = 0. This completes the
proof. m

We are now in position to prove the lower semicontinuity result.

Theorem 5.1.3. Let Q be a Hausdorff locally compact space, u be a o-
finite Borel positive measure on €2, and f:R™ — [0,+00] be convex and
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lower semicontinuous. Let F be defined by (5.1.1). Then F' is weak™
(M(Q))™-lower semicontinuous.

Proof. By using Proposition 1.1.12, we deduce the existence of {a,} C R™,
and of {b,} C R for which, by setting for every h € N, fr:z € R™ —
(ap -z +bp)T, it results

(5.1.4) f(z) = sup{fn(z) : h € N} for every z € R™.

By Lebesgue Decomposition Theorem, for every v € (M(Q))™ let
No € B(Q) satisty u(No) = 0, and |v5|(©2\ Ng) = 0. Moreover, by Radon-
Nikodym Theorem, let N, N® € B(Q) with pu(N?) =0, and |[v5|(Q\ N®) =
0, be such that Cﬁl”: (z) exists for every z € Q\ N*, and df}iﬁl (z) exists for
every x € N°. We can clearly assume that N® C Ny C N2,

For every h € N, and v € (M(9))™ let us define

&2 (x if x a
(5.1.5) gnix € (Q\ N*)UN® — fh<d#( )) fzeQ\N
fh (dlyh'( )) if z € N5,

then gj, turns out to be defined p + |v*]-a.e. in €, since
(L+ [P )(NFAN®) = p(N*\N®) + [ [(N*\N7) < p(N*) +[v*|(\N7) =0,

and

(5.1.6) / gnd(u+ 7)) =

dv® s oo dv® S|\
Lot (G ) e [ () b =
dya S <
= Jo () [ (i) e

We now observe that (5.1.4) trivially implies that

sup gn(z) = f (ddL: (33)) ifr e Q\ N2

for every x € (Q\ N*) U N®,
heN f ( dy (m)) if x € N5,

therefore, by (5.1.6), and Lemma 5.1.1, we conclude that

_Sup{z/ fj(dy)d,u—l-/ f;’°<ﬁ) dl’| -

JjE€J
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{B;}jes € B(R) finite partition of Q} for every v € (M(Q))™,

from which, by using the regularity properties of Borel positive measures,

we also have that
dv® w [ AV® s
>/ i (% )d’”/f- (i)

jed

(5.1.7) F)= bup{

{K} e finite set of pairwise disjoint compact subsets of Q}

for every v € (M(€2))™.
In addition, by (5.1.7), and Lemma 5.1.2, we also obtain that

ror=an {2 5 () ], 1 (i

{A;} e finite set of pairwise disjoint open subsets of Q}

for every v € (M(Q))™,

therefore, to prove the theorem, we only have to prove that for every
A e A( ), and h € N, the functional v € (M(Q))™ — [, fn(%= - )dp +

S e dll/SI )d|v®| is weak*-(M(2))™-lower semlcontlnuoub.
To see this, we first observe that

2 (2) = (ap - 2)* for every h € N, z € R™,
and that, by (5.1.5),

gn () = ((ah- ilf(m)”h) Xawe () + ap - dCTV;( T)XN (:c)70>+

for every h € N, and (p + |v°])-a.e. z € Q.

Consequently, by using also (5.1.6) and Corollary 2.4.7, for every A €
A(€Q), and h € N we have that

618 [ (G )an [ g (G )bl = [ ondtes ) =

dv® dv®
sup{/ (ah~ ] +bh>g0d(,u+|z/s|)+/ s —pd(u+ V%)) :
A\Na 12 ANNs 5]
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p € Cy(A), OSsOSl}:

:sup{ah-/gody—&-bh/<,0du:g0608(14)7 0§¢§1}
A A

for every v € (M(Q))™.

Because of this, the proof follows, since the functionals in the right-
hand side of (5.1.8) are weak*-(M(€2))™ continuous. m

Coming back to the lower semicontinuity problem in BV spaces, The-
orem 5.1.3 suggests the introduction, for every Q € A(R") and f:R" —
[0, +00], of the functional

(5.1.9) G:u € BV () — / f(Vu)dx+/ [ (VPu)d| D).
Q Q
First of all, let us observe that

G(u) = /Qf(Vu)dx whenever u € Wh(Q),

and that, if lim,_, % = +o00, then f°(0) =0, f*(z) = 400 for every
z # 0, and

G(u) = +oo whenever v € BV (Q) \ Wh(Q).

Then, from Theorem 5.1.3 the following lower semicontinuity result for
functionals on BV spaces follows.

Theorem 5.1.4. Let f:R™ — [0,+00] be convex and lower semicontinu-
ous, Q € A(R™), and let G be defined by (5.1.9). Then G is weak*-BV (Q)-
lower semicontinuous.

Proof. Follows from Theorem 5.1.3. m

§5.2 Functionals on Sobolev Spaces

In this section we discuss the lower semicontinuity properties, with respect
to weak convergence, of integral functionals of the kind

(5.2.1) u—>/ﬂf(x,Vu(a:))dx,

defined in Sobolev spaces, where 2 € A(R"), and f is a function defined
in Q x R™

Integrands in (5.2.1) are obtained through the composition of f with
measurable functions, thus getting, in general, non-necessarily measurable
integrands. The following result provides conditions ensuring the measur-
ability of such compositions.
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Proposition 5.2.1. Let Q € £,(R"), and f:(z,2) € Q x R" — f(x,z2) €
[—00, +00] be (L£,(2) x B(R™))-measurable. Then, for every m:{} — R"
measurable, the composition x — f(x,m(x)) is measurable.

Proof. Let m be as above, and set m: 2 € Q — (z,m(x)) € 2 x R™.
Then, the measurability of m implies that

(5.2.2) M HA x B) = Anm~Y(B) € L,(Q)

for every A € L,(Q0), B € B(R").

Now, it is easy to verify that the set {X C OxR": m~1(X) € L,(Q)}
is a o-algebra, therefore (5.2.2) yields

L,(Q)x BR") C{XCOxR":m (X)) e€L,(}.
Because of this, the measurability of the composition follows since

{z e Q: f(z,m(z)) > A} =m " (f (N, +oc[)) forevery A€ R. =

In particular, given Q € £, (R"), we point out a class of particularly
significant (£, () x B(R™))-measurable functions: the one of the indicator
functions of balls with varying radius. More precisely, if ¢:Q — |0, +o0|
is £,,(2)-measurable, then (z,2) € @ x R" — I5— (0)( z) turns out to be
(L, () x B(R™))-measurable, since, as A varies 1n R {(z,z) € A x R™:
f(z,z) > A} can be equal to Q x R", or to {(z,2) € @ x R™: p(x) < |z|}
that is clearly (£,(Q2) x B(R™))-measurable.

We also observe that, if 2, ¢ are as above, and f: QxR" — ] — 0o, +o0]
is Borel, then (z,2) € Q x R" — f(x,2) + [7——=(2) is (£,(2) x B(R™))-
measurable.

We can now prove the lower semicontinuity result.

Theorem 5.2.2. Let p € [1,4+00], 2 € A(R™), and f: 2 x R™ — [0, +00]
be (L, (£2) x B(R™))-measurable, and such that

Bi(a)(0)

f(x,-) is convex and lower semicontinuous for a.e. x € .

Then the functional

F:u e WHP(Q) — / f(z, Vu)dzx
Q
is sequentially weak-W P (Q)-lower semicontinuous if p € [1,+oo[, sequen-

tially weak*W1:°°(Q)-lower semicontinuous if p = +oo.

Proof. Let us first assume that p € [1, +o00].
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First of all, let us observe that F' is lower semicontinuous in the strong
W1P(Q) topology. In fact, if {uy} C WHP(Q), u € WHP(Q) satisfy uj, — u
in WhP(Q), let {up, } € {up} be such that Vu,, — Vu a.e. in , and
liminfy, 4o F(up,) = liminfy_, 4o F(up). Then Fatou’s lemma yields

/ f(z, Vu)dr < / liminf f(x, Vup, )dz <
Q

k—+oo

< liminf/ f(x, Vup, )dx = liminf | f(z, Vup)dz
k—+4o00 h—+oo Jo
from which the W17 (Q)-lower semicontinuity of F follows.
Because of this, and Theorem 1.1.13 the proof follows if p € [1, +o0].
If p= +oo, let {up} C WH>(Q), u € WH>(Q) be such that up, — u
in weak*-Wh>°(Q), and let A € Ay with A CC Q. Then, for every ¢ €
[1,+00], up, — u in weak-W19(A), and by the above treated case it follows
that

/ f(z,Vu)dz < liminf f (z, Vup)dz < liminf f(x Vuy)dz

h——+oo h—-+oco

from which the proof follows letting A increase to 2. m

§5.3 Minimization of Integral Functionals

In the present section we apply the abstract minimization results of Chapter
3 to the concrete case of the integral functionals considered in the previous
sections, and for some Dirichlet and Neumann minimum problems.

Of course, the minimum problems that we consider here, as well as
those in the next chapters, have an illustrative value, and the integral func-
tionals to be minimized contain pieces that make them fulfil the necessary
coerciveness assumptions.

We start with the case of functionals on BV spaces.

Theorem 5.3.1. Let f:R"™ — [0,+0c0] be convex, lower semicontinuous,
and satisfying

(5.3.1) |z| < f(2) for every z € R".

Then, for every Q € Ay with Lipschitz boundary, A € 10,4o00[, r € |1, 1*[,
and 3 € L' (Q) the problem

min{ /Q F(Vu)d + /Q £ (Vou)d| D%l + A /Q |u|"d + /Q Budz -

u € BV(Q)}
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has a solution.

Proof. Let Q, A, r, 8 be as above. The proof follows from Theorem 3.1.4,
once we prove that the functional

F:u e BV(Q) |—>/Qf(Vu)dx—F/QfOO(VSu)d|DSu|—|—/\/Q|u|rda:—|—/Qﬂudx

is sequentially weak®-BV (€2) lower semicontinuous and sequentially coer-
cive in the same topology.

To prove the sequential weak*-BV () lower semicontinuity of F let
{up} € BV(Q), u € BV(Q) be such that up, — u in weak*-BV(Q), and
assume for simplicity that limy,_, o F'(up) exists. Then {u,} turns out to
be bounded in BV (Q2), and by Theorem 4.2.11, there exist {up, } C {un}
and u € BV (Q) such that up, — uw in L"(Q).

Because of this, and by Theorem 5.1.4, we conclude that

F(u) <liminf F'(up, ) = iminf F(up),

k—-+o0 h—+4oo

that is the desired lower semicontinuity.
To prove the sequential coerciveness of F' in the weak*-BV (Q) topol-
ogy, let us first observe that (5.3.1) implies that

(5.3.2) |z| < f°(z) for every z € R"™,
therefore, by (5.3.1), and (5.3.2) it follows that
[Du|(€) + Alullz- @) = 18l @ [ell (@) < F(u) for every u € BV(9),

from which we conclude that, for every ¢ € R, {v € BV(Q) : F(v) < ¢} C
fv € BV(Q): [Dol(€) + Mol gy — 18115 oy loll o) < c}-

Now Proposition 4.4.1 implies that this last set is compact once we
equip it with the weak*-BV(Q) topology, so, if ¢ € R, and {up} C {v €
BV (Q) : F(v) < ¢}, there exist {up,} C {up} and u € {v € BV(Q) :
D09+ Al ) = 18517y 0l < e} such that w, — w i weakc™
BV (). Consequently, by the previously proved lower semicontinuity of F,
it follows that

F(u) < lﬁjﬂfF(“hk) <g,
from which we conclude that u € {v € BV () : F(v) < ¢}, and therefore
that F is sequentially coercive in the weak*-BV (Q2) topology. m

Theorem 5.3.2. Let p € |1,4+0], Q@ € Ay have Lipschitz boundary, and
f:QxR"™ — [0,4+00] be (L£,(2) x B(R™))-measurable, and such that

f(x,) is convex and lower semicontinuous for a.e. x € €,
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(5.3.3) |2|? < f(x,2) for a.e. x € Q and every z € R" if p € ]1,+0o0]
- domf(z,-) C Bg(0) for a.e. x € Q if p=4o0

for some R > 0. Then, for every A € |0,4o0c, r € [1,p*[, and § € L (Q)
the problem

min ,Vu)d A "d d:Wl’pQ}
{/Qf(x w)dz + /Q|u| x+/9ﬂux€ ©)

has a solution.

Proof. Let Q, A, r, 8 be as above. As in Theorem 5.3.1, the proof follows
from Theorem 3.1.4, once we prove that the functional

F:ueWl’p(Q)H/f(m7Vu)dx+)\/ \u|rdﬂc+/ﬂud$
Q Q Q

is sequentially lower semicontinuous and sequentially coercive in the weak-
WP(Q) topology if p € |1, 400, or in the weak*- W (Q) one if p = +oo.

The proof of the lower semicontinuity of F' follows as in the proof of
Theorem 5.3.1, and by exploiting Rellich-Kondrachov Compactness Theo-
rem in place of Theorem 4.2.11, and Theorem 5.2.2 in place of Theorem
5.1.4.

To prove the sequential coerciveness properties of F', let us first con-
sider the case when p € ]1,+00[. Let us first observe that (5.3.3) implies
that

IDull[70 0y + Allullzr ) = 181 Lo @ el (@) < F(u)
for every u € WP (),

from which we conclude that, for every c € R, {v € WhP(Q) : F(v) < ¢} C
{v e WHP(Q) : 1D, (o) + Mollr iy = 1BllLr @ I llwre@) < c}-

Now Proposition 4.4.3 implies that this last set is relatively sequentially
compact once we equip it with the weak-W?(Q) topology, and the proof
completes as in the one of Theorem 5.3.1.

Finally, when p = +o00, (5.3.3) implies that

O g g (I1Dulll e @) + MllullLr) = 181z @llull @) < F(u)

for every u € W (Q),

from which we conclude that, for every ¢ € R, {v € W1>(Q) : F(v) < ¢} C
fv e Who(9) : 1Dl (o) < Ry Aol o)~ £7(2) :
<c}.

Now Proposition 4.4.3 implies that this last set is relatively sequentially
compact once we equip it with the weak*-W1>°(Q) topology, and the proof
completes as in the one of Theorem 5.3.1. m
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Theorem 5.3.3. Let p, Q € Ay, and f be as in Theorem 5.3.2. Then, for
ever 3 € L? (Q) the problem

min{/f(x,Vu)da:—l—/ﬁudx:e WOLP(Q)}
Q Q

has a solution.

Proof. Let 2, 8 be as above. As in Theorem 5.3.1, the proof follows from
Theorem 3.1.4, once we prove that the functional

Frue WyP(Q) — /Qf(m,Vu)dx—&—/Qﬁudx

is sequentially lower semicontinuous and sequentially coercive in the weak-
WLP(Q) topology if p € |1, 400[, or in the weak*-W°°(Q) one if p = +o0.

The lower semicontinuity of F' follows directly from Theorem 5.2.2,
and the continuity in the weak-W1?(Q) topology if p € |1,+0c0[, or in the
weak*- W10 (Q) one if p = +o00 of u € Wy (Q) = [, Budz.

To prove the sequential coerciveness properties of F', let us first con-
sider the case when p € ]1,4+o00[. Let us first observe that (5.3.3) implies
that

D7, ) = 181l o @l o0y < F(w) for every u € Wy(%),

from which we conclude that, for every c € R, {v € W P(Q): F(v) <c} C
{v e WoP(Q) < 1D}y = 18Il Lo @y [0 llwrn (@) < C}

Now Proposition 4.4.4 implies that this last set is relatively sequentially
compact once we equip it with the weak-W1P(Q) topology, and the proof
completes as in the one of Theorem 5.3.1.

Finally, when p = +o00, (5.3.3) implies that

Ip,r (IIDulll e (2)) — 18]

@llullzr @ < F(u) for every u € Wy (),

from which we conclude that, for every ¢ € R, {v € Wy (Q) : F(v) <
c} C{v e Wy™(Q): |||DU|||LOO(Q) < R}

Now Proposition 4.4.4 implies that this last set is relatively sequentially
compact once we equip it with the weak*-W1>°(Q) topology, and the proof
completes as in the one of Theorem 5.3.1. m
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Chapter 6

Classical Results and
Mathematical Models
Originating Unbounded Functionals

The present chapter constitutes a brief introduction to unique extension,
integral representation, relaxation, and homogenization problems by means
of a presentation of some well established results in literature dealing with
finite valued integral functionals of the calculus of variations. Obviously
they are not necessarily the finest ones, but we hope they are significant
enough to illustrate the main features of the above problems.

In the next chapters we will start our study on similar problems, but
for functionals possibly taking also not finite values.

Finally, we describe the mathematical aspects of some physical models
as an introduction to unbounded functionals. We emphasize that the essen-
tial difference between this classical theory, and the one that we introduce
here and develop in the next chapters, is that in the first one integrands
assume only finite values.

§6.1 Classical Unique Extension Results

A classical mathematical problem deals with the extension of a given func-
tion to a larger definition set preserving some of its properties. For example,
a classical item in this framework is given by Hahn-Banach Theorem.

A similar problem arises for example when X is a dense subset of a
topological space (Y, 7), and f: X — [—o0,+0o0]. In this case, besides the
problem of the existence of an extension of f from X to Y preserving certain
properties, one may also ask whether such extension can be constructed in
an essentially unique way.
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The most elementary case occurs when Y is a metric space, and f is
uniformly continuous. In this case, f can be extended to Y in a unique
way, preserving the uniform continuity modulus. For example, a classical
item in this framework is given by the definition of elementary functions.

A finer case occurs when one considers the non-parametric area func-
tional A defined on functions belonging to C*(R™).

Several methods had been developed in order to extend A to all con-
tinuous functions. The oldest is due to Lebesgue, and another is due to
Caccioppoli.

Roughly speaking, in the first method the extension is given by the
semicontinuous envelope of A in the uniform convergence topology. In the
second one the extension is given by the semicontinuous envelope of A in
the L' topology. Then, a well known result (cf. [Mi2]) establishes that
the two extensions agree. In this case, it is essentially convexity that is
responsible for coincidence.

We refer to these types of problems as to unique extension problems.

§6.2 Classical Integral Representation Results

Integral representation problems appear naturally in many situations, typi-
cally in the framework of functional analysis, relaxation, or of I"-convergence
of integrals of the calculus of variations, in which one has an abstract func-
tional defined on some function spaces and verifying suitable assumptions,
and has to deduce that it itself actually has an integral form.

For example, Riesz Representation Theorem can be reread in this set-
ting as a result under linearity assumptions.

The situation becomes more involved when the dependence of the func-
tional on the elements of the function spaces turns out to be nonlinear, or
through their first or higher order derivatives.

In the framework of relaxation theory for variational integrals on BV
spaces, an implicit integral representation problem is studied in [S1], [S2],
and finally in [GS] by means of convex functions of measures.

An explicit integral representation theorem is proved in [DG3|, where
the following result is proved (cf. [DG3, Lemma IIJ).

We denote by P,, the class of the finite unions of open intervals of R™
with endpoints in Q".

Theorem 6.2.1. Let F: P, x C'(R™) — [0, 400 satisfy for some s > 0

/ |Vulde < F(A,u) < s/ (14 |u| + |Vul|)dx
A A

for every (A,u) € P, x C*(R™),

IF(A W) — F(A,u")| < s/ (W' — "] + |V — V" |)dz
A
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for every A € P, u',u” € C*(R"),
F(Au) = F(A',u) — F(A"”,u) for every A, A', A" € P,, uc C'(R")
such that AN A" =0, AUA" CA, L"(A\ (A'ud”))=0.

Then there exists f:R™ x R x R" — [0, 4+00[ £, (R")-measurable with
respect to the first group of variables, and satisfying

2] < fw,y.2) < s(1+ |yl + |2]) for every (z,,2) € R” x R x R,

|flzy,2") = fla, ", 2" < s(ly =y + |2 = 2"))
for every (z,y',2'), (x,y",2") e R" x R x R"

such that

F(Au) = / f(z,u, Vu)dx for every (A,u) € P, x CH(R").
A

The above result has been the starting point of a wide literature on
integral representation problems. We refer to [Bu2] and [DM2] for more
complete references on the subject, and also for a treatment in more general
situations.

For the sake of clearness, we report now an integral representation
result due to G. Buttazzo and G. Dal Maso.

Let 2 € A(R"), and f:Q x R® — R. We recall that f is said to be
a Carathéodory integrand if f(-,z) is measurable for every z € R"™, and
f(z,-) is continuous for a.e. z € Q.

It is well known that, if f is a Carathéodory integrand, and m:  — R"
is measurable, then the composition x € Q — f(x, m(x)) too is measurable.

Theorem 6.2.2. Let Q € Ao, p € [1,+00], and F: A(Q) x WHP(Q) — R.
Assume that

i) F(A,u) = F(A,v) whenever A € A(Q), u, v € WhP(Q) satisfy u = v a.e.
in A,

i) for every u € WHP(Q), F(-,u) is the restriction to A(Q) of a real Borel
measure,

iii) if p € [1, +o0[ there exist a € L*(Q), and b > 0 such that

IF(A,u)] < / (a(z) + b|Vul)dz for every A € A(Q), ue WP(Q),
A
iv) if p = +oo for every r > 0 there exists a, € L'(2) such that

|F(A,u)] §/Aar(ﬂc)d$
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for every A € A(R), u€ WH(Q) with |Vu| < r a.e. in A,

v) F(A,u +c) = F(A,u) for every A € A(Q), u € WHP(Q), c€ R,

vi) for every A € A(Q), F(A,-) is sequentially weak-W 1P (2)-lower semicon-
tinuous if p € [1, +oo[, weak*- W12 (Q)-lower semicontinuous if p = +oc.
Then there exists a Carathéodory integrand f:{) x R™ — R such that

i) ifp € [1,4o00],

|f(z,2)| < a(x)+ b|z|P for a.e. x € Q, and every z € R",
ii) if p = 400, for every r > 0
|f(z,2)| < ar(z) for a.e. x € Q, and every z € R" with |z| <,

iii) for a.e. x € Q, f(x,-) is convex,
iv) the following integral representation formula holds

F(Au) = /Af(w, Vu)dx for every (A,u) € A(Q) x WHP(Q).

The following integral representation result holds under a translation
invariance property (cf. [DM2, Theorem 23.4]).

Theorem 6.2.3. Let p € [1,+o00|, and F: Ay x L} (R™) — [0,400]. As-
sume that F is increasing, convex, L (R™)-lower semicontinuous, and such
that

i) F(A — zo,T[zo]u) = F(A,u) for every A € Ao, u € L{ (R™), 2o € R",
i) F(A,u) = F(A,v) whenever A € Ay, u, v e LI (R™) satisfy u = v a.e.
in A,

iii) for every u € L
measure,

iv) F(A,u+c) = F(A,u) for every A € Ay, u € L}, (R"), c € R,
v) there exist a, b € R such that

P
loc

(R™), F(-,u) is the restriction to Ag of a Borel positive

(R")).

F(Au) < / (a+b|VulP)dz for every (A,u) € Agx (WL (R™)NLE.
A
Then there exists f: R™ — [0, 400[ convex, such that
f(z) <a+blz|P for every z € R",

and

F(Au) = / F(Vu)dz for every A € Ay, u € LP,_(R") N W, (A).
A

loc
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§6.3 Classical Relaxation Results

The relevance of the relaxed functional of a given function F' is linked to
the qualitative property, described in Chapter 3, ensuring that the infimum
of F' is equal to the minimum of its relaxed functional.

In the calculus of variations one is often led to consider minimization
problems for a functional defined on a “regular class” of functions, where
generally no minimum points exist. So, a relevant strategy of attach consists
in the extension of the functional to the whole L!, by defining it equal to
+o00 out of the original definition set in order to preserve infima, and then
in the analysis of its relaxed functionals in the L' topology, hoping in some
compactness property to obtain “relaxed” minimum points.

We now describe two relevant and classical examples, where this ap-
proach works, and which inspired it in its full generality. The former is
concerned with Dirichlet integral, the latter with the area functional.

Theorem 6.3.1. For every Q2 € Ay let

Jo IVul?dz  ifu e CH(Q)
+o0 ifu e LY(Q)\ CHQ).

D(Q,):u e LY(Q) — {
Then, for every ) € Ao, u € L1() it results that

I _ [ [oIVuPde  ifue Wh(Q)
se (L (@)D ) { oo ifue L'(Q)\ W2(Q).

Theorem 6.3.2. For every Q € Ag let

A(Q,)u e O {fnglwzdx ifue CH(Q)

ifue LY(Q)\ C1(Q).
Then, for every Q) € Ao, u € L'() it results that

sc” (LY (Q)A(Q,u) =

_ { Jo /T T VuPdz + |Du|(Q)  ifu e BV(Q
+00 )

)
ifue LY(Q)\ BV(Q).

More generally, the result below holds (cf. [S2], [GS], and also [CEDAZ2,
Proposition 1.7], [CEDAS5, Theorem 2.4]).
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Theorem 6.3.3. Let f:R"™ — [0, +o0o[ be convex. For every 2 € Ay let

fQ f(Vu)dz ifu e CH(Q)
ifue LY(Q)\ CHQ).
Then, for every 2 € Ag, u € BV(Q) it results that

F(Q,-):u € LYD

sc” (LY)F(Qu) = [ f(Vu)dz +/ [ (VPu)d| Dul.
Q Q

In all the above results, the relaxation problem was settled for convex
integral functionals defined on sets of smooth functions. On the contrary,
in the refined and well established result below, no convexity condition is

assumed. B
For every Q € A(R™) let F be defined by

F={G:W"(Q) — [~o0, 400 :
G is sequentially weak-W'"(Q)-lower semicontinuous},
and, for every F: A(2) x W1P(Q) — [~o0, +00], let F be given by
F:(Au) € AQ) x WHP(Q) —
sup{G(u) : G € F, G(v) < F(A,v) for every v € W'?(Q)}.

Theorem 6.3.4. Let Q € Ap, f:Q x R™ — [0, +00] be Borel, and satisfy
i) if p € [1, +oo[ there exist a € L' (2) and b > 0 such that

f(z,z) <a(x)+ b|z|P for a.e. x € Q, and every z € R",
i) if p = +o0 for every r > 0 there exists a, € L*() such that
f(z,2) <a.(x) for a.e. x € Q, and every z € R" with |z| <r.
Let F:(A,u) € AQ) x WhP(Q) — [, f(x,Vu)dz. Then there exists a
Carathéodory integrand f: ) x R” — [0, 40| such that
i)ifp € [1,4o00],
f(x,2) < a(x) + blz|P for a.e. © €, and every z € R",
ii) if p = 400, for every r > 0
f(z,2) < ap(x) for a.e. 2 € Q, and every z € R™ with |z| < r,
iii) for a.e. x € Q, f(z,-) is convex,
iv) the following integral representation formula holds

F(Au) = /Af(x, Vu)dz for every (A,u) € A(Q) x WHP(Q).

Moreover, if for a.e. x € Q f(z,-) is upper semicontinuous, then

f(x,)) = f**(a,) for a.e. x € Q.

Relaxation problems in BV spaces for integral functionals with inte-
grands depending also on the space variable have been treated in [GMS1],
and [DM1], also for Dirichlet type variational problems. For example, the
following result has been proved in [GMS1].
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Theorem 6.3.5. Let Q € Ay be smooth, ug € WH(Q), f:Q x R" —
[0, +o0[ be continuous, with f(x,-) convex for every x € €, and satisfying
for some M >0

|z| < f(z,2) < M(1+b|z|) for every z € ), and z € R™.

Let
F:ue LY {fQ flx, Vu)de  ifu € ug + Wy (Q)

ifu ¢ up + Wy (Q).

Then, for every u € L*(Q) it results that

fQ flz, Vu)dz + fQ fo°(z, Vu)d|D3ul+
sc™ (LY(Q))F(u) = + [og [ ((uo — vou)ng)dH"~t ifu € BV(Q)
+00 ifu & BV(Q).

§6.4 Classical Homogenization Results

Homogenization theory origins from the double exigency of describing a
nonhomogeneous, finely grained material with two or more components
mixed in a periodic manner by a homogeneous one, and, vice-versa, of
simulating a homogeneous material by a composite one, possibly enjoying
a microstructure emphasizing some special features.

In our framework, the simulation is to be intended in the sense that
the energy of the homogeneous material is approximated by those of the
nonhomogeneous ones for every exterior force.

One of the first significant results mathematically well established is
the following one due to E. De Giorgi and S. Spagnolo (cf. [DGS]), and
inspired also from conversations with E. Sanchez-Palencia.

Theorem 6.4.1. Let {a;;} be a n x n symmetric matrix of measurable
Y -periodic functions on R™ satisfying for some 0 < A < A < +00

n
Az? < Z a;j(x)z;2; < A|z|? for a.e. x € R", and every z € R".
i,j=1

Then, for every ) € Ay, and every g € L?(Q) the family {u.(g)}e>o of the
unique solutions of the problems

me mln{/ Z a” VuV udx—i—/gudx:ueWolﬂ(Q)}
Q

i,j=1
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converges in L*()) as e — 07 to the unique solution u(g) of the problem

Mhom(g) = min { / Z a?fmviuvjudm +/ gudr :u € W&’Q(Q)},

Q5 Q
1,7=1

and me(g) — Muom(g), where

Z a?j@mzizj = min {/ Z a;;(y)VioVjude : u € u, + Wgef(Y)}

i,4=1 =1

for every z € R".
A more general result in this setting is the following (cf. [CEDA1]).
Theorem 6.4.2. Let f satisfy
fi(z,2) e R" x R" — f(x,2) € [0, 400

f(-,2) Y-periodic and in L*(Y) for every z € R"
f(z,+) convex for a.e. x € R™,

and
|z| < f(z,2) for a.e. x € R™ and every z € R™.

Then, for every q € [1,+o0], Q € Ay with Lipschitz boundary, € L*(f2),
A >0, and r € |]1,1%[ the values

z’szinf{/f(f,vu) d:c+/5uda:+A/ |u|rd:c:u€W01’q(Q)}
Q € Q Q

converge as € — 07 to

Mhom = min{/fﬁ’om(VU)daj +/(fg0m)°°(vsu)d|Dsu|+
Q Q

q oo n—1 T .
Jr/aﬂ(fhom) (—yqung)dH +/Qﬂudx+)\/9|u| dx.uGBV(Q)},

where
[ (2) = inf { /Y fly,z+ Vo)dy : v € Wl}ég(Y)} for every z € R".

Moreover, if for every € > 0 u. € Wol’q(Q) is such that
lim {/ f (f,vue) dx+/ ﬁugdx—i-)\/ u57'da:—i5} —0,
e—0+ Q 5 Q Q
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then {u.}.~o is compact in L*(2), and its converging subsequences converge
to solutions of Mpom.

We point out that in the above result the dependence on ¢ can be a
true one, as proved in [CEDA1] where an example is proposed in which
[ ., is not constant with respect to g.

At present, literature on homogenization is very large, and offers dif-
ferent approaches to various types of problems. We refer e.g. to [DMZ2]
for a wide bibliography, at least until the first years of the nineties, and to
[CD].

We point out that homogenization problems have been the starting
point of the development of several analytical methods in Applied Mathe-
matics. The I'-convergence of E. De Giorgi, the heuristic multiscale method
introduced by N.S. Bakhvalov and deeply used and largely diffused by J.L.
Lions, and the energy method of L. Tartar, with the contribution of F.
Murat, had been developed just to study this kind of problems, at least in
the scalar case.

Finally, we remark that, sometimes in the following, when we are look-
ing at properties of mixing materials, we use the term at mesoscopic level,
and when we speak of properties of the homogenized material, we use the
term at macroscopic level.

§6.5 Mathematical Aspects of Some Physical Models Originating
Unbounded Functionals

Some physical models lead to minimization problems for integral energies
of the type fQ f(z, Vu)dz defined on sets of “regular configurations” on
the open set €2, and with densities f possibly taking the value 4oc0, and
satisfying conditions like

fi(x,2) e QxR — f(x,2) €0, +0c0]
f (L£,(Q) x B(R™))-measurable
f(z,-) convex for a.e. x € Q.

We now recall briefly some examples where the energy densities effec-
tively assume the value +o0.

The first one is concerned with elastic-plastic torsion problems (cf.
[DLi], [GL]), where densities f of the following kind have been proposed

flz,2) = 2> + Im(z) for a.e. z € R", and every z € R",

with ¢: R™ — ]0, +00[ measurable, and bounded.

In the electrostatic screening problem (cf. e.g. [RT]), densities f of
the type

f(@,2) = |2]* + Iicernc|<p(@)} (2) for ae. 2 € R", and every z € R",
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where ¢ is measurable on R™ and takes only the values 0 and +oo, have
been considered. This case corresponds to the one of a composite material in
which perfect conductors are included, where the potential to be determined
is subject to be constant.

Finally, in the modelling of rubber-like nonlinear elastomers, the fol-
lowing densities f have been introduced by Treloar (cf. [Tr]) when n =1

1 2
flz,z) = §G(x) <22 + P 3) for a.e. x € R, and every z € R,

1 1\?
fz,2) = §G(x) (z - ;) for a.e. z € R, and every z € R,

2 1
f(z,2) =Cy(x) (22 + o 3) + Cy(x) (z_2 +2z — 3)
for a.e. z € R, and every z € R,

G, C1, and Cs being measurable, and bounded from above and below by
positive constants.

We point out that in this last case the densities explode near some
values, and that also a loss of symmetry occurs.

It is straightaway verified that in all the above examples the densities
f are (£,(92) x B(R™))-measurable, and convex in the z variable for a.e. .
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Chapter 7

Abstract Regularization
and Jensen’s Inequality

In the present chapter we exploit the properties of convex functions and
of measure spaces to prove a general approximation in energy result of the
elements of a subspace of L{ (R™) with functions in C*(R"), by assuming
just convexity hypotheses on the energy functional.

The main tool is the notion of integral of a function with values in a
locally convex topological vector space that enables us to prove a general
version of Jensen’s inequality.

Finally, the approximation result is applied to deduce a lower semicon-
tinuity result, for functionals defined in BV spaces, with respect to a very

weak notion of convergence: the one in the sense of distributions.

§7.1 Integral of Functions with Values in Locally Convex Topo-
logical Vector Spaces

The approximation result expressed in Theorem 4.1.6 can be extended to
much more general situations. To do this, we make use of the notion of

integral of functions with values in topological vector spaces given by R.S.
Phillips in 1940 (cf. [Ph]).

Definition 7.1.1. Let (Q2,€) be a measure space, u a finite positive mea-
sure on £, U a Hausdorff locally convex topological vector space, and
f:Q — U. We say that f is U-integrable on ) if for every S € £, u(S) € U
can be found such that for every I € N(u(S)) there exist a subdivision
{Bs,1,j}jen € & of S into pairwise disjoint sets whose union is S, and
Ng 1 € N finite such that, whenever N C N is finite and contains Ng , it
results

Z w(Bs,1,5)f(x;) € I whenever x; € Bg 1 ; for every j € N.
JEN
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The vector u(S) is the value of the integral of f on S, and is denoted by
U)J s fdp.

The above defined integral satisfies the main structure properties of the
integral of real valued functions. In fact in [Ph] it is proved to be linear,
countably additive, and satisfying a suitable absolute continuity property.

Remark 7.1.2. It is clear that, if V' is another Hausdorff locally convex
topological vector space containing U and having a topology less fine than
the one of U, and if f: 2 — U is U-integrable on (2, then f turns out to be
also V-integrable on (2, and

(V)/S fdp = (U)/S fdu for every S € €.

The results below provides an integrability condition.

Theorem 7.1.3. Let Q € A(R™), u be a finite positive measure on L, (2),
U a sequentially complete Hausdorff locally convex topological vector space,
and let f: ) — U be continuous and with compact support. Then f is U-
integrable on .

Proof. Let {ps}oct be a family of seminorm defining the topology of U.

Let us first observe that, since f is continuous with compact support,
f is uniformly continuous in the sense that for every 6§ € 7, n > 0 there
exists dg, > 0 such that py(f(u) — f(v)) < n whenever z, y € Q satisfy
|m - y| < 69,77~

Let S € £,(Q). For every h € N let Ry, = {Q?}jeN be a partition
of R™ made up by half open cubes with sidelength 1/h, and set, for every
JjeN, Sh SN Qh Then, since spt(f) is compact, it is not restrictive to
assume the exmtence of my, € N, and of a compact set K not depending on
h such that S7Nspt(f) # 0 if and only if j € {1,...,ms}, and U™, shC K.

For every j € {1,...,my} we choose x? € S’;l and deﬁne up =
Z;-n:hl f(x?)/i(S]h) Let us prove that {up} is a Cauchy sequence in U.

To do this, let # € 7, n > 0, and let dg, be given by the uniform
continuity of f. Let v € N be such that % < Joa Then, for every h,

2v/n
k > v, it results that

(7.11)  pelun —ur) < po (i f))u(sy) - i f(ﬁ)u(%’-“)) =

=1 =1

IN

(Zf Z (SN Sy) — Zf(xf)Zu(SfﬂS?)>
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mp Mg

< DD St NS (Fh) - Fah).

i=1 j=1

We now observe that if S[LQSJ’? # (), then |z! f:cﬂ < dg,y, consequently,
by (7.1.1), and the uniform continuity of f, we deduce that

mp Mg

po(un — ug) ZZuShﬂSkn<p( ))n for every h, k > v,
i=1 j=1

from which we conclude that {u} is a Cauchy sequence. Therefore, by the
sequential completeness of U, we deduce the existence of u(S) € U such
that up, — u(9).

We now need to remark that a priori «(S) depends on the particu-
lar choice of the vectors {m?} Nevertheless, by using again the uniform
continuity of F', it turns out that it does not.

To sce this, let, for every h € N, uj = Y7 f( )u(Sj’-’)7 ul =
Z;n:h'l f (x?h)u(Sf) be two sequences constructed as above, and relative to

two different choices of the vectors {z"}, and let u'(S), u*(S) be their
limits. Let 8 € 7, and n > 0. Then

Po (ul(S) - UZ(S)) < po (Ul(S) - U}L) + Ppo (U}L - U%) + Do (U;ZL - UZ(S)) <

< po (u(8) = uh) + D u(SPpa (F@™) = F@3") +po (uf = u?(S)) <
j=1
< po (u'(S) = u},) + u(K)n + po (uh, — u?(5))
for every h € N sufficiently large,

from which we conclude that pp(u'(S) — u?(S)) = 0 for every 6 € 7, and,
being U Hausdorff, that u!(S) = u?(S).

Because of this, and again the uniform continuity of f, and by using
an argument similar to the above one, it is now easy to prove that for every
0 € T, and n > 0 it results that

an
sup {pg (Zf Sh — u(S)) : x;‘ € S]}-‘ for every j € {1,...,mh}} <
< n for every h € N sufficiently large,
that is u(S) = (U) [ fdp. m
The above notion of integral behaves nicely with respect to composition

with convex functions. In fact, the following Jensen type inequality holds
in the framework of locally convex topological vector spaces.
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Theorem 7.1.4. Let (£2,E) be a measure space, u a finite positive measure
on & satisfying u(2) = 1, U a Hausdorff locally convex topological vector
space, and let ®: U — [0, +0o0] be convex and lower semicontinuous. Then,
for every w: Q — U U-integrable on §) it results that

(7.1.2) o ((U) /Q wdu) < /Q (® o w)dp.

Proof. Let w:Q — U be U-integrable on €.
We first prove the theorem by assuming in addition that ®(0) < +oc.
Let t < ®((U) | wdp). Then, by the lower semicontinuity of ®, we
deduce the existence of Iy € N((U) [, wdp) such that

t < ®(v) for every v € I;.

Consequently, there exist a subdivision {Bq 1, ; }jen € € of { into pairwise
disjoint sets whose union is €2, and Ng ;, C N finite such that, whenever
N C N is finite and contains Nq j,, it results

(7.1.3) t< <I>< ) u(BQ,ft,nf(wj))

JEN
whenever x; € Bo y, ; for every j € N.

We now take e; > 0, and /V; C N finite and containing Ngq j, such that
e¢ vanishes as ¢ approaches ®((U) [, wdp), and p(Q\ Ujen, Ba,1,,;)®(0) <
Et.

Let us set Ay = Q\ Ujen, Ba,r,,j- Then u(Ay) +3 ;e n, #(Ba,r,.,j) =1,
and by (7.1.3) and the convexity of ®, we obtain that

t<c1>< (A)0+ > u(Bar, ) f j)>g

JEN;

< u(A)2(0) + Y p(Bar, ;)@(f(x;))
JEN:

whenever x; € Bq j, ; for every j € Ny,

and hence that

(7.1.4) t<5t+z (Bo,1,.5) 1nf Do f.
JEN, Q,1¢,j

Now it is clear that the function Y, n XBq ,, ; I0fBq ,, ; (P o f) is sim-
ple &-measurable, and that >,y XBq , ; (¥ )meQ 1, (@of) < (Pof)(x)
for every x € Q. Consequently, by (7.1.4), we deduce that

t<er+ / (® o f)du for every t < ® ((U)/ wdu) )
Q Q
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that provides (7.1.2) as ¢ increases to ®((U) [, wdp), under the additional
assumption ®(0) < +oo.

Finally, in the general case, by Theorem 1.1.11 it follows that for every
t < ®((U) [, wdp) there exist L € U’ and ¢ € R such that

t<L ((U)/ wdu) +e¢, L(v)+4c < ®(v) for every v € U,
Q
from which, since ® is nonnegative, we also obtain that
t<(L+c)" ((U)/ wdu) , (L+¢)"(v) < ®(v) for every v € U.
Q

Now it is clear that (L 4 ¢)T is convex and lower semicontinuous, and
that (L 4+ ¢)™(0) < +o00. Consequently, by the previously treated case, we
infer that

t<wr ot (0 wi) < [ (ot enans [(@o i

that again provides (7.1.2) as ¢ increases to ®((U) [, wdp), and completes
the proof. m

Remark 7.1.5. We point out that Jensen’s inequality actually provides
a characterization of convex lower semicontinuous functions, provided p is
surjective.

To see this, let (2, &), u, U be as in Theorem 7.1.4, assume that u(€) =
[0,1], and let ®: U — [0, +00] be lower semicontinuous and satisfying (7.1.2)
whenever w: Q — U is U-integrable on Q. Then, if wy, we € U, ¢ € [0, 1],
E € &€ is such that pu(E) =t, and w:x € Q — xp(r)wi + xao\g(z)ws, it is
easy to verify that w is U-integrable on Q, that (U) [, wdp = twi+(1—t)ws,
that ® o w is £-measurable, and that, by (7.1.2),

Dt +(1—t)ws) = @((U) /Q wdu) < /Q (Dow)dyu = t(w;)+(1-1)d(ws),

that is the convexity of ®.

For what concerns the surjectivity properties of p, we recall that a u
as above turns out to be surjective if for every A € £ with p(A) > 0 there
exists B € £ such that 0 < u(B) < u(A).

§7.2 On the Definition of a Functional on Functions and on Their
Equivalence Classes

Throughout the book, and starting in particular from the present chap-
ter, we consider functions and equivalence classes of functions, with respect
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to identity a.e., that we need to compare. In addition, we also consider
different types of functionals defined on such equivalence classes, that occa-
sionally are computed on their elements. To do this properly, it is necessary
to make explicitly some simple considerations.

First of all we recall that L] (R") is a space of equivalence classes
of functions defined on R", being two such functions equivalent if they
agree everywhere on R"” except possibly for a set of Lebesgue zero measure,
and that, as usual, its elements are thought as functions defined almost
everywhere in R™. Thus, when considering a subspace W of Llloc(R"), we
will think to its elements as to equivalence classes of summable functions
on R™, or to functions defined almost everywhere in R™. In particular this
holds when W = C*(R").

On the other side, C*°(R"™), especially if endowed with the C*°(R")
topology, is naturally a space of functions defined everywhere in R”, there-
fore a way to identify its elements with their equivalence classes, and to
introduce the corresponding topology on this set, is needed.

To do this, let us denote, for the moment and for the sake of clearness,
by Cg3(R™) the set of the C*°-functions on R™, and by C32(R™) the one
of the equivalence classes of the elements of CgS(R"™). Then it is obvious
that for every u € C3(R™) there exists a unique Ju € CgS(R™) such that
Ju e u.

Because of this, the application J:u € C3(R™) — Ju € CL(R™)
turns out to be well defined, linear, and one-to-one. Consequently {J~1(A) :
A open set in C*°(R"™)} turns out to be a topology on C3(R™) that makes
it a complete metrizable topological vector space, and J an isomorphism
between topological vector spaces that allows the identification of classes
with each of their elements.

In addition, given F': Cg5(R™) — [0, 4+00], we also identify it with the
functional Fps = F o J defined on C(R™), thus preserving its vectorial
and topological properties, and keep to denote Fy s by F'.

So, given u € CgS(R™), we allow F to act directly on all the functions
in J~lu, by defining F(v) = F(u) for every v € J-'u. In this sense, we
can say that if u € C2(R™) and v € L] (R") is such that v = u a.e. in
R", then F(v) = F(u).

It is obvious that now CgS(R"™) and CZ(R™) can be identified and
denoted by C*(R").

This standard identification procedure is fundamental: it allows to
translate problems defined on regular classes of functions into “regular”
Lebesgue equivalence classes.

This point of view agrees with the one described in Remark 2.3.6,
in which the identification of C*°(Q2) with a space of measures, given by
u € C®(Q) — uLl”, is examined.

We also point out that in some situations such identification procedure
is impracticable. For example, the classical total variation functional can
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produce different values when evaluated on two functions, one of which
possibly smooth, differing just in one point.

§7.3 Regularization of Functions in Locally Convex Topological
Vector Subspaces of L] (R")

In this section we study the properties of the regularizations of functions
in a locally convex topological vector subspace U of L{. (R™), by proving
approximation via regularizations results analogous to those of §4.1. The
main idea to do this is to see the regularization of an element of U as
the integral of a particular function taking its values in U, and then apply
Jensen’s inequality.

Lemma 7.3.1. Let u € L{ (R"), and p be a symmetric mollifier. Then,
for every € > 0 the function y € R" — p(y)T[eylu € L (R") is L{ (R")-
integrable on R"™, and

((Llloc(R")) / ) p(y)T[Ey]udy) (2) = uo(x) for ae. z € R”,

u. being the regularization of u defined in (4.1.2).

Proof. First of all, let us observe that L _(R™), with its natural topol-
ogy, is a Hausdorff locally convex sequentially complete topological vector
space, and that, by Theorem 2.2.7, y € R" — p(y)T[eylu € L. (R™) is
continuous, and with compact support. Consequently, by Theorem 7.1.3,
pTeJu is LIOC(R")—integrable on R".

Let € > 0, Q be a half open cube of R™ with sidelength [ satisfying
B1(0) C @, and let us observe that the proof of Theorem 7.1.3 actually
provides an approximating sequence of (L], (R™)) N, 0 p(y)T[eyludy. In fact,
if for every h € N we take a partition Ry, = {QJ }je{l"“’hn} of () made up
by half open cubes with faces parallel to the ones of @, and sidelength I/h,
then in the proof of Theorem 7.1.3 it is proved that

Zp YT eyt ul™(Q)—

h—+o00

(7.3.1) lim sup{

(LR / p(y)Tleyludy

Q

Let n > 0. Then, because of (7.3.1), Theorem 2.2.7, and of the com-
pactness of spt(p), there exists h € N such that, if Rh = {Q bie{i,. hmy 18
a partition as above, and, for every j € {1,...,h"}, yJ Qh then

dm:y?e@? foreveryje{l,...,h"}}—o.

(7.3.2) /Q ;pwﬁﬂeyﬁum(@?)—<L%OC<R”>>/Q p(y)Tleyludy|dz < 1.
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and

(7.33) /Q (1) Tlewlu — plye) Tleyaluldz < 7

n
whenever y1, yo € R" satisty |y1 — yo| < %

Then, by (7.3.2), (7.3.3), and Fubini’s theorem, once we recall that
ue(x) = fQ p(y)u(z + ey)dy for every x € R"™, and that spt(p) C Q, we
have that

/Q ‘(L%OC(R”)) / p(y)Tleyludy — u.|dz <

<n+ Zpy] a—:yj uﬁ”(Q)—uEdw—

R

=0t [ 1w+ e @)~ [ oyt + ey

dr <

i
<n+ Z/ /h |P(yjh)U(x + syjh) — p(y)u(z + ey)|dydx =
j=17@7@;

Bm

—n+Z//|py] Ju(z + ey)) — p(y)u(z + ey)|dzdy <

h’VL
<n+ nz L”(Q?) = (1+ L"(Q))n for every n > 0,
j=1

from which, together with the arbitrariness of @, the lemma follows. m

Let now O C A(R™), and U be a Hausdorff locally convex topological
vector subspace of L (R™) such that

(7.34) o+ € O whenever g € R", and 2 € O,

(7.3.5) T[zolu € U whenever zp € R"”, and u € U,

(7.3.6) the topology of U is finer that Li (R"),

(7.3.7) for every uw € U, y € R" — T'[ylu € U is continuous.

The results below proves that the regularizations of an element of U
can be regarded as integrals of a function taking values in U.
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Proposition 7.3.2. Let U be a sequentially complete Hausdorff locally
convex topological vector subspace of L] (R™) satisfying (7.3.5)+(7.3.7).
Let p be a symmetric mollifier, w € U, and, for every € > 0, let u. be the
regularization of u defined by (4.1.2). Then, for every € > 0, p(-)T'[e-|u is
U-integrable on R™, and

((U) / ) p(y)T[Ey]udy) (2) = u.(z) for ace. z in R".

In particular, u. € U for every € > 0.

Proof. Let ¢ > 0.
First of all, let us observe that by Lemma 7.3.1, p(-)T[e-]u turns out
to be LL (R™)-integrable on R™, and that

loc

(7.3.8) <(L110C(R”))/ i p(y)T[ey]udy) (z) = us(x) for a.e.  in R™.

Consequently, by using (7.3.7) it results that p(-)T[e-]u too is continuous
with compact support, and therefore, by Theorem 7.1.3, that p(-)T[e-]u is
also U-integrable on R™. This, together with (7.3.6) and Remark 7.1.2,
implies that

(U)/ pW)Tleyludy = (Lie(R™)) / p(y)T [eyludy,

n

from which, making also use of (7.3.8), the first part of the proposition
follows.

From what just proved it is now trivial to deduce that u. € U for every
€ > 0. In fact, for every € > 0, u. turns out to agree a.e. with an element
of U. m

Proposition 7.3.2 allows us to study the behaviour of the regulariza-
tions of the elements of U as ¢ — 0.

Proposition 7.3.3. Let U be a sequentially complete Hausdorff locally
convex topological vector subspace of Ll (R™) satisfying (7.3.5)+(7.3.7).

Let uw € U, and, for every € > 0, let u. be the regularization of u defined
by (4.1.2). Then {u.}eso CU, and u. — u in U as e — 0F.

Proof. Let p be the symmetric mollifier appearing in (4.1.2). Then Propo-
sition 7.3.2, yields that for every € > 0, p(-)T[e-]u is U-integrable on R",
and that {u.}.>0 CU.

Let {po}ocT be a family of seminorms generating the topology of U,
6 € T,n > 0. Then, by (7.3.7), there exists €9, > 0 such that

(7.3.9) sup{po (T'[eylu — u) : y € B1(0)} < n for every € €]0,€q,,].
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Therefore, by Theorem 7.1.4 applied to ® = pg, and (7.3.9), we con-
clude that

wo () oottty - ) =p (@) pto)Tlesla—way ) <

< / po(Teylu — u)p(y)dy < n for every e € 10,9, ],

that is the convergence in U of {(U) [g. p(y)T[eyludy}e>o to u as € goes to
0.
Because of this, and by Proposition 7.3.2, the proof follows. m

We emphasize that the properties established in Proposition 7.3.3 are
somewhat surprising once we observe that no assumption on the existence
of smooth functions in U is made.

We conclude this section with the approximation in energy result of
an element of U via its regularizations.

Let ®: O x U — ] — 00, 4+00]. We say that ® is translation invariant if

D(Q — x0, T[xo]u) = P(Q,u) for every Q € O, 2o € R", ueU.

We say that ® is convex if for every Q € O, ®(Q,-) is convex, and say
that ® is U-lower semicontinuous if for every Q € O, ®(Q,-) is U-lower
semicontinuous.

Lemma 7.3.4. Let O C A(R"™), U be a sequentially complete Hausdorff
locally convex topological vector subspace of Li (R™) satisfying (7.3.4)+
(7.3.7), and let ®: O x U — [0,+400] be translation invariant, convex, and
U-lower semicontinuous. Then {u.}e~o C U, and

DA, u) < P_(Qu)

for every Q € A(R"), A€ O with A CC Q, £ €]0,dist(4,90)[, ue U.

Proof. Proposition 7.3.3 provides that {uc}eso C U.

Let Q, A, €, u be as above, and let p be a symmetric mollifier as in
(4.1.2). Then, by Theorem 7.1.4 applied to ®(A4,-) and u = pL™, once we
observe that the U-integrability of pT'[e:] on R™ with respect to Lebesgue
measure implies also the U-integrability of T'[e-] on R™ with respect to the
measure pL", we deduce that

(7310) @ (A,<U> / np(y)T[ay]udy) < [ a4, Tlevluoty)iy

On the other side, being ® translation invariant, by (7.3.10) it follows
that

® <A, (U)/ i p(y)T[Ey]udy) < /Spt(p) P (A+ey,u)p(y)dy <
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< / (2, u)p(y)dy = D_ (),
B1(0)
from which, together with Proposition 7.3.2, the lemma follows. m

Theorem 7.3.5. Let O C A(R"), U be a sequentially complete Hausdorff
locally convex topological vector subspace of L _(R™) satistying (7.3.4)+
(7.3.7), and let ®: O x U — [0,+00] be translation invariant, convex, and
U-lower semicontinuous. Then {us}e>o C U, the limit lim._o ®_(Q7, ue)

exists, and

lir% O_(Q7,ue) =D_(Q,u) for every 2 € A(R"), u € U.
£ —

Proof. By Lemma 7.3.4 it follows that
(7.3.11) O_ (27, ue) < P_(Q,u) for every € > 0 sufficiently small.

Consequently, fixed A € O with A CC €, by the lower semicontinuity
of ®(A,-), Proposition 7.3.3, and (7.3.11), it results that

D(A,u) <lim iglfq)(A,uE) < limiélf (07, ue) <

<limsup®_(Q-,u;) < P_(Q,u),

e—0

from which the proof follows letting A increase to 2. m

§7.4 Applications to Convex Functionals on BV Spaces

In this section we exploit the abstract approximation by regularizations
method developed in this chapter to improve the lower semicontinuity re-
sults of Chapter 5 for convex functionals defined in BV spaces. Finally, for
the same class of functional, an approximation in energy result via regular-
izations is established.

As in Chapter 5, we first prove some general results for convex func-
tionals defined on spaces of of measures.

Let 2 be a Hausdorff locally compact space, i1 be a o-finite Borel pos-
itive measure on 2, f: R™ — [0, +00] be convex and lower semicontinuous,
and let F' be defined by (5.1.1).

We first study the convexity properties of F'.

To do this, we first prove a preparatory result.
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Proposition 7.4.1. Let (2, £) be a measure space, A be a o-finite positive
measure on £, pu be a finite positive measure on £, and v:€ — R be a
R™-valued vector measure on £. Assume that v is absolutely continuous
with respect to u, and that p is absolutely continuous with respect to .
Moreover, let g: R™ — [0, +00] be positively 1-homogeneous. Then

dv dv
gl —)du= / < )d)\
/Q (dﬂ> dX
Proof. By Radon-Nikodym Theorem, and Theorem 2.3.2 it follows that

dv dv dp
v(4) = o X L dp v
from which, by using also the uniqueness of the Radon—Nikodym derivative
of v with respect to A, we conclude that % (z) = 3; (x) d}\( x) for A\-a.e.
x €.
Because of this, by the homogeneity properties of g, and by Theorem
2.3.2 we thus obtain that

dv B dv du B dv\ dp . dv
/Qg (5) "= /Qg (dﬂ dA) "= /Qg (du> = / g (du> i
from which the proof follows. m

Theorem 7.4.2. Let Q be a Hausdorff locally compact space, u be a o-
finite Borel positive measure on €, and f:R™ — [0,+00] be convex and
lower semicontinuous. Let F be defined by (5.1.1). Then F is convex.

Proof. Let vy, va € (M(Q))™, t € [0,1]. Then the uniqueness of the
Lebesgue decomposition of tvy + (1 — t)vo with respect to p, it follows that
(try + (1 = t)e)* = td + (1 — t)v3, and (tvn + (1 — t)n)® = tvf + (1 —
t)vs. Consequently, by the uniqueness of the Radon-Nikodym derivative

of (tvy + (1 — t)v)® with respect to p, we conclude that W =

L 4 (1-1) %2
Bccause of this, and by the convexity of f, we infer that

(7.4.1) /Qf(d(t”1 + fjlu tva)* )du _

_ dvi dvi dv} B dvi
/f(tdqu )du)dﬂgt/nf(du>du+(l t)/szf<du)du

In order to treat the singular part of F', we observe that |(tvy + (1 —
t)v2)3| is clearly absolutely continuous with respect to |v1| + |v2], and that,
again by the uniqueness of the Radon-Nikodym derivative of (tvq + (1 —
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s . d(tv 1—t)v
t)vo)® with respect to |v1| + |val, %( ) = tm( z)+ (1 —

t)%(m) for (Jv1| + |v2|)-a.e. x € Q. Therefore, by a double
application of Proposition 7.4.1, and the convexity of f*°, we obtain that

0o (tV1+(1 t)VQ)S s|
waz [ ( : )d|<tu1+<1—t>u2> =

(trr + (1 =)o)
_ o ((Altrs + (1 =) ol
- o (M) e+ b <

/foo( (Ivlcﬁp |)> d(j] + v2))+
( |V1|+|1/| )d(|”1|+|1/2|)=
~f (

D)awi+a-o [ (22wl

7]
By (7.4.1), and (7.4.2) the convexity of F' follows. m

Finally, we prove a translation invariance property of F' when Q €
B(R™), and p = L™.

Theorem 7.4.3. Let f:R™ — [0, +00] be convex and lower semicontinu-
ous. Then

:/Qf@Z:)d“/ f°°<d| S|>d|v5|

for every Q € B(R"), v € (M(Q))™, zo € R™.

Proof. Let Q, v, xg be as above. Then, because of the uniqueness of
the Lebesgue decomposition of v, it follows that (T[xglv)* = T[zo]v?,
(Txolv)® = T[zo]v®, and, consequently, that |(T[xo|v)®| = T[zo]|v®|. Hen-
ce, by Theorem 2.3.5, we infer that

ATla)® Tl (@) o v (@ulan )
dLm r—0 rh r—0 rr
= jZi (xo+x) = T[xo]%(gc) for L"-a.e. x € Q,
and
ATl Tl (@) Q)
d|(Txo]v)*| =0 [(Tlro) Qe ()~ =0 [1](Qn(a + 7))
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dv® 0 |
= —d|ZS| ($0 +.’17) = T[xO]WZﬂ(x) for |Vb|-a.e. rcQ.

Because of this, and by (2.1.5), we therefore conclude that

[ (s [ e (G )l -
= [ (e ) ae s [ (Tl ) arteol =

[ (E)es [ (o

which proves the theorem. m

We now come to integrals functionals defined on BV spaces. To prove
the announced lower semicontinuity property, we need to establish the fol-
lowing approximation from below in energy result.

Lemma 7.4.4. Let f:R"™ — [0, +00] be convex and lower semicontinuous.
Then

f(Vue)dz < / f(Vu)dx +/ o (VPu)d| D%y
Q: Q Q
for every Q € A(R"), u € BWoc(f2), and € > 0.

Proof. By Theorem 7.4.3, and the properties of the translated of BV (R")
functions, we obtain that the functional

G:(A,u) € A(R™) x BV(R") — /Af(Vu)dz: +/Af°°(Vsu)d|DSu|

is translation invariant.

Moreover, by Theorem 7.4.2, and Theorem 5.1.4, G turns out to be
also convex, and weak®-BV (R")-lower semicontinuous.

Because of such properties, Lemma 7.3.4 with O = AR"), U =
BV (R™) endowed with the weak*-BV (R"™) topology, and ® = G applies
since BV (R"™) endowed with the weak*-BV (R™) topology is sequentially
complete. We thus obtain the lemma when u € BV (R"™).

If now u € BVjoc(2), for every h € N let Ay € Ay have Lipschitz
boundary, and satisfy Ay CC Ap41 CC Q, UZflAh =, and let vy, be the
zero extensions of u out of Ay. Then, v, € BV(R™), Dv, = Du in Aj,, and
consequently Vv, = Vu L"-a.e. in Ay and D3%vy, = D®u in Ay for every
h € N.

Because of this, and by the previously treated case, we infer that

/<Ah,>5 F(Vue)dz = / Fon) ) <

(An)e
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< [ sVudet [ oD -
Ah Ah

= f(Vu)dz + f(Viu)d|Dbul| <
Ah Ah

< / f(Vu)dx —|—/ F°(VPu)d|Du| for every h € N, & > 0,
Q Q
from which the lemma follows as h diverges. m

Let Q) € .A(Rn), and let {,uh} - MIOC(Q)7 un e MIOC(Q)' We recall
that {un} converges to u in the sense of distributions in Q if

/ pdpp, — / wdp for every ¢ € C5°(Q).
Q Q

If {up} C LL.(Q), and u € L{,_(Q), we say that {uy,} converges to u in the
sense of distributions in € if up L™ — uL™ in the sense of distributions in
Q.

The result below shows that converging sequences of Radon measures
improve their convergence after a regularization process.

Proposition 7.4.5. Let Q € AR"), and {un} C Mioc(R), u € Mioc(2)
be such that pp — p in the sense of distributions in §2. Then, for every
€>0, pthe — pe In C(Q7).

Proof. Let € > 0.
We first treat the case in which {up} C M(Q2) and p € M(Q).
For every h € N let us define fi, and f by

fn: B € BR™) — up(ENQ), [pEeBR") — u(ENN).

Then clearly {fn} € M(R"™), i € M(R™). _
Let A € Ay have Lipschitz boundary be such that A C Q2. Then,

once we observe that the null extension of ¢ € CI(A) to R™ is actually in
C§(R™), Proposition 4.1.3 yields that

ol ol ; al
(7.4.3) —aa’“‘h%dx: 88“’” - a\/ 0" S dfiy —
A Ox® rn 0T

glel alel alel
1)l 9 Pe = He — He
— (=) / , ogo U / . /A fpa $I

for every ¢ € C9(A), and every a € (N U {0})".

|| ~ ol ~
Condition (7.4.3) actually guarantees that %E” — %E" in
weak*-M(A) for every a € (N U{0})", from which we conclude that for

r
every o € (NU{0})", {||8 Brs || 1 (a) hen is bounded.

oz~
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We now observe that for every o € (NU{0})", and h € N, 2 allfx” s
WL1(A), consequently an iterated use of the Rellich- Kondrachov Compact-
ness Theorem provides that fij, . — fic in C™(A) for every m € N U {0}.

Because of this, the proof follows, once we observe that [ .(z) =
tn.e(x), and fic(x) = pe(x) for every h € N, and = € Q.

Finally, if {un} € Mioc(2) and g € Mioc(R2), we take B € Ay with
B CC Q, and define for every h € N, 1;, and 1z by

on:E € B(B)— un(ENB), @wEecB(B)— puENDB).

Then clearly {f,} € M(B), & € M(B), and by the above considered
case we conclude that 7, . — 7. in C*°(B7).

Because of this, the proposition also in this case follows, once we ob-
serve that for every compact set K C 2 there exists B € A with B CC Q
such that K C B, and that 7, .(2) = pp(z) and i () = pp . (z) for ev-
ery h € N and every x € B . m

Theorem 7.4.6. Let f:R™ — [0,+o00] be convex and lower semicontinu-
ous. Then

/ F(Vu)ds + / £ (VEu)d| D] <
Q Q

< liminf/ f(Vup)dx —|—/ £ (VPup)d|DPup|
h—+o0 Q Q

whenever Q0 € A(R"), {up} C BVioe(2), © € BVipe(2)

are such that u;, — wu in the sense of distributions in €).

Proof. Let Q, {up}, u be as above, A € Ay with A CcC Q, and
€10, dist(A, 09)].
For every h € N let uj, . be the regularization of u;. Then, by Lemma
7.4.4, we get that

(7.4.4) /A F(Vun.)da < /Q F(Vup)dz + /Q £2°(Voun)d| D*un|

for every h € N,
whilst, by Proposition 7.4.5, Fatou’s lemma, and (7.4.4) we deduce that

(7.4.5) / f(Vug)dx < hmlnf/ f(Vup)dx <

h——+4o0

Sliminf{/ﬂf(Vuh)dxJr/Qfoo(Vsuh)d|Dsuh|}

h—+o00

for every e € ]0, dist(A4, 09Q)].
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Finally, from Proposition 4.2.8, Theorem 5.1.4, and (7.4.5), we con-
clude that

/Af(Vu)dJJ—F/AfOO(VSu)d|Dsu\ < hmlnf/ f(Vue)dx <

gliminf{ /Q F(Vup)dz + /Q foo(Vsuh)stuh|},

h—+o0
from which the proof follows letting A increase to 2. m
By the above results we deduce an approximation in energy result for
BV functions.

Proposition 7.4.7. Let f:R"™ — [0,+00] be convex and lower semi-
continuous. Then for every € AR"™), and u € BVio.(Q?) the limit
lim,_, o+ fQ; f(Vu.)dx exists, and

lim f(Vu8 da?—/f (Vu) dsc—i—/ F°(Viu)d| Dul.

e—0t

Proof. Let €2, u be as above, and A € A(Q) with A CC Q. Then Theorem
7.4.6 and Lemma 7.4.4 yield that

/Af(Vu)dx—|—/Af°°(vsu)d|Db \<hm1nf/ f(Vue)dz <

< lim sup f(VuE)de/f(Vu)dx—i—/ £ (VPu)d| D,
Q Q

e—0t JQo

from which the proof follows letting A increase to 2. m
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Chapter 8

Unique Extension Results

In this chapter we begin a systematic treatment of unbounded functionals.
In particular, we deal here with unique extension problems.

Starting from the well celebrated example of H.A. Schwarz (in 1880)
and G. Peano (in 1882), the problem of the definition of the concept of area
of a surface and of the study of its properties, both in the parametric and
non-parametric cases, and possibly also in the noncontinuous framework,
interested many important mathematicians.

The researches developed produced a great amount of fruitful ideas
and techniques. We refer to the book of Cesari (cf. [Csl]) for a survey and
a bibliography up to 1956, and to [DGCP], [F], [GMS2], [Gu], [MaM], [M]
and to the references quoted therein.

To analyse the problem, various kinds of approaches were proposed,
among which also some of axiomatic type in which conditions on an ab-
stract functional, defined on sets of “generalized surfaces” and furnishing
the value of the area on the smooth ones, were proposed in order to uniquely
identify the area one. These last approaches were essentially based on the
topological (e.g. lower semicontinuity) and the measure theoretic properties
of the area functional.

In this chapter, we want to make some remarks in order to obtain
uniqueness of the extension for classes of functionals, including the area
one, in an axiomatic context. So, having in mind the non-parametric area
case, we enlarge the classical point of view by keeping into account also a
vectorial property of the area functional: the convexity.

Then, we consider an abstract functional, say F', given on a collec-
tion of elementary smooth functions and open sets, and taking values in
[0, +o0], and propose sets of conditions fulfilled by F' that select classes
of functionals, defined on spaces of less smooth functions and open sets, in
which F possesses a unique extension. This (unique) extension turns out to
be strongly linked to the relaxed functional of F in the L' topology intro-
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duced, in the case of integral functionals, in [S1] and [S2], and represented
in [GS].

The result is obtained under inner regularity, translation invariance,
and lower semicontinuity assumptions on F', besides convexity. We em-
phasize that such notions are classical in the framework of area definition.
Indeed the notion of inner regularity is of measure theoretic nature, the one
of translation invariance is of geometric type (cf. [Fr], [Le], [J]), and the
one of lower semicontinuity is classical and well recognized when dealing
with extension procedures (cf. [Fr]). We also point out that the notion
of convexity is linked to energy and statistics type considerations: in fact
the convexity property that we will exploit is essentially the feature of a
functional to take values on averages of configurations smaller than the
corresponding average of the ones on the single configurations (Jensen’s
inequality).

Similar unique extension results have been treated in [DM, Chapter
23], but in the more restrictive framework of integral representation theory,
and essentially in the finite valued case.

The results obtained are then applied to the problem of the unique ex-
tension of certain integral functionals of the calculus of variations, similarly
to what has already been done for the area functional.

The results of the present chapter form the basis of the relaxation
approach to variational problems when no a priori singularities on the ad-
missible configurations are allowed, approach that we follow in the present
volume.

Nevertheless, it must be pointed out that such approach is not the only
possible one, and actually one may expect to obtain, in general, different
results, as exposed in the last section of the chapter.

68.1 Unique Extension Results for Inner Regular Functionals
In this section we deal with unique extension results under inner regularity
assumptions on the functionals taken into account.

To do this, it is worth while to recall that, by Proposition 7.3.2, for ev-
ery sequentially complete Hausdorff locally convex topological vector space
U satistying (7.3.5)+(7.3.7) it turns out that

CER™")NU #0.

In the following we will take & C Ay satisfying
(8.1.1) zo + Q € & whenever g € R, Q € &.

Proposition 8.1.1. Let & C Ag satisfy (8.1.1), U be a sequentially com-

plete Hausdorff locally convex topological vector space satisfying (7.3.5)+
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(7.3.7), and G, H:E x U — [0,+00]. Assume that H is translation invari-
ant and convex, that G and H are U-lower semicontinuous, and that

(8.1.2) G(Q,u) < H(Q,u) for every (Q,u) € & x (C(R")NU).
Then
Geo—(Q,u) < He,—(Q,u) for every (Q,u) € Ay x U.

Proof. The proposition is clearly true if {A € & : A ccC Q} = 0.
Otherwise, let (2,u) € Ag x U. Then by (8.1.2), and Lemma 7.3.4
applied with O = &y, ® = H, we get

G(Aju.) < H(A,u.) < Hg,— (0, u)

for every A € & with A CC Q, € €]0,dist(A, 0Q)],
from which, together with the U-lower semicontinuity of GG, and Proposition
7.3.3, the proof follows. m
Then the unique extension result is the following.

Theorem 8.1.2. Let £ C Ay, & C & be dense with respect to &, and
satisfying (8.1.1). Let U be a sequentially complete Hausdorff locally convex
topological vector space satisfying (7.3.5)+(7.3.7), and G, H:E x U —
[0, 4+00]. Assume that G and H are inner regular, that their restrictions to
&y x U are translation invariant, convex, U-lower semicontinuous, and that

G(Q,u) = H(Q,u) for every (Q,u) € & x (C*(R")NU).

Then
G(Q,u) = H(Q,u) for every (Q,u) € € x U.

Proof. By a double application of Proposition 8.1.1 to the restrictions of
G and H to & x U, we infer that

(8.1.3) Gey—(Q,u) = He,— (Q,u) for every (Q,u) € Ay x U.

On the other hand, by ii) of Proposition 2.6.9 we immediately deduce
that
Gg_(Q,u) = Ggo_(Q,u), Hg_(Q,U) = Hgo_(Q,u)

for every (Q,u) € € x U,

from which, together with the inner regularity of G and H, and (8.1.3), the
proof follows. m

We point out that Theorem 8.1.2 fails if the convexity assumptions are
dropped, as shown in the example below.
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As usual, for every x € R, we denote by 4, the Dirac measure defined
for every B € B(2) by 6,(B) = 1if z € B, and 6,(B) = 0if z ¢ B.
Moreover, we denote by # the counting measure defined on ) as #(() = 0,
and on B € B(Q) as the cardinality of B.

For every open subset 2 of R we set denote by BV# (1) the set of
the functions u € BV () such that D%u = 33> ¢4d,, for some {c4} C R
satisfying Z:j len| < 400, and {x,} C Q. For every u € BV#(Q2) we set
Su = Up2{zn}

Example 8.1.3. Let n =1, & = & = Ay, U = BV(R) endowed with the
weak*-BV (R) topology,

) Jo IVulPdz  if we WH2(Q)
G:(Q,u) € Ap x BV(R) — {+oo if ug Wh(Q),

and

Vul?dr + #(S,) if u € BV#(Q)

H:(Qu) € BV(R Ja v

(@u) € Ao x BV )'_){+oo it u g BV#(Q).
With such choices, G and H are inner regular, translation invariant,

and

G(Q,u) = H(Q,u) for every (Q,u) € Ay x (C*(R) N BV(R)).

Moreover, the weak™-BV (R )-lower semicontinuity of G follows from Theo-
rems 6.3.1 and 4.2.11, and the one of H from [BoB, Remark 3.5].
This notwithstanding, G and H are different, since H is not convex.

§8.2 Existence and Uniqueness Results

In the present section we discuss the problem of the existence of the exten-
sion.

Lemma 8.2.1. Let & C Ay satisty (8.1.1), and F': Egx C*°(R™) — [0, +00]
be translation invariant, convex, and C*°(R"™)-lower semicontinuous. Then

. 1 n . .
Fe,_ is Ly, (R™)-lower semicontinuous.

Proof. Let Q € Ap, u € C°(R"), {up} € C°(R"™) be such that up — u
in LL _(R").

It is clear that, if {4 € & : A CcC Q} =0, then

Feo,_Qu)=0= lhiminf Fe,_ (2, up).

— 400

Otherwise, for every h € N, € > 0, let up . be the regularization of wuy,
defined by means of (4.1.1).
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Let A € & be such that A CC Q, and ¢ € ]0,dist(A,9Q)[. Then
Proposition 7.4.5 provides that up . — u. in C*°(R"™). By Lemma 7.3.4
applied with O = &, U = C*(R"), ® = F, and by the C*°(R")-lower
semicontinuity of F', we get

(8.2.1) F(A us) <liminf F(A, upe) < hminf Fey— (9, up).

h—+o00

By (8.2.1), and again the C*°(R")-lower semicontinuity of F', once we
observe that u. — u in C*°(R"), we conclude that

F(A,u) <lim 1an(A ue) < hmlnf Fe,_(Q,up)

e—0+ h—+o0

for every A € & with A CC Q,

from which the lemma follows. m

For every & C Ag, ®:& x C*(R") — [0,+00], and Q € & for the
sake of simplicity we denote in this chapter by ®(€2,-) the L{ (R™)-lower
semicontinuous envelope of

Lo ®(Qu) ifueC=(R)
u € Lige(R") — {+Oo if u € Lj, (R") \ C=(R"),

ie.

D:(Q,u) € & x L (R") —
inf {lngirnf@(Q,uh) Hup} CC®MR"), up — u in Llloc(Rn)} .

Then ®: (€, ) is Li . (R™)-lower semicontinuous, and it turns out to
be the greatest L] (R")-lower semicontinuous functional on L{  (R™) less
than or equal to ®(€2,-) on C*°(R™).

Proposition 8.2.2. Let & C Ag satisfy (8.1.1), and F: & x C*(R") —
[0, +00]. Assume that F is inner regular, translation invariant, convex,
and C*°(R™)-lower semicontinuous. Then (Fg,_),— is translation invari-
ant, convex, and agrees with F' on & x C*(R"). For every topological
vector space U C Li (R") satisfying (7.3.6), its restriction to Ay x U is
U-lower semicontinuous, and for every € C Ay perfect with respect to Ay,
its restriction to € x Ll (R™) is inner regular.

Proof. It is easy to verify that (Fg,—)a,— is translation invariant and
convex.
Moreover, by Lemma 8.2.1, we have that

Fe,— (% u) = Feg,— (Q,u) for every (,u) € Ay x C*(R"),
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from which, together with the remark that Ag is perfect with respect to
&o, 1) of Proposition 2.6.9, and the inner regularity of F, we deduce the
identity of (Fg,—)4,— with F on & x C*°(R").
Let now U be as above. Then, by using also (7.3.6), it is easy to deduce
that the restriction of (Fg,_)4,— to Ag x U is U-lower semicontinuous.
Finally, given £ as above, i) of Proposition 2.6.9 yields

((FEO_)Ar)g_ (Qu) = (K)AO— (Q,u) for every (Q,u) € EXLIIOC(R"),

from which the inner regularity of the restriction of (Fg,_)a,— to & X
Li . (R™) follows. m

We can now prove the existence and uniqueness result.
To do this, we take £ C Ay satisfying

(8.2.2) o + §2 € € whenever o € R", Q € €.

Theorem 8.2.3. Let & C Ag satisfy (8.1.1), and F:& x C®(R") —
[0, +00]. Assume that F is inner regular, translation invariant, convex,
and C*°(R™)-lower semicontinuous. Then, for every & C Ag perfect with
respect to Ap, having & as a dense subset, and satisfying (8.2.2), and
for every sequentially complete Hausdorff locally convex topological vector
space U satisfying (7.3.5)+(7.3.7), the restriction of (Fe,_),— to & x U is
the only inner regular translation invariant convex U-lower semicontinuous
functional from € x U to [0, +00] that agrees with F' on & x (C(R™)NU).

Proof. Let &, U be as above. Then by (8.2.2), and Proposition 8.2.2
it follows that the restriction of (Fg,_)4,— to & x U is an inner regular
translation invariant convex U-lower semicontinuous functional from £ x U
to [0, +o00] that agrees with F' on & x (C>°(R™) NU). By Theorem 8.1.2,
it is the only one with such properties. m

§8.3 Unique Extension Results for Measure Like Functionals

In Theorem 8.2.3 a central role is played by inner regularity assumptions.
In the theorems below we propose some results in the same order of ideas of
Theorem 8.2.3, but under groups of assumptions implying inner regularity
conditions, and determining again closed classes of functionals in which the
extension processes can be carried out.

Definition 8.3.1. Let O C A(R™), U be a set, and ®: O x U — [0, +00].
We say that ® is

i) boundary superadditive for every u € U, so is ®(-, u),

ii) boundary subadditive if for every u € U, so is ®(-,u),
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iii) a Borel positive measure if for every uw € U, ®(-,u) is the restriction to
O of a Borel positive measure.

Proposition 8.3.2. Let & C Ay satisfy (8.1.1), and (2.6.1) with O = &,
and let F: & x C*°(R"™) — [0, +00]. Assume that F is increasing, transla-
tion invariant, convex, C*°(R™)-lower semicontinuous, boundary superad-
ditive, boundary subadditive, and satisfying the following conditions:

i) for every (Q,u) € & x C®°(R™) such that F(Q,u) < 400, F is vanishing
along the sequences in & that are well decreasing to the empty set with
respect to 2,

ii) for every (Q,u) € & x C°(R™) such that F(Q,u) = +oo, F is diverging
along the sequences in &y that are well increasing to €.

Then, for every £ C Aq perfect with respect to Agy, having & as a dense
subset, and satisfying (8.2.2) and (2.6.1) with O = &, and for every se-
quentially complete Hausdorff locally convex topological vector space U
satisfying (7.3.5)+(7.3.7), the restriction of (Fg,_),— to & x U is the only
functional from € x U to [0, +00] that

i) is equal to F on & x (C*(R™)NU),

ii) is Increasing, translation invariant, convex, U-lower semicontinuous,
boundary superadditive, boundary subadditive,

iii) vanishes along the sequences in £ that are well decreasing to the empty
set with respect to €, for every (2, u) € & x U where it is finite,

iv) diverges along the sequences in £ that are well increasing to €, for every
(Q,u) € & x U where it is not finite.

Proof. Let £, U be as above.

It is clear that & too is perfect with respect to Ay, therefore by Propo-
sition 2.6.10, the inner regularity of F' follows.

Because of this, and of the assumptions on F', Theorem 8.2.3 applies
and we conclude that the restriction of (Fg,_)4,— to & x U is the only in-
ner regular translation invariant convex U-lower semicontinuous functional
from & x U to [0, +o0] that is equal to F on & x (C°(R™)NU).

We now prove some additional properties of (Fg,_).4,_-

It is obvious that (Fg,_).4,— is increasing.

Let us prove that the restriction of (Fg,—)4,— to €& x U is boundary
superadditive.

Let Q, A, B € &, with A CC B CC Q, u € U, and by using the
properties of &y and &, let Q', B’ € &y, be such that B cC B’ cc Q' ccC Q.
Then by i) of Proposition 2.6.9, Lemma 7.3.4 applied with O = £ and
® = (Fg,_)a,- restricted to & x U, by the properties of (Fg,_),—, the
inner regularity and the boundary superadditivity of F', and by (2.6.1) with
O = &y we get that

331 (F) gy @) = (Fe)y,-), (w2
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(Y ue) = Fey (Y ue) = F(Y u.) >

> (Fsof)AO

> F(Au) + F(Y\ B u.) > Fey (A, u.) + Fe, (Y \ B, u.)
for every € > 0 sufficiently small.

Then, by (8.3.1), and Proposition 7.3.3 we conclude that
(F&)—)_AO, (Q7 U) > (Fgo—)_AO, (Aa u) + (Fgo—)_AO, (Q/ \yv u)

for every ', B’ € & with B cc B’ cc @ cc Q,

from which, together with the density of & with respect to £, the boundary
superadditivity of (Fg,_).4,— follows as €)' increases to 2 and B’ decreases
to B.

Let us now prove that the restriction of (Fg,_).4,— to &xU is boundary
subadditive.

Let 2, A, Be &, with A CC B CC Q, u € U, and by the density of
&y with respect to &, let ', A’, B’ € &y, be such that A cc A’ cc B’ ccC
B cc Q' cc Q. Then, by the same arguments used above, we get that

(83.2) (Farr) sy Bow) = ((Fen) 4, ), (Bow)>

> (FS[)*) Blaus) = F(B,,UE)

-

for every € > 0 sufficiently small.

Analogously, by (2.6.1) with O = &, we also deduce that
(8.3.3) (Feo—) 4y (Q\Au) > F(Q\ A ue)

for every € > 0 sufficiently small.

Therefore by (8.3.2), (8.3.3), and the boundary subadditivity of F' we
conclude that

F( u) < F(Bu) + F(QY\ A u.) <

< (Feo—) 4, (Bow) + (Feo—) 4, (2\ A u)
for every Q' € & with Q' CC Q, & > 0 sufficiently small,

from which, together with Proposition 7.3.3, we obtain as £ decreases to 0
that

(834)  (Fey—) 4, (su) < (Feo—) 4, (Byu) + (Fey—) 4, (Q\ A u)

for every ' € & with Q' cc Q.
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By (8.3.4), and the density of & with respect to £ the boundary sub-
additivity (Fg,—).a4,— follows as Q' increases to (2.

Finally, by Proposition 2.6.10, the vanishing of (Fg,_)4,_ along the
sequences in &£ that are well decreasing to the empty set with respect to
Q for every (Q,u) € & x U for which (Fg,_)a,-(2,u) < +oo, and the
diverging of (Fg,_) 4,— along the sequences in € that are well increasing to
Q for every (2,u) € & x U for which (Fg,_).4,- (2, u) = +0o0 too follow.

In conclusion, since by Proposition 2.6.10 every functional satisfying
i)+iv) is inner regular, also the uniqueness part of the proposition follows.
]

By Proposition 8.3.2 we deduce the following result.

Proposition 8.3.3. Let & C Aj be dense in Ay, satisty (8.1.1) and (2.6.1)
with O = &y, and let F: Egx C*°(R™) — [0, +00]. Assume that F is transla-
tion invariant, convex, C*°(R™)-lower semicontinuous, and a Borel positive
measure. Then, for every € C Ay with & C &, and satisfying (8.2.2) and
(2.6.1) with O = &, and for every sequentially complete Hausdorff locally
convex topological vector space U satisfying (7.3.5)+(7.3.7), the restriction
of (Fe,—)a,— to & x U is the only translation invariant convex U-lower
semicontinuous functional from £ x U to [0,4o0c] that is equal to F on
& x (C*(R™)NVU), and is a Borel positive measure.

Proof. We first observe that every translation invariant convex U-lower
semicontinuous functional from & x U to [0,+o0] equal to F on & x
(C>*(R"™)NU), and that is a Borel positive measure, actually fulfils also
conditions i)+iv) of Proposition 8.3.2. Then the result follows from Propo-
sition 8.3.2, once we prove that (Fg,_)4,— is a Borel positive measure.

To do this, we prove that the conditions of Theorem 2.6.12 with O = £
are fulfilled.

Let us start with the superadditivity condition.

Letu € U, Q, Q1, Qs € € with Q;UQs € Q and Q;NQ = 0, and let Q7
0 € & be such that Q) CC Qy, Q) CC Q. By using the properties of &
and &, let Q' € & satisfying Q' cC Q, Q] cC Q'NQy, and Q) CcC Q' NQs.
Then by Lemma 7.3.4 applied with O = £, and ® = (Fg,_).,_, the inner
regularity of (Fg,_).a,—, the properties of (Fg,_) 4,—, the measure theoretic
properties of F, and (2.6.1) we get that

(8.3.5) (Feo-) gy (2 u) > (Feo—) 4, (¥ ue) = F(Que) >

> F(Q,ue) + F(Q), ue) > Fey— (Q), ue) + Feo— (D3, ue)
for every € > 0 sufficiently small.

By (8.3.5), and Proposition 7.3.3 we conclude that

(Feo—) g (1) = (Fey ) 4, () + (Fey o) 4, (22,)
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for every Qf, Q5 € & with Q) cC Oy, Q) CC Qo,

from which, using again the properties of & and £, and Proposition 2.6.9,
it follows that

(K)Ao— (Qvu) > (K)Ao— (Qlau) + (K)Ao— <Q2>u)

for every Q, Q1, Q€ E with QUL CQand Q1N =0, ueU.

We now prove the subadditivity condition.

Let wu € U, Q, Q1, Qy € £ with Q C Q; UQy, and let Q' € & be
such that Q' CC Q. By the properties of & and &, let ), Qf € & with
Q) CC Q, Q) CC N, and Q' C Q] UQ). Then by Lemma 7.3.4 applied
with O = &, and ® = (Fg,—).a,—, the inner regularity of (Fg,_)a,—, the
properties of (Fg,_).4,_, the measure theoretic properties of F', and (2.6.1)
we get that

(8.3.6) (Feo—) 4, (Q1,u) + (Feo—) 4, (R2,u) >

2 (Fgo—)AO, (Q/laue) + (Fgo—)AO, (Q/Q’UE) = F(Q/lvu€) + F(Q/Qvub‘) 2
> F(Q,u.) > Fe,— (Y, u.) for every ¢ > 0 sufficiently small.

By (8.3.6), and Proposition 7.3.3 we conclude that

(Feo) 4y (Q,0) + (Fep—) 4, (2,0) > (Feo) 4, (Qu)

o
for every ' € & with Q' cc Q,

from which it follows that
(FSO*)AU— (Qu) < (F&’*)Ao— (Q1,u) + (F‘SU*).AO— (Qa,u)

for every €, 4, Q5 € £ with Q C Q UQy, ueU.

By the above conditions, and the inner regularity of (Fg,_)a4,— the
proof follows by using Theorem 2.6.12. m

68.4 Some Applications

In the present section we apply the results of the previous ones to some
integral functionals of the calculus of variations.
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Proposition 8.4.1. Let & C Aj satisfy (8.1.1), k € N, f:R x R™ x
R” x...x R — [0, +00] be convex and lower semicontinuous, and
F:(Qu) € & x C°(R") — [q f(u, Vu, V2u,...,V*u)dz. Then, for ev-
ery £ C Ay perfect with respect to Ag, having £ as a dense subset, and
satisfying (8.2.2), and for every sequentially complete Hausdorff locally con-
vex topological vector space U satistying (7.3.5)+(7.3.7), the restriction of
(Fegy—) Ag— to EXU is the only inner regular (respectively measure, provided
(2.6.1) with O = &y and O = & is fulfilled) translation invariant convex U -
lower semicontinuous functional from € x U to [0, +o0] that agrees with F
on & x (C*R™)NU).

Proof. Follows trivially from Theorem 8.2.3 (respectively from Proposition
8.3.3). m

Proposition 8.4.2. Let & C Ay satisfy (8.1.1), f:R" — [0,40c0] be
convex and lower semicontinuous, and let

F:(Q,u) € & x C°(R") /Qf(Vu)da;.

Then, for every £ C Aq perfect with respect to Apy, having & as a dense
subset and satisfying (8.2.2), the functional

F:(Q,u) eé’xBV(R”)H/f(Vu)da:+/f°°(VSu)d|Dsu|
Q Q

is the only inner regular (respectively measure, provided (2.6.1) with O =
& and O = & are fulfilled) translation invariant convex L _(R™)-lower
semicontinuous functional from £ x BV (R™) to [0,+o0] equal to F on
& x (C=(R™) N BV(R")).

If, in addition, [ satisfies

(8.4.1) |z] < f(z) for every z € R",

then, for every & C Ay perfect with respect to Ay, having &, as a dense
subset, and satisfying (8.2.2), the functional

F:(Qu) € € x L, (R")

{fQ J(Vu)dz + [, f°(VEu)d|D3u| if u € BV(Q)
+00 ifu € LL (R™)\ BV ()

loc

is the only inner regular (respectively measure, provided (2.6.1) with O =
& and O = & are fulfilled) translation invariant convex Li (R™)-lower
semicontinuous functional from & x L (R™) to [0,+oc] equal to F on

50 x C'* (Rn)

Proof. We prove only the part of the proposition under inner regularity
assumptions, the other one being analogous.
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We start with the part relative to F.

In this case we observe that the properties of £, Theorem 7.4.3, the
properties of the translated of BV (R"™) functions, Theorem 7.4.2, and The-
orem 5.1.4 provide that F is inner regular, translation invariant, convex,
and weak*-BV(R")-lower semicontinuous. Consequently, Theorem 8.2.3
applies with U = BV(R") equipped with the weak*-BV (R™) topology,
and we conclude that F is the only inner regular translation invariant con-
vex weak*-BV (R"™)-lower semicontinuous functional from £ x BV (R") to
[0, +00] equal to F on & x (C°(R™) N BV (R™)).

We now observe that, because of Theorem 7.4.6, F is actually L'(R")
-lower semicontinuous. This implies the proposition for F , once we observe
that every L'(R™)-lower semicontinuous functional on € x BV (R") is also
weak*- BV (R")-lower semicontinuous.

We now treat the part relative to F.

In this case the proof follows from Theorem 8.2.3, once we prove that

(8.4.2) (FSO*)AO— (Q,u) = F(Q,u) for every (Q,u) € € x L (R").

To do this let us first prove that Fis L .(R™)-lower semicontinuous.

Let (Q,u) € € x LL (R"), let {up} C LIOC(R”) be such that up, — u
in L}OC(R”), and let us assume that the limit limp,_ o0 F/(€2, up) exists and
is finite. Because of this, we infer that u, € BV (Q) for every h € N and
by using (8.4.1) and Proposition 4.2.5, that « € BV (Q).

The proof of the L] (R")-lower semicontinuity of F is thus reduced to
the one of the L{ _(R™)-lower semicontinuity of its restriction to & x BV (£2),
and this holds by Theorem 7.4.6.

The L. _(R™)-lower semicontinuity of F' implies that

loc

F(A,u) < Fe,_(B,u) < (Feo— )Ao— (Q, u)

for every Q, B € Ay, A € & with A cc Bcc Q, ue L (R"),

from which, being &y dense with respect to £, we conclude that
(8.4.3) F(Qu) = Fey (Qu) < (Fgy—) ()

for every (Q,u) € € x L, .(R™).

Conversely, we observe that Theorem 7.4.3 and the properties of the
translated of BV(R™) functions yield the translation invariance of F', and
that Theorem 7.4.2 provides its convexity. Then, by Lemma 7.3.4 applied
with O = &, U = L, (R"), and ® = F we get that

F(Q,u) > F, o— (Q,u) > F(A,u.) = F(A, u.) = Fe,— (A, ue)
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for every Q € £, A € & with A CC Q, ¢ €]0,dist(A4,99[, u € Li,.(R"),
from which it follows that
(8.4.4) F(Q,u) > Fe,_ (A, u)

for every Q € £, A€ & with A cC Q, u € L. (R").
By (8.4.4), and ii) of Proposition 2.6.9 we get that

ﬁ(Q,u) 2 (K)go_ (Qu) = (K)g_ (Q,u)

for every (Q,u) € € x L (R™),

from which, being £ perfect with respect to Ay, we conclude that

(8.4.5)  F(Qu) > (Feom) Q,u) for every (Q,u) € € x L, (R™).

ao-

By (8.4.3) and (8.4.5), equality (8.4.2) follows. This completes the
proof of the proposition. m

Corollary 8.4.3. Let & C Ag satisfy (8.1.1), and

A: (Qu) € & x CP(R") — / V14 |Vul?de.
Q

Then, for every £ C Aq perfect with respect to Agy, having & as a dense
subset, and satisfying (8.2.2) the functional

A (Qu) € € x LL . (R") —

{ Jo V1+Vul2dz +|D%u|(Q)  ifu € BV(Q)
+oo ifue LL (R")\ BV(Q)

loc

is the only inner regular (respectively measure, provided (2.6.1) with O =
& and O = & are fulfilled) translation invariant convex L] (R™)-lower
semicontinuous functional from £ x L (R") to [0,+00] equal to A on
50 x C'* (Rn)

Proof. Follows from Proposition 8.4.2. m

§8.5 A Note on Lavrentiev Phenomenon
In this section we make some simple remark to emphasize the connections

of Lavrentiev phenomenon with the unique extension processes studied in
this chapter.
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In [Lal, in connection with Tonelli’s partial regularity theorem for the
minimizers of one dimensional Dirichlet minimum problems, (cf. [To]),
M. Lavrentiev observed the occurrence of the surprising feature of some
Dirichlet minimum problems for integral functionals to depend critically
on slight variations of the set of admissible functions. He produced an
example of a rather elaborated one dimensional integral functional whose
minimum on Sobolev classes is strictly smaller than the infimum on sets of
smooth functions.

It is to be emphasized that this feature is surprising since the proposed
functional enjoyed some convexity and weak lower semicontinuity proper-
ties, and smooth functions are dense in Sobolev spaces.

Starting from Lavrentiev’s work, many papers have been devoted to
the study of the phenomenon (cf. for example [M2], [HM], [BM2], [An],
[Cs2], [CPSC]), and, in some recent papers (cf. [BuM1], [DA1]) an abstract
interpretation of Lavrentiev phenomenon by means of relaxation has been
proposed.

Given a topological space (U, 7), a T-dense subset V of U, and a 7-lower
semicontinuous functional F: U — | — 0o, 400], the 7-lower semicontinuous
envelope Fy, of

Fruel {F(u) iquV

400 otherwise
has been considered, and it has been observed that, since inf{F(u) : u €
V} = inf{Fv(u) : u € U}, the nonoccurrence of the Lavrentiev phe-
nomenon for F', U and V, i.e. the equality inf{F(u) :u € U} = inf{F(u) :
u € V}, can be deduced by the equality Fyy = F. In this framework the
occurrence of the Lavrentiev phenomenon for various classes of minimum
problems has been studied in many papers also for multiple integrals of the
calculus of variations defined in Sobolev and BV spaces, (cf. for example
[AM], [ASC], [BB], [BuM2], [CEDAZ2], [DA3], [DAT2], [Z2], and the survey
paper [BuB]).

In particular, in [DA3] the quadratic form

1 2

|x‘n—1

¢ (2,2) € (R*\ {0}) x R” = Alz[* + -

_.Z
||

(n > 3) has been proposed so that, for a suitable choice of A, the functional

F:u e WhY(B1(0)) — q(x,Vu)dzx
B1(0)

is L*(B1(0))-lower semicontinuous, but

F(u*) < F‘C‘l(l?{‘n)(’u,*)7

where u*(x) = o
This example provides an example in which a convex quadratic func-
tional, namely the restriction of F to C'(R"), possesses two different

LY (B1(0))-lower semicontinuous convex extensions to W11(B1(0)).
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Chapter 9

Integral Representation
for Unbounded Functionals

In the present chapter we give some characterizations of the unbounded
functionals F', depending on an open set (2 and a function u in Sobolev or
BV spaces, that can be represented in an integral form of the kind

F@u) = [ F(Tuda,

when u is a Sobolev function, or
F(@u) = [ f(Fwds+ [ (Dl
Q Q

when wu is a BV one, for some f taking values in [0, +00].

§9.1 Representation on Linear Functions

In the present section and in the next one we prove some integral represen-
tation results for an abstract functional F' depending on a bounded open
set ©, and u in C*(R"). We start treating the case when u is a linear
function.

Let us consider a functional

(9.1.1) F:(Q,u) € Ay x WL (R™) — F(Q,u) € [0, +00]

satisfying

(9.1.2) F(zo+ Q,u,) = F(Q,u,) for every Q € Ag, 2 € R", zg € R",
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(9.1.3) for every z € R™ F(-,u.) is increasing,
(9.1.4) for every z € R"™ F(-,u;) is weakly superadditive,

(9.1.5) for every z € R™ F(-,u,) is weakly subadditive,
and introduce the function fr defined by
(9.1.6) frizeR"— F(Y,u,) € [0, +00].

Proposition 9.1.1. Let F be as in (9.1.1) satistying (9.1.2)=(9.1.5), and
let fr be given by (9.1.6). Then

(9.1.7) F(Qu,) < L") fr(z) for every Q € Ay, z € R",

(9.1.8) L) fr(z) < F(Q,u,) for every Q € Ag, z € R™.

Proof. Let z be in R™.

If F(P,u,) = 0 let Fé(,u): A € AR") — sup{F(B,u,) : B €
Ag, B C A}, then by (9.1.2)+(9.1.5) it follows that F°(-,u,) extends
F(-,u,), is increasing, weakly superadditive, weakly subadditive, and trans-
lation invariant. By Proposition 2.6.15 applied with o« = F¢(-, u,), the proof
follows.

If F(0,u,) # 0, by (9.1.4), and (9.1.5) it must necessarily result
F(0,u) = 400 from which, together with (9.1.3), (9.1.7) and (9.1.8) follow.
[

§9.2 Representation on Continuously Differentiable Functions

Let F be as in (9.1.1), and fr be given by (9.1.6).
In order to extend the results of §9.1 to C'! functions, we assume that F
satisfies also the following conditions (recall that for every u = >_""

ot j:l(qu +
sj)xp; € PA(R™) we have set B, = UL, (P; \ int(P;))

(9.2.1) F(Q,u) < limsup F(Q\ By, ,us) for every Q € Ay, u € C*(R"),
h—-+oco

{un} C PA(R") with u, — u in W">(Q),

that looks to be a coupling between lower semicontinuity and control hy-
potheses, and

(9.2.2) the restriction of F(Y,-) to {u, : z € R"} is convex.
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Remark 9.2.1. Let F be as in (9.1.1), and let fp be given by (9.1.6).
Then it is clear that (9.2.2) implies the convexity of fp.

Moreover (9.2.1), applied for every {z,} C R"™ and z € R" with z, —
z,to Q@ =Y, u = u,, and up = u,, for every h € N, implies the lower
semicontinuity of fr, and in particular that, for every u € Wli)cl (R™), the
function € R™ — fr(Vu(z)) is measurable.

Condition (9.2.1) is implied by the following assumptions
(9.2.3) F(Q,u) < F(Q\ By,u) for every (Q,u) € Ay x PAR"),
and
(9.2.4)  for every Q € Ay, F(Q,-) is W (Q)-lower semicontinuous.

Proposition 9.2.2. Let F be as in (9.1.1) satisfying (9.2.3) and (9.2.4).
Then (9.2.1) holds.

Proof. Let u, {up} be as in (9.2.1). Then by (9.2.4), and (9.2.3) we
have

F(Q,u) < lijmJirnf F(Q,up) <limsup F(Q\ By, ,un),
— 10 h—+o0

that is (9.2.1). m

We now assume that if (9.2.1), (9.2.2), the invariance and measure
theoretic assumptions below

(9.2.5) F(Q,u, +¢) = F(Q,u,) for every Q € Ag, z € R", c € R,

(9.2.6) for every u € C*(R™), F(-,u) is increasing,
(9.2.7) for every u € W,2°(R™), F(-,u) is superadditive,
(9.2.8) for every u € W,L>°(R™), F(-,u) is subadditive,

together with
(9.2.9) F(Q — z0, T[xolus) = F(Q,u,)

for every Q € Ap, z € R", 2o € R",

(9.2.10) limsup %F(Qr(zo), u) > F(Q1(xo), u(zo) + Vu(zg) - (+ — x0))

r—ot T
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for every u € C*(R™), z¢ a.e. in R",

(9.2.11) F(Q,u) < F(2,u,) whenever Q € A,

z € R", ue PA(R") with u(z) = u,(z) for every x € 2

hold, then fr is convex and lower semicontinuous, and
(9.2.12) F_(Q,u) = / fr(Vu)dz for every (Q,u) € Ay x C*(R™).
Q

We also prove that if we replace conditions (9.2.1) and (9.2.2) with the
following

(9.2.13) F(Q,u) < limsup F(Q\ By, ,up) for every Q € Ag, u € C*(R"),
h——+o0

{up} € PA(R™) with uj — u in weal*-W1>°(Q),
then the same conclusions on fr and (9.2.12) continue to hold.

Lemma 9.2.3. Let F be as in (9.1.1) satisfying (9.1.3), (9.1.4), (9.2.1),
(9.2.2), (9.2.5), (9.2.8), (9.2.9), (9.2.11), and let fr be given by (9.1.6).
Then

(9.2.14) F(Q,u) < / fr(Vu)dz for every cube Q, u € C*(R").
Q

Proof. Let Q, u be as in (9.2.14) with fQ fr(Vu)dz < +oo. Then, by
(9.2.2) and Remark 9.2.1, domfr turns out to be nonempty and convex.
Moreover it is not restrictive to assume that

(9.2.15) 0 € ri(dom fr).
Let k (< n) be the dimension of aff(dom fr). If & < n let us denote by
Ok, respectively by 0,_, the origin of R, respectively of R*~¥.

Let R:R™ — R be the identity transformation if & = n, an orthogonal
linear transformation such that

(9.2.16) R(aff(domfr)) = R* x {0,_1}
if kK < n and call again with R the n x n matrix associated to the transfor-
mation.

Let us define u’ by

(9.2.17) u'iy € R — u(R™'y),
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then, since R~1 = RT (the transpose of R), we have
(9.2.18) Vyu'(y) = Vou(R™'y)R™ = Vou(R™y)RT = (RVL(R™'y)")T

for every y € R™.

Let us fix now T € . Then, since Vu(xz) € domfp for every z € Q,
by (9.2.16), (9.2.18) and the convexity of @, we deduce that v’ in (9.2.17)
effectively depends only on (y1,...,yx) when (y1,...,y,) varies in R(Q),
R(Q) being a cube centred in § = RT.

Because of these considerations, if Pry is the projection operator from
R” to RF given by Pry: (y1,...,yn) € R® — (y1,...,yx), we can define @
by

ifk=n
0.219) @:(y1,...,y) € RF o { WL bm) o
( ) Y (yl yk) '_>{ul(ylw"7yk7yk+17"‘7yn) 1fk<na

then by (9.2.19), (9.2.18), and (9.2.16) we get

(9.2.20) Vﬂ(yl, ey yk) S Prk(R(domfF))

for every (y1,...,yr) € Prp(R(Q)).
We also observe that by (9.2.15), and (9.2.16) we have

(9.2.21) 0 € ri(Pri(R(domfF))).

Let {@;} be a sequence in PA(RF) given by Theorem 0.8 such that

@; — G uniformly in Prg(R(Q)),
(9.2.22) { Vi, — Vit in (L (Pri(R(Q)"

and let {ty} C ]0,1[ with ¢, — 1. Then by (9.2.20), (9.2.21), and the
convexity of Pry(R(domfr)) we get the existence of d,, > 0 such that

(9.2.23) dist(t, Vii(y1, . .., yr), R* \ Pri(R(domfr))) > 205

for every (y1,...,yx) € Pri(R(Q)),
hence, by (9.2.22), and (9.2.23), we deduce that

(9.2.24) dist(t, Vi (y1, - - ., y), R" \ Pr(R(domfr))) > 6p

for a.e. (y1,-..,yx) € Pri(R(Q)), every h € N, and ¢ € N large enough.

By using the functions 4; we can define u} and u; as

uwis (Y1, Yn) € R(Q) — Ui(y1,- -, Y&)
(92.25) {Uz’5 (@1, y2p) € Q= uf(R(z1,...,20)),
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then by (9.2.25), (9.2.22), and (9.2.24) it turns out that the functions wu;
are in PA(R™), that

(9.2.26) u; — u in WhHe(Q),
and that
(9.2.27) tpVu;(z) € domfr, dist(t,Vu;(x),rb(domfr)) > oy,

for a.e. x € @, every h € N, and 7 € N large enough.

By (9.2.26) and (9.2.27), once we recall that fr, being convex, is locally
Lipschitz on ri(dom fr), we obtain that

(9.2.28) lim fF(thVuZ Ydx = / fr(tpVu)dz for every h € N,

1—+o00

hence, by (9.2.28), we can construct a subsequence {u;, } of {u;} satisfying
1
(9.2.29) / fr(tpVu,, )dz < / frtnVu)dx + 7 for every h € N.
Q Q

Now let us observe that, setting for every h € N, u;, = Z] " (u, nt
sg)xph, by (9.1.7) of Proposition 9.1.1, (9.2.5), and (9.2.11) we have that
J

(9.2.30) /Q frtnVug dz = 3 £7(Q 0 P fr(tzl) >
j=1
> Z (@ ﬂlnt(P ), tr(u, »+ s ZF Q Nint(P; ) thug, )
j=1

for every h € N,
therefore by (9.2.26), (9.2.1), (9.2.8), and (9.2.30) we get that

(9.2.31) F(Q,u) < lfllmiupF(Q \ Bius, thug, ) =

= limsup F(Q N U} int(P ), thui, ) < hmsupZF Qﬂmt(P ), thu,) <

h—+o0 h—+oo j=1

< limsup/ fr(tnVu, )dx
h——+o0 Q

Finally, by (9.2.31), (9.2.29), (9.2.2), and Remark 9.2.1 we conclude
that

F(@.u) < limswp | fr(tnVuyde <
h—+o00 JQ
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< lim sup {th /Q fr(Vu)dx + (1 — th)ﬂn(Q)fF(O)} ,

h——4o00
that, together with (9.2.15), yields (9.2.14). m

Lemma 9.2.4. Let F be as in (9.1.1) satisfying (9.1.4), (9.2.1), (9.2.2),
(9.2.5), (9.2.6), (9.2.8), (9.2.9), (9.2.11), and let fr be given by (9.1.6).
Then

(9.2.32) F_(Q,u) < fF(Vu)dx for every (Q,u) € Ay x C*'(R™).

Proof. Let (,u) be as in (9.2.32). We can clearly assume that
Jo fr(Vu)dz < +oo.

Let ' € A(Q) with Q" CC Q, € > 0, Q1),...,Q(m) be cubes with
Qjy CC Q for every j € {1,...,m}, @' CC UL,Qy;), and

(9.2.33) Z fr(Vu)de < / fr(Vu)dz +¢.
Q)

Then by (9.2.6), (9.2.8), Lemma 9.2.3, and (9.2.33) we get that

m

(9.2.34) F(Q,u) < F (UL, Q) u) < D F(Qq),u) =

j=1
—Z fFVudx</fFVudx+5
Q)

for every Q' € A(Q) with Q' cc Q.

As ' increases to 2, and € decreases to 0, inequality (9.2.32) follows
from (9.2.34). m

We can now prove the integral representation result.

Theorem 9.2.5. Let F be as in (9.1.1) satisfying (9.2.1), (9.2.2), (9.2.5)+
(9.2.11), and let fr be given by (9.1.6). Then fr is convex and lower
semicontinuous, and

(9.2.35) F_(Q,u) = / fr(Vu)dz for every (Q,u) € Ay x C*(R™).
Q

Proof. The properties of fr come from (9.2.2), (9.2.1), and Remark
9.2.1, whilst equality (9.2.35) from Lemma 9.2.4, (9.2.5), (9.2.9), Proposi-
tion 2.6.13 applied with & = F(-,u) and (9.2.10). m

From Theorem 9.2.5 we trivially deduce the following corollary.
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Corollary 9.2.6. Let F' be a convex functional as in (9.1.1) satisfying
(9.2.1), (9.2.5)+(9.2.11), and let fr be given by (9.1.6). Then fr is convex
and lower semicontinuous, and (9.2.35) holds.

We now prove that Theorem 9.2.5 still holds if we replace conditions
(9.2.1) and (9.2.2) with (9.2.13).

Lemma 9.2.7. Let F be as in (9.1.1) satistying (9.1.3)+(9.2.5), (9.2.8),
(9.2.9), (9.2.11), and (9.2.13). Then (9.2.2) holds.

Proof. The proof follows the outlines of [BDM2, Lemma 1.5].
Let z1, zo € R™ with 21 # 22, t € [0,1] and set 2y = ‘Z:Z‘. For every
heN and j € Z, set

Lo—1 j— 1+t
Q}m{mER :]T§20~x<]T},

j—1+t

Q%’j:{xeR”: §20'$<%}7

h? -1
Q, ={zeR": 2z -2 < —h}, Q;:{xER": 3 <zo-x},
2_ 2_
Q%L = U?:thHQ,lm, Q% = U?:—lhi’ﬂ@f%,j
and observe that
(9.2.36) XqQr — 1 Xgz —1—tin weak*-Wh(Y) as h — +oo0.

For every h € N, j € Z let us set

1 _ -pa-9 2 _ Jt
Cpj = Tk’g —zal, ¢h;= —E|22 — 21,
and define uy, by
2o @+ hi|za — 21 ifre@,
. 27
z1-x+ C}ll’j ifxe U?ZJ}LQHQ}M
up:r € R" — 9 . h2_1 5

Z2 X+ if x € Uj:7h2+1Qh,j

21 %+ (hz_l#\zzfzﬂ ifx e QZ.
Then up, turns out to be in PA(R™), and by (9.2.36) we deduce that
(9.2.37) Up — Upsy 4 (1—1)2, D Weak*-Wh(Y).

By (9.2.37), (9.2.13), (9.2.8), (9.2.5), (9.2.11), Proposition 9.1.1, and
(9.2.36) we obtain

(9.2.38) F(Y, 2+ (1-1)2,) <
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< limsup F (Yﬁ ( (u?i—_1h2+1 (int(Q,lm)Uint(Qi’j))) uQ;uim(Qi{)) , uh) <

h—+o0

h?—1
< libmsup { Z {F(¥n int(Q;lw»), uy )+ F(Y N int(Qi)j),uZQ)} +
——+00 .
j=—h2+1

+E(Y Nint(Q) ), uz, ) + F(Y N thum)} =

< limsup{L™(Y N Q) F(Y,u.,) + L (Y NQ3)F(Y,u.,)} =
h—-+4o00

=tF(Y,u; )+ (1 —t)F(Y,us,).
By (9.2.38) condition (9.2.2) follows. m

Theorem 9.2.8. Let F' be as in (9.1.1) satisfying (9.2.5)+(9.2.11) and
(9.2.13), and let fr be given by (9.1.6). Then fr is convex and lower
semicontinuous, and (9.2.35) holds.

Proof. Follows by Lemma 9.2.7 and Theorem 9.2.5. m

§9.3 Representation on Sobolev Spaces
Let p € [1, 4+00].
In the present section we prove, under various sets of assumptions,

some characterlzatlons of the functionals F' depending on a bounded open
set 2, and w in W ! LP(R") that can be represented as

(9.3.1) F(Q,u) / fr(Vu)da for every (Q,u) € Ag x W,LP(R"),

fr being a convex lower semicontinuous function from R™ to [0, 4+00].
Let us consider a functional

(9.3.2) F:(Q,u) € Ay x WLP(RY) — F(Q,u) € [0, +00),

define fr by (9.1.6) and, as a first case, let us introduce the following
assumptions

(9.3.3) for every u € W,-P(R"), F(-,u) is increasing,

loc

(9.3.4) for every u € WP(R"), F(-,u) is weakly superadditive,

loc

(9.3.5) for every u € W,LP(R™), F(-,u) is weakly subadditive,
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(93.6) limsup — F(Q, (o), u) > F(Qu(x0), u(zo) + Vu(zo) - (- — o))

r—o0t+t T

for every u € W,LP(R"), zy a.c. in R",

(9.3.7) for every 2 € Ay, F(£,-) is

WP(Q)-lower semicontinuous if p € [1, 40|,

ﬂqe[l’Jroo[Wl’q(Q)-lower semicontinuous if p = +o0,

(9.3.8) for every u € W,"P(R™), F(-,u) is inner regular.

C

Lemma 9.3.1. Let F be as in (9.3.2) with p = 4+00. Assume that for
every Q € Ao, F(Q,-) is W1>°(Q)-lower semicontinuous. Then

(9.3.9) F(Q,u) = F(Q,v)

for every ) € Ag, u, v € WIE’OO(R") with u = v a.e. in ).

C

Proof. If u, v are as in (9.3.9), by defining for every h € N, u, = u, we
have that uj, — v in W1°(Q) and by the W>°(Q)-lower semicontinuity
of F(Q,-), that

(9.3.10) F(Q,v) < lngirnf F(Q,up) = F(Q,u).
By (9.3.10) and its analogous obtained by interchanging the roles of u
and v condition (9.3.9) follows. m

Theorem 9.3.2. Letp € [1,4+00]. Let F be as in (9.3.2) satisfying (9.2.5),
(9.2.9), (9.3.3)+(9.3.6), (9.2.1), (9.2.2), (9.3.7), (9.3.8), and let fr be given
by (9.1.6). Then fr is convex and lower semicontinuous, and (9.3.1) holds.
Conversely, given f:R"™ — [0,400| convex and lower semicontinuous,
and defined F by (9.3.1) with fr = f, it turns out that conditions (9.2.5),
(9.2.9), (9.3.3)=(9.3.6), (9.2.1), (9.2.2), (9.3.7), (9.3.8) are satisfied by F.

Proof. First of all, we prove that the assumptions of Theorem 9.2.5
are fulfilled by the restriction of F to Ay x W,n>°(R™).

In fact, besides (9.2.1), (9.2.2), (9.2.5), and (9.2.9), condition (9.2.6) is
implied by (9.3.3), condition (9.2.10) by (9.3.6), and conditions (9.2.7) and
(9.2.8) by (9.3.4), (9.3.5), (9.3.8), and Proposition 2.6.8. Moreover, (9.2.11)
follows from (9.3.7), and Lemma 9.3.1.

Consequently, by Theorem 9.2.5 we infer that fr is convex and lower

semicontinuous, and that

(9.3.11) F_(Qu) = / fr(Vu)dz for every (Q,u) € Ay x C*(R™).
Q
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At this point we observe that by (9.3.11) the assumptions of Propo-
sition 8.1.1 are fulfilled with & = A, U = Wﬂ)’f(R") endowed with the
WP (R™) topology if p € [1,+0o[, or with the Nyeji oo Wi (R™) one if
p=+4o0o, G=F_,and H:(Q,u) € Ay X VV&)f(R”) — Jo fr(Vu)dz.

In fact, it is clear that H is translation invariant, convex, and, by
Fatou’s lemma, also Wli’f (R™) lower semicontinuous if p € [1,+o0], or
ﬁqe}l’Jroo[Wli)’cq(R”) lower semicontinuous if p = 400. Moreover, by (9.3.7),
G too enjoys the same semicontinuity properties.

By Proposition 8.1.1 and Proposition 2.6.4 we thus get that

(9.3.12)  F_(Q,u) < / fr(Vu)dz for every (Q,u) € Ay x W,LP(R™).
Q

We also note that by (9.3.3), (9.3.4), and (9.3.5) the assumptions of
Proposition 2.6.13 are satisfied with o = F(-,u), for fixed u € Wli)’cp(R").
Therefore, by Proposition 2.6.13 and (9.3.6) we conclude that

C

(9.3.13)  F_(Q,u) > / fr(Vu)dz for every (Q,u) € Ag x WLP(R™).
Q

Finally by (9.3.12), (9.3.13) and (9.3.8) equality (9.3.1) follows.
The second part of the theorem follows from a direct verification, and
by using also Fatou’s lemma. m

As corollaries, we deduce from Theorem 9.3.2 the results below.

Theorem 9.3.3. Let p € [1,+00]. Let F be as in (9.3.2) satisfying (9.2.5),
(9.2.9), (9.3.3)+(9.3.6), (9.2.13), (9.3.7), (9.3.8), and let fr be given by
(9.1.6). Then fF is convex and lower semicontinuous, and (9.3.1) holds.

Conversely, given f:R™ — [0,+o00] convex and lower semicontinuous,
and defined F by (9.3.1) with fr = f, it turns out that conditions (9.2.5),
(9.2.9), (9.3.3)+(9.3.6), (9.2.13), (9.3.7), (9.3.8) are satisfied by F.

Proof. Follows the same outlines of the one of Theorem 9.3.2, using
Theorem 9.2.8 in place of Theorem 9.2.5. m

Theorem 9.3.4. Letp € [1,4+00]. Let F be as in (9.3.2) satisfying (9.2.5),
(9.2.9), (9.3.3)+(9.3.6), (9.2.2), (9.3.7), (9.3.8), (9.2.3), and let fr be given
by (9.1.6). Then fr is convex and lower semicontinuous, and (9.3.1) holds.
Conversely, given f:R™ — [0,400| convex and lower semicontinuous,
and defined F by (9.3.1) with fp = f, it turns out that conditions (9.2.5),
(9.2.9), (9.3.3)+(9.3.6), (9.2.2), (9.3.7), (9.3.8), (9.2.3) are satisfied by F.

Proof. Follows from Theorem 9.3.2, once we observe that (9.2.3), and
(9.3.7) imply (9.2.1). m
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Again from Theorem 9.3.2 we infer the following result under the as-
sumption that

(9.3.14) for every 2 € Ay, F(£,-) is

weak-W 1P (Q)-lower semicontinuous if p € [1,4-00],
weal*- W1 (Q)-lower semicontinuous if p = +oo.

Theorem 9.3.5. Letp € [1,4+00]. Let F be as in (9.3.2) satisfying (9.2.5),
(9.2.9), (9.3.3)=(9.3.6), (9.3.8), (9.3.14), (9.2.3), and let fr be given by
(9.1.6). Then fr is convex and lower semicontinuous, and (9.3.1) holds.

Conversely, given f:R™ — [0,+o00] convex and lower semicontinuous,
and defined F by (9.3.1) with fr = f, it turns out that conditions (9.2.5),
(9.2.9), (9.3.3)+(9.3.6), (9.3.8), (9.3.14), (9.2.3) are satisfied by F.

Proof. Follows from Theorem 9.3.3, once we observe that (9.3.14)
imply (9.3.7), and that (9.2.3) and (9.3.14) imply (9.2.13). m

In order to prove additional new characterizations, we now introduce
the following conditions

(9.3.15) there exist zg € domfr, 79 > 0,

and a Radon positive measure p on R™ such that
F(Q,u) < u(Q) whenever Q € Ay, ue PAR")

with Vu(z) € domfr for a.e. x € Q and [[u — uz, |1 ) < 7o,

(9.3.16) for every € Ap the restriction of F(Q,-) to PA(R™) is convex,

(9.3.17) for every Q € Ag the restriction of

F(Q,) to Wm°(R™) is W (Q)-lower semicontinuous.

Proposition 9.3.6. Let F' be as in (9.3.2) satisfying (9.2.5), (9.1.2), (9.1.3),
(9.3.15), (9.2.7), (9.2.8), (9.3.16), (9.3.17). Then (9.2.1) holds.

Proof. Let Q, u, {un} with u, = ZJ " (u, n+ 5] )XPh for every h € N,

be as in (9.2.1), fr be given by (9.1.6), and obberve that (9.3.16) obviously
implies the convexity of fr.

Let us first prove that (9.2.1) holds if there exists T € 2 such that
VU(E) ¢ dOmfF.

In this case, by taking into account the continuity of Vu, there exist
a neighborhood I of T in © and r > 0 such that dist(Vu(z),domfr) >
r for every x € I. Therefore, for every h € N large enough, we have
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that Vup(z) € domfp for ae. € I and hence that there exists j, €
{1,...,mp} with QNint(P}) # 0 and 2! & domfp.

Because of this, and (9 1.8) of Proposmon 9.1.1 applied to the restric-
tion of F to Ag X W1 7(R™), it then results that F(2 N int(P}), u o n) =

loc

+00, and hence, by (9.2.7), (9.2.5), and Lemma 9.3.1, that

mp
lim sup F'(2N U;”:"lint(P;L) r) > liminf » F(QN mt(P )y up) =

h——+oco h—+o0 =1

= hmmfZF Ql’hnt(Ph),uzh +5; hy > hrnlan(Qﬂlnt( ) ) = +o00,

h—+o0 h—+o0

from which condition (9.2.1) trivially follows.

Let us now prove that (9.2.1) holds if Vu(z) € dom fr for every = € Q.

To do this we first observe that it suffices to consider the case in which
zo in (9.3.15) is equal to 0, and hence aff(domfr) is a vector subspace of
R", being possible to reduce the general case to this one by considering
the functional F(-,u,, + -). Moreover, again by the same argument, the
convexity of fr, and possibly taking r¢ in (9.3.15) sufficiently small, it is
not restrictive to assume that

(9.3.18) 0 € ri(domfr), dist(0,rb(domfFr)) < ro.

As usual, it is not restrictive to assume that the limit limy,_, 1o F(2\
B, ,up) exists and is finite, so that it results

(9.3.19) Vuy, € domfr for a.e. € Q and every h € N.

Let t € ]0,1[, and recall that fr, being convex, is continuous in
ri(domfg). Therefore, by (9.3.18), the convexity of domfr, and our as-
sumptions on u we deduce the existence of a neighborhood A; of Q, and
M; > 0 such that

(9.3.20) frt(2 —t)Vu(z)) < M, for every x € A;.

Let u, ro be given by (9.3.15), Z1,...,Tan be the vertices of Q2(0),
and, for every r > 0, let us take a sequence {Q,( ") }ien of pairwise disjoint
cubes such that E"(R" \ U2, Q@ (2)) = 0.

For every h € N, we take rp, € ]0,1/h[, and observe that it is not re-
strictive to assume that @, (z}")NQNB,, # 0ifand onlyifi € {1,...,np}.
Moreover, we set for every ¢ € N, k € {1,...,2"}, yzh =z + fok, and
sz = Vu(yfk) Then, by taking into account the continuity of Vu, {ry}
can be chosen so that

9.3.21 I -0,
(9:3.21) Rm anry =
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(9.3.22) QN B, CUM™ U, Q,, (yM") for every h € N,

(1 —t)’l“o

9.3.23 H Tk — (g H U0
(03.23) Ju=Tlg s =l L, ey < 38@=1)

for every h € N, i € {1,...,n4}, k€ {1,...,2"},

np 2" 2" np

(9324) 33" u(20Q, 6")) = ZZM(QQO( )

i=1 k=1 k=1 1i=1

IN

2’7L
< Th hy The V) < on
< J;ﬂ(gmuz_l . (ch +3 xk)) < 2" ()
for every h € N sufficiently large.
Then, by (9.3.22) and (9.2.8) we have that

(9.3.25) F(Q, tup) <

< F(Q\ Buytun) + F (20 (U2, UL Qu () s tun) <

nhp 2"

F(Q\ By, ,tuy) + Z ZF (Q NQ, (y"), tuh) for every h € N.

i=1 k=1

Let us fix now h € N, ¢ € 1,...,np, and k£ € 1,...,2". Then by
(9.3.16), and (9.1.7) of Proposition 9.1.1 applied to the restriction of F' to
Ao x W,2°(R™), we obtain

(9.3.26) F(QNQy, (yi*), tup) =

= F<90th( “),1%(2-) (T[—yf”k]uziw + u(y?’k)) +

tup, — t2(2 — (T~ unr + uly,"))
+(1-1) T ) <

<tF (20Qu, ()62 = 1) (Tl=yMu s +u(™h)) ) +

<

tu, — #2(2 = ) (Tl +u<yf’“>)>
1-1¢

+(1—t)F (Q NQr, (yi"),

<t fi(8(2 — £)20)+
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whﬁ@w(T[d“mg$+mm*0>
1—t '

+(1 - t)F<Q NQr (5i™"),

In order to treat the last term in (9.3.26), we observe that by (9.3.23)
we have

(9.3.27)

<

W10 (QNQ., (y1F))

mh—ﬁ@—w(T%dwmww+u@?%w|
1—1

t

= 1— t(”uh —ullwiega) + (1 t)QHUHWL‘”(Q)-i—

—|—t2—tHu—(T—f’ku *t+u th)H <
( ) [ Y ] Z?k (y ) Wl’w(th(y?'k)))

To
[un, — ullwr.oo @) + (1= 8)?lullwre @) + 5 <70

<
1t 3

provided h is large enough.

Therefore, by (9.3.19), our assumptions on u, (9.3.27), and (9.3.18),
we infer that 14 (Vuy, —¢(2 —t)z?’k) € ri(domfr) a.e. in QNQ,, (y?k), for
every h € N large enough. Consequently, by (9.3.27) and (9.3.15) (recall
that zp = 0), we obtain that

tup — 122 — 1) (T[—y u_ns + u(yf”’“)))
i <

(9.3.28) F (Q N Qn, (y""), 11

< u(2N Qr, ("))
for every h € N large enough, i € {1,...,n}, k€ {1,...,2"}.

In conclusion, by (9.3.25), (9.3.26), (9.3.20), (9.3.28), (9.3.24), (9.3.16),
and (9.1.7) of Proposition 9.1.1 applied to the restriction of F' to Ag X
WL(R™), we obtain

(9.3.29) F(Q, tuy) <
2™ np
< F(Q\ By, tun) + 2 nari My + (1= 1) >3 QN Qy, (")) <
k=11i=1

< F(Q\ Ba,, up) + (1 — )F(Q,0) + 2nar? My + (1 — £)2"u(Q) <

< F(Q\ Bu,, un) + (1 — ) L) f(0) + 2 nprP M, + (1 — £)27u()

for every h € N large enough.
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Therefore, by using (9.3.17) and (9.3.21), we infer by (9.3.29) as h diverges
that

(9.3.30) F(Q,tu) < liminf F(Q, tup) <

h— 400

< limsup F(Q\ By, ) + (1= DL @) fr(0) + (1~ 12" (@)

for every t sufficiently close to 1.

As t increases to 1, condition (9.2.1) follows from (9.3.30), (9.3.17),
and (9.3.18). m

By using the above result, we are able to prove the following charac-
terizations.

Theorem 9.3.7. Letp € [1,+00]. Let F be as in (9.3.2) satisfying (9.2.5),
(9.2.9), (9.3.3)+(9.3.8), (9.3.15), (9.3.16), and let fr be given by (9.1.6).
Then fr is convex and lower semicontinuous, and (9.3.1) holds.

Conversely, given f:R™ — [0,+o00] convex and lower semicontinuous,
and defined F by (9.3.1) with fr = f, it turns out that conditions (9.2.5),
(9.2.9), (9.3.3)+(9.3.8), (9.3.15), (9.3.16) are satisfied by F.

Proof. The proof follows from Theorem 9.3.2, once we verify that assump-
tions (9.2.1) and (9.2.2) are fulfilled.

Assumption (9.2.2) is trivially implied by (9.3.16), whilst (9.2.1) comes
from Proposition 9.3.6. Therefore, to complete the proof, we only have to
verify that the assumptions of Proposition 9.3.6 are fulfilled.

To do this we observe that (9.1.2) follows from (9.2.5) and (9.2.9),
(9.1.3) from (9.3.3), (9.2.7) and (9.2.8) from (9.3.4), (9.3.5), (9.3.8) and
Proposition 2.6.8, and finally (9.3.17) from (9.3.7).

Because of this, Proposition 9.3.6 applies, and the proof follows. m

Theorem 9.3.8. Let p € ]1,4+00]. Let F be as in (9.3.2), and fr be given
by (9.1.6). Assume that (9.2.5), (9.3.7), (9.3.8), (9.3.15) hold, and that

(9.3.31) I is translation invariant,

(9.3.32) for every u € W,2>°(R"), F(-,u) is increasing,

loc

weakly subadditive, and weakly superadditive,

(9.3.33) hmsup —F(Qr(z0),u) > F(Q1(zo), u(zo) + Du(xg) - (- — x0))

r—ot T

for every u € Wu>°(R"), and a.e. z9 € R",
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(9.3.34) for every Q € Aoy, F(€,-) is convex.

Then fr is convex and lower semicontinuous, and (9.3.1) holds.

Conversely, given f:R™ — [0,400| convex and lower semicontinuous,
and defined F by (9.3.1) with fp = f, it turns out that conditions (9.2.5),
(9.3.7), (9.3.8), (9.3.15), (9.3.31)+(9.3.34) are satisfied by F.

Proof. It is easy to verify that the assumptions of Theorem 9.3.7 with
p = +oo are fulfilled. Consequently, we get that fr is convex and lower
semicontinuous, and that

(9.3.35)  F(Q,u) / fr(Du)dz for every (Q,u) € Ay x WL (R™).

If p < 400, the assumptions of Theorem 8.1.2 with & = £ = Ay,
1

U = WP (R") endowed with the U = W,.?(R") topology, G = F_, and
H:(Q,u) € Ap x W,LP(R") — Jo fr(Vu)dz are trivially fulfilled by using
(9.3.35), Proposition 2.6.4, and Fatou’s lemma.

);
Therefore, by Theorem 8.1.2 and (9.3.8), the proof follows. m

§9.4 Representation on BV Spaces

In the present section we want to prove some characterization results in the
same order of ideas of the ones of §9.3, but for functionals F' defined on
Ap X BVioc(R™). We look for necessary and sufficient conditions to impose
on F' so that it can be expressed by means of an integral of the calculus of
variations of the same kind of those considered in §9.3.

As already observed in the previous chapters, the natural extension to
BV spaces of an integral of the type fﬂ fr(Vu)dz is given by the Goffman-
Serrin formula, hence we look for an integral representation result of the

type
(9.4.1) F(Q,u):AfF(Vu)dm+Af?(Vsu)d\Dsu|

for every (,u) € Ay x BVio.(R"™),

fr being a convex and lower semicontinuous function from R™ to [0, +0o0],
and fg° its recession function.

Let
(9.4.2) F:(Q,u) € Ag X BVjoe(R") — F(Q,u) € [0, +00],

and define fr by (9.1.6).
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Having in mind the results of the previous section, we introduce the
following conditions

(9.4.3) for every u € BWoc(R"™), F(-,u) is increasing,

(9.4.4) for every u € Wo°(R™), F(-,u) is weakly superadditive,

loc

(9.4.5) for every u € Wll’OO(R”), F(-,u) is weakly subadditive,

ocC

(9.4.6) for every Q € Ay,

F(Q,-) is weak*-BV (Q2)-lower semicontinuous,

(9.4.7) for every u € BWoc(R"™), F(-,u) is inner regular.

Let us observe that, in spite of the results of §9.3, in general conditions
like those assumed in the representation results of the previous section
written, if necessary, with BVj,.(R"™) in place of VVéf(R") are not sufficient
in order to characterize the functionals that can be represented as in (9.4.1),
as it is shown in the example below. Roughly speaking this is due to the
fact that, in general, functionals on BVj,.(R™) need not be determined by
their values on smooth functions, contrarily to what happens in the case of
functionals on Sobolev spaces.

Example 9.4.1. Let n =1, U, G and H be as in Example 8.1.3, and set
F = H. Then F satisfies conditions (9.2.5), (9.2.9), (9.3.3)+(9.3.5), (9.2.1),
(9.2.2), (9.3.8), (9.2.13), (9.2.3), (9.3.15), (9.3.16), (9.3.31), (9.3.33), (9.4.3),
(9.4.6), and (9.4.7) written, where necessary, with BVj,c(R) in place of
Wil (R).

This notwithstanding, F' cannot be represented for any bounded in-
terval (2, as in (9.4.1) for some fr, otherwise it would be fr(z) = |z|* for
every z € R, and therefore F would agree with G on BVj,.(R).

Theorem 9.4.2. Let F be as in (9.4.2) satistying (9.2.5), (9.3.31), (9.4.3)+
(9.4.5), (9.2.10), (9.2.1), (9.4.6), (9.3.34), (9.4.7), and let fr be given by
(9.1.6). Then fr is convex and lower semicontinuous, and (9.4.1) holds.

Conversely, given f:R™ — [0,400| convex and lower semicontinuous,
and defined F by (9.4.1) with fr = f, it turns out that conditions (9.2.5),
(9.3.31), (9.4.3)+(9.4.5), (9.2.10), (9.2.1), (9.4.6), (9.3.34), (9.4.7) are sat-
isfied by F'.

Proof. By (9.2.1), (9.2.5), (9.4.3)+(9.4.5), (9.3.31), (9.2.10), (9.2.1),
(9.4.6), and Lemma 9.3.1 it follows that the restriction of F to Ay x
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WI’OO(R”) fulfils the assumptions of Corollary 9.2.6, from which we in-

loc
fer that fr is convex and lower semicontinuous, and that

(9.4.8) F_(Qu) = / fr(Vu)dz for every (Q,u) € Ay x C*(R™).
Q

At this point we observe that by (9.4.7), (9.3.34), (9.4.6), and (9.4.8)
the assumptions of Theorem 8.1.2 with & = & = Ay, U = BV(R")
equipped with the weak*-BV (R™) topology, G = F_, and H:u € BV(R")
— [ fr(Vu)dz + [, f2°(VPu)d|D%u| are satisfied. By Theorem 8.1.2, and
again (9.4.7) we thus obtain that

F(Q,u):/QfF(Vu)d:E—i—/fo}o(Vsu)d\Dsm

for every (,u) € Ag x BV(R").

In conclusion, let (Q,u) € Ay X BVo.(R"™), and let B be an open ball
with Q cC B. Then xpu € BV(R") and by using (9.4.6) and an argument
similar to the one exploited in the proof of Lemma 9.3.1, we obtain that

F(Q,u) = F(Q 1) =
- / Fr(V (upw))dz + / 135 (9 (p))d| DS (x )| =
Q Q

:/flzr(Vu)daL‘—i—/ff.%o(vsu)d|Dsu|7
Q Q

from which the first part of the theorem follows.
The second part follows from a direct verification, and by using also
Theorem 5.1.4. m

Theorem 9.4.3. Let F' be as in (9.4.2) satistying (9.2.5), (9.3.31), (9.4.3)+
(9.4.5), (9.2.10), (9.4.6), (9.3.34), (9.2.3), (9.4.7), and let fr be given by
(9.1.6). Then fr is convex and lower semicontinuous, and (9.4.1) holds.

Conversely, given f:R™ — [0, +o00] convex and lower semicontinuous,
and defined F by (9.4.1) with fr = f, it turns out that conditions (9.2.5),
(9.3.31), (9.4.3)=(9.4.5), (9.2.10), (9.4.6), (9.3.34), (9.2.3), (9.4.7) are sat-
isfied by F'.

Proof. Follows by Proposition 9.2.2 and Theorem 9.4.2. m

Theorem 9.4.4. Let F be as in (9.4.2) satisfying (9.2.5), (9.3.31), (9.4.3)+
(9.4.5), (9.2.10), (9.3.15), (9.4.6), (9.3.34), (9.4.7), and let fr be given by
(9.1.6). Then fr is convex and lower semicontinuous, and (9.4.1) holds.
Conversely, given f:R™ — [0,400| convex and lower semicontinuous,
and defined F by (9.4.1) with fr = f, it turns out that conditions (9.2.5),
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(9.3.31), (9.4.3)+(9.4.5), (9.2.10), (9.3.15), (9.4.6), (9.3.34), (9.4.7) are sat-
isfied by F'.

Proof. By (9.4.4), (9.4.5), (9.4.7) and Proposition 2.6.8 it follows that for
every u € VVli)’COO(R”), F(-,u) is superadditive and subadditive, from which,
together with (9.2.5), (9.3.31), (9.4.3), (9.3.34), and (9.4.6), we conclude
that the assumptions of Proposition 9.3.6 are fulfilled.

In conclusion, by Proposition 9.3.6, (9.2.5), (9.3.31), (9.4.3)+(9.4.5),
(9.2.10), (9.4.6), (9.3.34), and (9.4.7), we obtain that the assumptions of

Theorem 9.4.2 hold, and the proof follows from Theorem 9.4.2. m
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Chapter 10

Relaxation
of Unbounded Functionals

In this chapter we study some relaxation problems for certain classes of un-
bounded variational integral functionals, in the framework of both Sobolev
and BV spaces, and in the topological setting of L! spaces. We prove that
the corresponding relaxed functionals too are integral functionals of the
same type.

The results are then applied to relaxation in presence of various types
of boundary data.

Problems of this type are treated in [ET, Chapter X]|, and in [MS2],
but limitedly to some specific cases.

Finally, in this chapter we exploit the study on the possible compo-
sitions of lower semicontinuous envelope and convex envelope operators
carried out in Chapter 1.

§10.1 Notations and Elementary Properties of Relaxed Function-
als in the Neumann Case

Let
(10.1.1) fizeR"— f(z) € [0, 409
be Borel, and let, for every 2 € Ay, F(€2,-) be given by
1,00 n
(10.1.2) F(Q,-):u e L( {fn f(Vu)dr ifue W W (R )1 _
+00 if we LY(Q)\ W20 (R™).

In this section, for Q € Ag, we start the study of sc=(L(2))F(,),
namely of the relaxed functional in the L*(£2) topology of F(£2,-). For the
sake of simplicity, given Q € Ag, we set

(10.1.3) F(Q,):u e L(Q) — sc™ (L (Q)F(Q, u),
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and recall that, by Proposition 3.5.3, it results that (as usual here and in
the sequel we assume that min () = 400)

F(Q,-):ue LY Q)

h——+o00 loc

min {hmmf/ f(Vup)dx : {up} C wh C(R™), up — uin Ll(Q)} )
It is obvious that
(10.1.4) for every Q € Ay, F(Q,-) is L' (Q)-lower semicontinuous,

and that

F(Q,u) = min { lim inf f(Vuh)dac {uny € WL2(RM),

h—+o00 loc

for every h € N Vuy(x) € domf for a.e. z € Q, up, — u in LI(Q)}

for every Q € Ay, u € L'(R).

It is easy to see that F satisfies the following properties

(10.1.5)  F(Q,u+c) = F(Q,u) for every Q € Ay, u € L'(Q), ¢ € R,

(10.1.6) F(Q — 20, T[xolu) = F(,u)

for every Q € Ag, u € Ll(Q), 9 € R",

— 1 —
(10.1.7)  F(Q,0u) = t—nF(tQ,u) for every Q € Ag, t >0, u € L*(Q),
and
(10.1.8) F(Qa,u) < F(Qq,u)

whenever Qq, Qs € A satisfy Q1 C Qy, L*(Q2\ Q1) =0, v € LY(9).

Moreover we also have that
(10.1.9) F(Q,u) < F(Qq,u)

whenever Q;, Qy € Ay satisfy Q; C Qy, u € L' (Qs),

(10.1.10) F(Q,u) + F(Qg,u) < F(Q1 U Qg u)

©2002 CRC Press LLC



whenever Q1, Q5 € Aq are disjoint, u € Ll(Ql Us).

In order to prove additional measure theoretic properties of F', we need
to assume further conditions on f. More precisely that

(10.1.11) domf is convex,

(10.1.12) f is locally bounded in ri(dom f),

i.e. for every compact subset K of ri(domf) there exists My > 0 such that
sup,cg f(2) < Mg, and that

(10.1.13) for every bounded subset L of domf there exists

zr, € ri(domf) such that the function ¢ € [0,1] — f((1 — t)z1, + t2)
is upper semicontinuous at ¢ = 1 uniformly as z varies in L,

i.e. for every e > 0 there exists t. < 1 such that f((1—t)zr +tz) < f(2)+e¢
for every t € Jt., 1], and z € L.

Remark 10.1.1. Assumption (10.1.13) looks like a sort of uniform radial
upper semicontinuity on bounded subsets of domf. Nevertheless it does
not imply in general (10.1.12) (think for example to the case in which
n =2, f(z1,22) = % if [29]2 + |22/ < 1 and 2129 # 0, f(21,22) = 0
if [21]% + |22/ < 1 and 2120 = 0, f(z1,22) = +oo otherwise in R?, and
zr, = (0,0) independently of L). It is fulfilled if f is finite and continuous
in R™, or if there exists zo € ri(domf) such that the function ¢t € [0,1] —
f((1 —t)zg + tz) is increasing for every z in domf.

Lemma 10.1.2. Let f be a Borel function as in (10.1.1) satisfying (10.1.11),
and F be given by (10.1.3). Let A € Ay, and u € W''(A) be such that
F(A,u) < +o00. Then

(10.1.14) Vu(x) € domf for a.e. x € A.

Proof. Since F(A,u) < 400, there exists {up} C WI})COO(R") such that
up — u in LY(A) and

(10.1.15) for every h € N, Vup(z) € domf for a.e. z € A.

We now observe that, being by (10.1.11) dom f closed and convex, there
exist two families {ap}oer C R”, and {By}ocr C R such that z € domf
if and only if ag -z 4+ By > 0 for every 8 € 7. Therefore, by (10.1.15) we
obtain that

(10.1.16) g / pVupdxr + By > 0
A
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for every h € N, 6§ € T, and every ¢ € C3(A) with ¢ >0, / odx = 1.
A

By (10.1.16), taking the limit as h diverges, we deduce that
/ ©Vudx € domf for every ¢ € Cj(A) with ¢ > 0, / pdx =1,
A A

from which (10.1.14) follows. m

§10.2 Relaxation of Neumann Problems: the Case of Bounded
Effective Domain with Nonempty Interior

Let f be a Borel function as in (10.1.1), F be defined by (10.1.2), and F
by (10.1.3).

The integral representation result for F' will be proved in some steps,
in the first one, that is treated in the present section, we assume that

(10.2.1) domf is bounded,
and that
(10.2.2) int(domf) # 0.

It is clear that, by (10.2.1) it results

(10.2.3)  F(Qu) = inf{hmlnf/ F(Vup)dz : {up}y € W2 (R™), for

h—+4o00

every h € N Vuy(z) € domf for a.e. x € Q, up — u in Weak*—Wl’oo(Q)}

for every Q € Ag, u € L*(Q).

Lemma 10.2.1. Let f be a Borel function as in (10.1.1) satistying (10.1.11)
+(10.1.13), (10.2.1), (10.2.2), and let F' be given by (10.1.3). Then

(1024) F, (Ql @] QQ, u) S F,(Ql,u) +f,(92,u)

whenever Q, Qs € Ag, u € Ll(Ql UQy).

Proof. Let us preliminarily observe that, by (10.2.1), we can take L =
domf in (10.1.13), and that it is not restrictive to assume that zgoms = 0,
otherwise we just have to consider the function f(zgoms + -). In particular
this, together with (10.2.2), yields

(10.2.5) 0 € int(domf).
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Let now 1, Q9, u be as in (10.2.4), let us fix A € Ay with A CC Q,
and observe that there exist Ay CC Qq, As CC Qg such that A CC AjUAs.
Because of this, in order to prove (10.2.4), it suffices to show that

(10.2.6) F(Au) < F(Ay,u) + F(Ag,u)

whenever A, Ay, Ay € A satisfy A; CC Qq, Ay CC Ny, ACC A1 U As.

To do this, we can obviously assume that the right-hand side of (10.2.6)
is finite so that, by (10.2.1) and (10.2.3), for i = 1, 2 there exists {uf} C
WL (R™) such that u}, — u in wealk*-W1>°(4;), Vui (z) € domf for a.e.
x € A; and every h € N, and

(10.2.7) F(A;,u) = lim f(Vuh)

h—-+oco

Let By € Ag with By CC A; such that A CC By U A, let p € C3(Ay)
satisfying

2
1028) 0<p<1inR", p=11in By, |[|Ve|llpemn) < ——
( ) Spx>lmn 2 m Dy |H SO‘HL (R") > dlSt(Bl,aAl)
and set, for every h € N, w;, = puj + (1 — ¢)ui. Then w; — u in weak*-
W1e(A), and by (10.2.8), we have that

h—-+oco

(10.2.9) F(A, tu) < lim 1nf/ f(tVwp)da <

< lim sup/ f(tVup)dz +limsup [ f(tVui)dz+
h—+o0o J ANB; h—+o0o J Ay

+ lim sup/ f(tVwp)dx for every t € [0, 1].
h—+oc0 Aﬂ(Al\Bl)

Let us fix now ¢ € [0,1[. Then, since for every h € N Vwy, = ¢Vu} +
(1 — p)Vui + (u}, — u3)Ve, and Vui(z) € domf for i = 1, 2 and a.e.
r € A;, by (10.1.11) it results that for every h € N, to(x)Vuj,(z) + t(1 —
o(x))Vui(x) € tdomf for a.e. x € A.

Because of this, once we recall that, by (10.2.5) and (10.1.11), tdomf C
int(domf), and that u}, — w in L*°(A) for i = 1, 2, we obtain that
there exist a compact subset K; of int(domf) (depending only on t), and
hi,a,,B, € N (depending on ¢, Ay, and By) such that for every h > hy 4, B, ,
tVuwy,(z) € K, for ae. x € A.

This, together with (10.1.12), yields that

(10.2.10) there exist My > 0, and hy 4, B, € N such that
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for every h > hy a,. B, f(tVwp(z)) < M, for a.e. z € A.
We now fix € > 0. Then, by (10.1.13) we obtain the existence of
te € [0, 1] such that

(10.2.11) ftVup)de < | f(Vup)de +eL"(Ay),
Ay A

f(tVud)de < f(Vu2)de +eL(As)
A2 AZ

for every t € Jt.,1[, h € N,
hence by (10.2.9)+(10.2.11), and (10.2.7) we deduce that

(10.2.12)  F(A,tu) < limsup f(Vup)dx + lim sup f(Vui)dz+
h—+o0 J A, h—+oo J A,

+e(L™(Ay) + L7(A2)) + ML (AN (AL \ By)) <
for every t € |te,1].

As By increases to A;, and then ¢ tends to 17, we deduce from (10.1.4),
and (10.2.12) that

F(A,u) < liminf F(A, tu) < F(Ay,u) + F(Ag,u) + (L™ (A1) + L™ (Ag)),

t—1—

from which inequality (10.2.6) follows as € tends to zero. m

Lemma 10.2.2. Let f be a Borel function as in (10.1.1) satisfying (10.1.11)
+(10.1.13), (10.2.1), (10.2.2), and let F' be given by (10.1.3). Then

(10.2.13) F_(Qu) = F(Q,u) for every Q € Ay, u € W2 (R").

loc

Proof. Let Q, u be as in (10.2.13). Then, since F(-,u) is increasing in (2,
we immediately have that

(10.2.14) F_(Qu) < F(Q,u).

In order to prove the reverse inequality in (10.2.14), we can obviously
assume that F_(Q,u) < 400, so that F(A,u) < +oo for every A € A,
with A CC Q, and, by Lemma 10.1.2, that

(10.2.15) Vu(z) € domf for a.e. z € Q.
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Let now A, B € Ay with A CC B CcC . Then, by (10.2.1) and
(10.2.3) there exists {up} C WL °(R™) such that w, — wu in weak*-
Whee(B), and

F( = lim /fVuh

h—>+oo

Let ¢ € C}(B) be such that

2

10.2.1 <p<1linR" ¢=1in4 ~®") S T 0B
(10.2.16) 0<e<1inR" ¢=1in A4, |[|Vy||L ®") = Fist(A,0B)

and define for every h € N, wy, = pup, + (1 — ¢)u. Then obviously wy, €
WL (R™) for every h € N, and wj, — u in weak*-IW1°°(().

loc

By (10.2.1), assuming as in Lemma 10.2.1 that zgoms in (10.1.13) rel-
atively to L = domf is equal to 0 (and thus getting (10.2.5)), and by using
(10.1.11)+(10.1.13), (10.2.5), (10.2.15), (10.2.16), and an argument similar
to the one employed to get (10.2.10), we obtain that

(10.2.17) for every ¢ € [0, 1] there exist M; > 0 and hy g a4 € N such that

for every h > hy g a f(tVwp(z)) + f(tVu(z)) < M, for a.e. z € Q,
and that for fixed £ > 0 there exists t. € 0, 1[ such that

(10.2.18) /Bf(tVuh)d:ES/Bf(Vuh)dx—i—aﬂn(B)

for every t € Jte,1[, h € N.
By (10.2.16)+(10.2.18) we conclude that

(10.2.19) F(Q,tu) < hm inf f(tih)d:c <

h—-+oco

< lim inf f tVup)dz + lim sup f(tVwy)dx + f(tVu)dz <
h—+o0 h—+oco JB\A Q\B

< lim sup/ f(Vup)dx +eL™(B) + M L(Q\ A) <
h—-+4oco JB

< F_(Q,u) +eL™(Q) + ML (Q\ A) for every ¢ € Jt.,1].

As A increases to €, and then ¢ tends to 17, we deduce from (10.1.4),
and (10.2.19) that

(10.2.20) F(Q,u) < liminf F(Q,tu) < F_(Q,u) +L"(Q),

t—1—

hence, as ¢ tends to zero, by (10.2.20), and (10.2.14) equality (10.2.13)
follows. m
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Lemma 10.2.3. Let f be a Borel function as in (10.1.1), and let F be
given by (10.1.3). Then

limsup — F(Q,(w0),u) > F(Q1(0), Vu(xg) - (+))

r—0t rn

for every u € WU (R™), zo a.e. in R™.

loc

Proof. Let u € VVl(l)Cl(R") Then

/ |0, T[zo](u — u(zo))(x) — Vu(xo) - z|dx =
1(0)

1
= g |, 0+ ) ) ~ Vo) vy

r

for every o € R", r > 0.

Consequently, by Theorem 4.3.20, we have that

(10.2.21) lim |O-T'[z0](u — u(zo))(x) — Vu(xo) - z|dx =0
r=0"Jai0)

for a.e. zg € R".

We now observe that, by Lebesgue Differentiation Theorem,

(10.2.22) lim |V (O, T[zo](u — u(xo))) — Vu(zo)|dx =0
r=07JQu(0)

for a.e. g € R",

therefore, by (10.2.21) and (10.2.22), we get that
(10.2.23) O, T[xo)(u — u(wo)) — Vu(zo) - (-) in WHH(Q1(0)) as r — 0T

for a.e. 9 € R".
By (10.2.23), (10.1.4), (10.1.7), and (10.1.5) we thus obtain that
F(Q1(0), Vu(zo) - () <
< hgg(l)glfF(Ql( ), OrT'[zo](u — u(z0))) —hrrri%gp— F(Qr(z0),u),
which proves the lemma. m
We are now in a position to prove a first integral representation result

for F.
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Theorem 10.2.4. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13), (10.2.1), (10.2.2), and let F' be given by (10.1.3). Then
there exists ¢: R"™ — [0, 4+00] convex and lower semicontinuous such that

F(Q,u) = / ¢ (Vu)dz for every Q € Ag, u € W2 (R™).
Q
Proof. By (10.1.5), (10.1.6), (10.1.9), (10.1.10), Lemma 10.2.1, Lemma
10.2.3, Lemma 10.2.2, (10.1.8), and (10.1.4) we get that the assumptions of
Theorem 9.3.5 with p = +o0 are fulfilled by the restrictions to I/Vli’COO(R”)

of the functionals F(,-), Q € Ay. Thus the proof follows from Theorem
934. m

In the following result we specify the function ¢; in Theorem 10.2.4.

Proposition 10.2.5. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13), (10.2.1), (10.2.2), and let ¢; the one appearing in The-
orem 10.2.4. Then ¢y = f**.

Proof. Since f > f** we immediately deduce from Theorem 10.2.4, by the
convexity and the lower semicontinuity of f**, and by Theorem 7.4.6 that
op > f*.

On the other side it is clear that ¢y < f. Therefore, by using the
properties of ¢, and (1.3.3), we obtain that ¢y < f**, and the proof. m

§10.3 Relaxation of Neumann Problems: the Case of Bounded
Effective Domain with Empty Interior

We now want to consider the case in which assumption (10.2.2) is dropped.

For every k € {1,...,n}, we denote by 04 the origin of R¥, and, for
every open set A of R* and u in L'(A), by @ the function on A x R"F
defined by @:x = (21,...,7,) € A X R" ™% s u(zy,..., 2p).

Lemma 10.3.1. Let f be a Borel function as in (10.1.1) satisfying (10.1.11)
+(10.1.13), (10.2.1), and let F be given by (10.1.3). Assume that

(10.3.1) aff(domf) = R* x 0,,_y, for some k € {1,...,n —1}.

Then there exists f,: R* — [0, +00] convex and lower semicontinuous such
that

(10.3.2) F(Ax I,a) = L") /A fr(Vu)dy

whenever A is a bounded open set of RY,

I is a connected bounded open set of R" %, u e Wlifo (R").
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Proof. Let
g:(z1,...,2t) € RF = f(z1,. .., 21, 0ns),

define for every bounded open set A of RF, the functionals

[L9(Vu)dy if u € WL (RF)

loc

G(A,.):ueLl(A)H{JroO if u e LY(A)\ W™ (RF),

and
G(A,):u € L' (A) — s (LY (A)G(A,u),

and observe that obviously

(10.3.3) G(A,u) = min { lim inf/A (Vup)dy : {un} € WL (RF),

h—+oco

for every h € N Vuy(y) € domg for a.e. y € A, up, — u in Ll(A)}

for every bounded open set A of RF, u € Ll(A).

The function g satisfies all the assumptions of Theorem 10.2.4 with n =
k. Consequently, by Theorem 10.2.4 we deduce the existence of g,: RF —
[0, +00] convex and lower semicontinuous such that

(10.3.4) G(A,u):/Afp(Vu)dy

for every bounded open set A of R*, u e W, (R¥).

loc

Let now A, I, u be as in (10.3.2). Let us prove that
(10.3.5) F(AxI,a)< L”*’“(I)/ fp(Vu)dy
A

To do this we can assume that the right-hand side of (10.3.5) is finite
so that, by (10.3.3) and (10.3.4), there exists {u,} C W2 (R”) such that
for every h € N Vuy,(y) € domf, for a.e. y € A, up, — u in L'(A), and

(10.3.6) / fp (Vu)dy = hmlnf/ F(V1up, .., Viup, 0p—k)dy.

h—+o0

Then obviously i, — @ in L'(A x I), for every h € N Vi, (x) € domf for
a.e. © € A x I, and by (10.3.6), it turns out that

F(A x I,4) < liminf f(Vap)de =
h—+4o00 Jaxr
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= lhim-ii-nf ﬁn_k(I) / f(V1up, ..o, Viup, 0k )dy = En_k(f)/ fp(Vu)dy,
T A A

that is (10.3.5).

In order to prove the opposite inequality to (10.3.5), we assume that
F(A x I,@) < 400 so that there exists {v,} C Wli’COO(R”) such that for
every h € N Vuy(z) € domf for a.e. ¥ € A x I, v, — @ in L*(A x I), and

(10.3.7) +oo > F(Ax I,4) = lim F(Vop)dz
h—+oo Jaxr

Then, by (10.3.7) and (10.3.1) we have that for every h € N V10, =

.= Vuvp = 0 ae. in A x I from which, by taking into account the

connectedness of I, we infer that v, depends effectively only on its first &k

variables in A x I for every h € N. Because of this, we can assume that

for every h € N there exists wy, € V[/Iifo(Rk) such that v, = w,. Then
wp, — w in L1(A), and by (10.3.7) and (10.3.4), we have that

(10.3.8) F(A x I,a) = lim f(Viwn, ..., Viwp, Op_g)dx =
h—+oo Jaxr

= L"7H(I) | Tim | 9(Vun)dy = LHDG(A ) =

="M [ Sy
By (10.3.5) and (10.3.8) equality (10.3.2) follows. m

In order to extend (10.3.2) to a wider class of open sets, we need to
prove the following subadditivity result.

Lemma 10.3.2. Let f be a Borel function as in (10.1.1) satistying (10.1.11)
+(10.1.13), (10.2.1), (10.3.1), and let F' be given by (10.1.3). Then

(10.3.9) F (U™ (A x I) Z F(A; x I, )

whenever A1, ..., A,, are pairwise disjoint bounded open subsets of R¥,
Ii,...,I,, are connected bounded open subsets of R" % u € VVI1 Z(RM).

Proof. Let Ay, ..., Am, I1,..., I, ubeasin (10.3.9). It is obvious that we
can assume the right-hand side of (10.3.9) to be finite, so that, by Lemma
10.1.2, we get that

(10.3.10) Via(z) € domf for a.e. x € U, (A; x I;).
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Moreover, by (10.2.1), it is not restrictive to assume that zgoms in (10.1.13)
is equal to the origin of R", thus getting

(10.3.11) 0y, € ri(domf).

By the finiteness of >~ | F(A; x I;, @), (10.2.1), and (10.2.3) for every
i € {1,...,m} we deduce the existence of {u}} C VVI1 < (R™) such that

for every h € N Vu} (z) € domf for a.e. x € A; X I;, ul, — @ in weak*-
WL(A; x I) as h diverges, and

(10.3.12) F(A; x I;,0) = lim F(Vul)da
}L—>+OO Aini

for every i € {1,...,m}.

For every i € {1,...,m}, by (10.3.1) and the connectedness of I, we
obtain that for every h € N the functions “Z depend effectively only on
their first k& variables in A; x I;. Because of this, from now onwards we will
think of them as elements of V[/lf)coo (RY).

For every i € {1,...,m} let B; be an open subset of R* with B; CC A;,
and let ¢; € C§(A;) satisfying

0<¢; <1in R, cpl—linB“
V@il Lo mry < _dlst(B A"

(10.3.13) {

For every h € N we set w, = > 1w, pub+(1—=31" ¢;)u. Then wy, —
u in weak*-Whoo (U™ | A;), and @y, — @ in weak*- W1 (U™, (A; x ;).

Let us now observe that, being Ai,..., A,, pairwise disjoint, it turns
out that the values ¢1(y), ..., ¢om(y) are all equal to zero except at most
for one as y varies in U™, A;, hence we have that

Zcpruh—&-(l—Zgoz)VtH—Z W — 1) V.

Moreover, once we recall that uf — u in L>(spt(y;)) for every i € {1,...,
m}, by arguing as in the proof of Lemma 10.2.1, we get by (10.1.11),
(10.3.11), (10.3.10), and (10.3.13) that

(10.3.14) for every t € [0, 1] there exist a compact subset K; of ri(domf)

and h; € N such that for every h > h;
tVﬁ)h(m) € K, for a.e. x € U;il(Ai X Iz)
By (10.3.14), being Ay, ..., A, pairwise disjoint, we conclude that

(10.3.15) F (UM (A x L), ta) < liminf/ fVwp)de <
h—+oo [ ym (A; xI;)
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< Zlimsup/ f@Vop)dx <
A xI;

< lim sup / F(tVal)dx + lim sup / ftVwy,)dx
Z A,‘X[i h Z (AZ\B1)><I'L

i—1 h—+o0

Let us now fix € > 0. Then by (10.1.13) we obtain ¢. € ]0, 1 such that

(10.3.16) / f(tVﬁ}l)dxg/ f(Va)de 4+ eLF(A) L R(IL)
A;xI;

A; xI;
for every i € {1,...,m}, h € N,
and, by (10.3.14) and (10.1.12), that

(10.3.17) for every ¢ € ]0,1[ there exists M; > 0 such that

for every h > hy f(tVan(x)) < M, for a.e. x € UL (4; x ;).
By (10.3.15)+(10.3.17), and (10.3.12) we conclude that

(10.3.18) F(UT, (A % I,), i) <

Z F(A; x I, u) Zﬁk(Ai)ﬁn_k(Ii) + M, Z £F(A; \ By L™ R (I).
i=1 i=1 i=1

Letting first B; increase to A; for every ¢ € {1,...,m}, then ¢ tend to

17, and finally € go to 0T, we obtain (10.3.9) by (10.3.18), and (10.1.4). m

We can now prove the representation result for F under assumption
(10.2.1).

Theorem 10.3.3. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13), (10.2.1), and let F be given by (10.1.3). Then there
exists ¢;: R™ — [0, +00] convex and lower semicontinuous such that

(10.3.19) F(Q,u) = /ngf(Vu)dx

for every Q € Ay convex, u € WL 2(R™M).

loc

Proof. Let us assume for a moment that (10.3.1) holds.

Let ©, u be as in (10.3.19), and assume that F(Q,u) < +occ. Then, by
Lemma 10.1.2, we get that Vu(x) € domf for a.e. z € Q, and therefore, by
taking into account (10.3.1) and the convexity of 2, that u depends only
on its first £ variables in Q. Let v € Wi)coo(Rk) be such that u = v in Q.
Then it is clear that

(10.3.20) F(Q,u) = F(Q, 7).
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For every v € N let R, be a partition of R™, up to a set of zero
measure, made up by open cubes A; x I; (4, j € N) with faces parallel to the
coordinate planes, where for every i, j € N, A; is an open cube of R* and
I; is an open cube of R"~* and let S¥ = {(i,j) e Nx N : 4; x I[; CC Q}.

Let us fix v € N. By (10.3.20), (10.1.9), (10.1.10), and Lemma 10.3.1
we deduce the existence of f,: R¥ — [0, +00] convex and lower semicontin-
uous such that

(10.3.21) F(Q,u) > F (Ug jese (A x 1;),0) >
> Y FAxI,o)= Y LRI /fpVU
(i,5)€S” (i,5)€8"

At this point, if we define ¢ by

fo(z1, o 21)
(10.3.22) ¢y:(21,...,2n) ER" — if zp1=...=2,=0
400 otherwise,

¢¢ turns out to be convex and lower semicontinuous. Moreover by (10.3.21)
we obtain that

(10.3.23) F(Q,u) >

> > / o5 (Vu)de = / o7 (Vu)dx
.~ AixI; Ugi,jyesv (AixIj)

(3,5)€S”

As v diverges we deduce from (10.3.23) that
(10.3.24) F(Q,u) > / ¢ (Vu)dx
Q

for every Q € Ay convex, u € WL (R™).

loc

In order to prove the reverse inequality in (10.3.24), again when (10.3.1)
holds, let f, be given by Lemma 10.3.1, ¢ by (10.3.22), and Q, u as in
(10.3.19).

We can clearly assume that [, ¢(Vu)dz < +oc0. Because of this, and
by the convexity of 2, we get that u depends effectively only on its first &
variables in 2 and, as before, let v € VVI1 OQ(Rk) be such that u = ¥ in Q.
Moreover, for every v € N, let R,, and S” be as above.

Let us fix v € N. For every ¢ € N let us define SY = {j € N : (i,5) €
S”}, and assume, for the sake of simplicity, that S¥ # 0 if and only if
te{l,....,my}.
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For every i € {1,...,m,} set C; = int(ujegigf_j). Then, by using the
convexity of Q, it turns out that C; is connected, and U~ (4; x C;) CC Q.
Moreover, by (10.3.22), Lemma 10.3.1, and Lemma 10.3.2 we have that

(10.3.25) /quf(Vu)dx:/ﬂfp(Vv)de/U fp(Vv)dz =

=Y ke / fo(Vo)dy = S F(A; x Ciy5) = F (U4 (A, x Ci), ).
i=1 A i=1

Let us now set Q, = int(U;™(A; x C;)). Then, by (10.3.25), and
(10.1.8), we deduce that

(10.3.26) / ¢ (Vu)dz > F(Q,,9) = F(Q,,u),
Q
therefore, as v diverges, we obtain by (10.3.26) that
(10.3.27) / dp(Vu)dz > F_(,u)
Q

for every Q € Ay convex, u € WL®(R™).

loc

Finally by (10.1.9), (10.1.4), (10.1.6), and (10.1.7) it follows that the
assumptions of Proposition 2.7.4 with O = Ay, U = VVhlj’Coo(R”), and ® = F

are fulfilled. Consequently, by Proposition 2.7.4, (2.5.4), and (10.3.27) we
infer that

(10.3.28) /Qqsf(w)dx > F(Q,u)

for every Q € Ag convex, u € WL>(R™).

ocC

By (10.3.28), and (10.3.24) we get (10.3.19) under assumption (10.3.1).

We now consider the general case, when (10.3.1) is not assumed.

If aff(domf) = R™, the proof follows from Theorem 10.2.4, hence we
can assume that the dimension k of aff(domf) is strictly smaller than n.

If k = 0, dom f consists of a single point and (10.3.19) follows trivially,
hence we can assume that k£ € {1,...,n—1}.

Let A:R"™ — R"™ be an affine transformation such that, denoting
by M4 the matrix associated to the linear part of A, detM4 = 1, and
A(aff(domf)) = R* x {0,,_1}. Let us set

fa: (21, 20) €ER™ = f(A 21,0, 20)).

Then fa satisfies (10.1.11)+(10.1.13), and aff(domfa) = R¥ x {0,,_1}.
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Let F4 be the functional defined by (10.1.3) with f = f4. Let us ob-
serve that, for every Q € Ay convex, the set A(Q) is again convex, bounded,
and open.

By the particular case considered above we get ¢, : R™ — [0, +0o0]
convex and lower semicontinuous such that

(10.3.29) Fa(A—L(Q), uh) = / 67, (Vu)dy

for every Q € Ay convex, u € WL ®(R™),

loc

u? being defined by u?:y € R"™ — u(A(y)).
Let us observe now that

(10.3.30) Fa(A™H(Q),u?) = F(Q,u) for every Q € Ay, u e WU (R"),

loc

and define ¢¢ by ¢s:z € R" — ¢5,(A(z)). Then obviously ¢5,(z) =
d(A71(z)) for every z € R™, and by (10.3.30) and (10.3.29), we get that

T =Taa @) = [ or, (7t )y =

:/ dr (A (Vyu'(y)))dy :/ o5 ((Vau)(Aly)))dy =
A-1(Q)

ATLH(Q)
= / o5 (Vgyu)dr for every Q € Ag, u € VV&)’COQ(R")7
Q
which proves the theorem. m

In the following result we specify the function ¢ in (10.3.19).

Proposition 10.3.4. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13), (10.2.1), and ¢ the one appearing in Theorem 10.3.3.
Then ¢y = f**.

Proof. Similar to the one of Proposition 10.2.5, but by using Theorem
10.3.3 in place of Theorem 10.2.4. m

§10.4 Relaxation of Neumann Problems: a First Result without
Boundedness Assumptions on the Effective Domain

Let f be a Borel function as in (10.1.1), F be defined by (10.1.2), and F
by (10.1.3).

The present section yields some preliminaries to the integral represen-
tation result for F' when assumption (10.2.1) is dropped. This is done by
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studying the integral representation properties, for every Q € Ay, of the
sequential lower value of the restriction of F(£,-) to W1>°(Q) defined by

(10.4.1) FOI(Q,):u € WHe(Q) — inf { lim inf/ f(Vup)da :

ocC

{un} CWEX®RM), up, — u in Weak*—Wl"’o(Q)}.

As already observed in Chapter 3, in general, for a given Q € Ay,
F(>) (€, ) needs not be sequentially weak*-T/1:°°(Q)-lower semicontinuous,
and

(10.4.2) F(Q,u) < FNQ,u) for every Q € Ay, u € WHe(Q).

Theorem 10.4.1. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)=(10.1.13), and let F(>) be defined by (10.4.1). Then there exists
¢5:R"™ — [0, +00] convex and Borel such that

(10.4.3) FR)N(Q,u) > /Q ¢ ¢(Vu)dx

for every Q € Ay convex, u € WhH>(Q),

(10.4.4) FOOQu) = | ¢p(Vu)da
Q

for every Q € Ay convex, u € WH(Q) such that F*)(Q,u) < +oc.
If in addition int(domf) # 0, then

(10.4.5) F>)N(Q, u) > / ¢ (Vu)dz for every Q € Ao, u € W,o°(R"),
Q

(10.4.6) FOO(Q, u) = /Q 61 (Vu)dz

for every Q € Ag, u € W"°(R") such that F*)(Q,u) < +o0.

loc
Proof. Let us prove (10.4.3).
For every m € N set f,, = [+ Ig, (o), and define for every Q € Ay,
F,,(9Q,-) as in (10.1.3) with f,, in place of f.
It is clear that the sequence { f,, } is decreasing, hence for every Q € Ay,
and u in L'(Q) so is also F,, (2, u). Moreover we also have that

(10.4.7)  F)(Q,u) = in%F_m(Q,u) for every Q € Ag, u € WH>(Q).
me
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For fixed m € N, f,, satisfies the assumptions of Theorem 10.3.3. Con-
sequently there exists ¢y, : R" — [0, +00] convex and lower semicontinuous
such that

(10.4.8) Fn(Q,u) = /chfm(VU)dw

for every Q € Ay convex, u € Wb (R"), m € N.

loc
Since for every Q € Ag and u in L'(Q), F,,(9,u) is decreasing, it
results that for every z € R™ the sequence {¢y,, (2)} too satisfies the same
property. Therefore if we define ¢ by

(10.4.9) oz € R"— inf ¢ (2),
meN
we get that ¢ is convex and Borel and, by (10.4.7) and (10.4.8), that
(10.4.10) FQu) = inf Fp(Q,u) = mf / o5, (Vu)dx >
meN

/ ¢ ¢ (Vu)dz for every Q € Ay convex, u € I/Vl1 (R,

that is (10.4.3) once we recall that, being € convex, every element of
W1(Q) can be extended to an element of W,/ >°(R™).
In order to prove (10.4.4) let us observe that ¢¢(z) = limmHJroo o4, (2)
for every z € R", and that, if Q € Ay is convex, u € W1 “(R™), and
F)(Q,u) < +0o0, then (104 10) yields [, ¢f,., Vu)dx < oo for some
mo € N. Consequently, by (10.4.7), (10.4.8), and Lebesgue Dominated
Convergence Theorem, we conclude that

(10.4.11) FNQ,u) = lim /¢fm (Vu) dx—/o;f (Vu)d

m—>+oo

for every Q € Ao convex, u € W,o(R") such that F(*)(Q,u) < +o0.

loc
By (10.4.11) equality (10.4.4) follows once we recall that, being € con-
vex, every element of W1°°(£) can be thought as an element of VVliCOO (R™).
Finally, the proofs of (10.4.5) and (10.4.6) follow exactly as above, but
by using Theorem 10.2.4 in place of Theorem 10.3.3. m

Remark 10.4.2. We point out that, by (10.4.11), and Proposition 10.3.4,
under the assumptions of Theorem 10.4.1 the following representation for-
mula for F(*°) hold

F(oo)(SLu) = lim (f+1g,.0)" (Vu)dx =

m——+00 Q

= inf /(f +1g,, ()" (Vu)dz for every Q € Ag convex, u € whee(Q),
meN Q

or for every Q € Ag, u € W,°(R") if int(domf) # 0.

In the following result we describe the function ¢; in Theorem 10.4.1.
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Proposition 10.4.3. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13), and ¢¢ be the one appearing in Theorem 10.4.1. Then
b7 = co(se™ f).

Proof. Follows from (10.4.9), (10.4.8), and Proposition 1.4.4. m

§10.5 Relaxation of Neumann Problems: Relaxation in BV Spaces

Let f be a Borel function as in (10.1.1), F be defined by (10.1.2), and F
by (10.1.3). B

In the present section we prove the representation result for F' on BV
spaces.

Lemma 10.5.1. Let f be a Borel function as in (10.1.1) satisfying (10.1.11)
+(10.1.13), and let F be given by (10.1.3). Then there exists ¢¢:R" —
[0, +00] convex and lower semicontinuous such that

(10.5.1) F_(Q,u):/Q¢f(Vu)dx+/Q¢?°(Vsu)d|Dsu|

for every Q € Ay convex, u € BV (Q).
If in addition int(domf) # 0, then

(10.5.2) F,(Q,u):/Q¢>f(vU)dx+/Q¢;°(vsu)d|Dsu|

for every Q) € Ay, u € BV (Q).

Proof. Let us prove (10.5.1).

For every Q € Ay let F(®)(Q,-) be given by (10.4.1), and let ¢ be
the convex Borel function given by Theorem 10.4.1. Let us set ¢y = (¢ +
Tioms)*™. Then it is clear that ¢ is convex, lower semicontinuous, and
that, since obviously ¢ < f, ¢y < ¢+ Iaoms < f.

Because of this, and of Theorem 7.4.6 we get that

(10.5.3) F_(Q,u)2/quf(Vu)dx—i—/Qcé?o(Vsu)d|Dsu|

for every 2 € Ay, u € BV(Q).

In order to prove the reverse inequality in (10.5.3), let us first observe
that Tqoms < ¢+Igoms < f, from which we conclude that dom(¢+ Iqoms) =
domf and, together with (10.1.11), the convexity of ¢, and Proposition
1.3.2, that it results

(10.5.4) ri(dome¢y) = ri(dom(¢ + Iqomr)) = ri(domf),

©2002 CRC Press LLC



(10.5.5) 0(2) = ¢(2) + Iioms(2) = ¢(2) for every z € ri(domf).

Let © be as in (10.5.1), and assume for the moment that u € C*>°(R"™).
Let z; € ri(domf), t € [0, 1], and observe that we can assume [, f(Vu)dz <
+00 so that Vu(x) € domf for every x € €, and there exists a compact
subset K of ri(domf) such that

tVu(z) + (1 — t)z; € K; for every x € Q.
By (10.5.4) it follows that K; C ri(dom¢y), and hence, by using also
(10.1.12), that

FO(Q tu+ (1 —t)u,,) < / FtVu+ (1 —t)z)dr < 4o0.
Q

This, together with (10.1.9), (10.4.2), Theorem 10.4.1, (10.5.5), and the
convexity of ¢y implies that

(10.5.6) F_(Qtu+ (1 —tu,,) < FOOQ tu+ (1 —t)us,) =
= / Pp(tVu+ (1 —t)z)dex = / df(tVu+ (1 —t)z1)dx <
Q Q

< [ 64(Vude + (1= 06,z £"(@),
Q

Hence, as t increases to 1, we obtain by (10.5.6) and (10.1.4) that

(10.5.7) F_(Qu) < [ ¢p(Vu)dx
Q

for every Q € Ay convex, u € C°(R").

We now observe that the assumptions of Proposition 8.1.1 are ful-
filled with & equal to the family of the convex bounded open subsets of
R"™, U = BV(R"™) equipped with its weak*-BV (R™) topology, G equal to
the restriction of F_ to & x BV (R"), and H:(Q,u) € & x BV(R")
Jo @5 (Vu)da + [, ¢7°(Vou)d|D*ul. In fact an argument similar to the one
proposed in the proof of Lemma 7.4.4 yields that H is translation invariant
and convex, and by Theorem 5.1.4, it turns out to be weak*-BV (R")-lower
semicontinuous. Moreover so is also F', and (10.5.7) holds.

By Proposition 8.1.1 we thus obtain that

(F-)ep—(Q,u) <

< sup {/ or(Vu)dz —|—/ o7 (Viu)d|D*ul : A € &, A CC Q}
A A
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for every Q € Ay, u € BV(R"),

from which, once we observe that & is perfect in Ag, by using Proposition
2.6.9, Proposition 2.6.4, and an argument similar to the one exploited in
the proof of Theorem 9.4.2, we conclude that

(10.5.8) F_(Q,u) S/Q(bf(Vu)dx—l—/ngS]Oco(Vsu)d|Dsu|

for every Q € Ay convex. u € BV ().

By (10.5.8) and (10.5.3), equality (10.5.1) follows.

The proof of (10.5.2) follows exactly as above with the only difference
that in this case (10.5.7) holds for every bounded open set, and by taking
&y = Ap in the application of Proposition 8.1.1. m

Theorem 10.5.2. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13), and let F be given by (10.1.3). Then there exists
¢5:R"™ — [0, +00] convex and lower semicontinuous such that

(10.5.9) F(Q,u) :/ngf(Vu)dm—i—/SZ¢?°(VSu)d|DSu|

for every Q € Ay convex, u € BV (Q).

Proof. Let ¢; be given by Lemma 10.5.1. Then by (10.1.9), (10.1.4),
(10.1.6), and (10.1.7) Proposition 2.7.4 applies with U = BVj,.(R"), ® =

F. Because of this, (2.5.4), and Lemma 10.5.1 we conclude that (10.5.9)
holds. m

In the following proposition we identify the function ¢; in Theorem
10.5.2.

Proposition 10.5.3. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13), and let ¢ be the one given by Theorem 10.5.2. Then

Proof. By (1.3.3), and Proposition 1.4.1 we have

(10.5.10)  f* = ()™ < (co(sc™ f) + Taoms)™™ < (f + Laomys)™ = f*,

therefore, by the definition of f in Lemma 10.5.1, Proposition 10.4.3, and
(10.5.10) the proof follows. m

By the above results we deduce the following corollaries.
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Corollary 10.5.4. Let f as in (10.1.1) be convex and lower semicontinu-
ous, and let F' be given by (10.1.3). Then

f(Q,u):/Qf(Vu)dgc—i—/Qfoo(Vsu)d|Dsu\

for every Q) € Ay convex, u € BV (Q).

Proof. Let us prove that the assumptions of Theorem 10.5.2 are fulfilled.

To do this, by using the convexity of f, we only have to verify that
(10.1.13) is fulfilled. But this holds since the convexity of f yields the
following estimate

F(A=t)zr +t2) = f(2) < (X =1)f(z) +1f(2) = f(z) < (1 =1)f(z1)

for every bounded subset L of domf, z;, € int(domf), z € L, t € [0, 1],

from which (10.1.13) follows.
The proof now follows from Theorem 10.5.2. m

Corollary 10.5.5. Let g: R™ — [0,4o00] be continuous, and C C R" be
convex. Then

inf { lim inf/ g(Vup)dz : {up} C [/[/1‘1370<><>(Rn)7
Q

h—+o00

for every h € N Vuy(x) € C for a.e. x € Q, up — u in LI(Q)} =

- / (g + Io)™ (Vu)de + / (g + Ie)™)™ (V*u)d| D%
Q Q

for every Q) € Ay convex, u € BV (Q).

Proof. Follows from Theorem 10.5.2, and Proposition 10.5.3 applied with
f = g+ Ic, once we observe that g + I satisfies conditions (10.1.11)=+
(10.1.13), the last two being fulfilled by exploiting the uniform continuity
of g on the bounded subsets of R". m

§10.6 Notations and Elementary Properties of Relaxed Function-
als in the Dirichlet Case

In the present section we want to deduce analogous representation results,
on Sobolev and BV spaces, for relaxed functionals of integrals of the calcu-
lus of variations of the type of those considered in this chapter, but relatively
to the case in which boundary data, possibly nonhomogeneous, are taken
into account.
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We point out that such deduction is not a direct consequence of the
results of the previous sections. Therefore given a Borel function f as in
(10.1.1), and a boundary datum wug € W1 "(R™), we set for every Q € Ay

(10.6.1) Fo(ug, Q,-):u € L(Q)

{fQ (Vup)dz if u € ug + Wy™(Q)
+00 if we LY Q) \ (uo + Wy ™(Q)),

and prove some integral representation results, when 2 € Ag, for the re-
laxed functional sc™ (L1())Fo(uo, 2, -) of Fo(ug,,-).
To carry out this program the properties of uy will play a crucial role,
and the results will rely deeply on whether dom f has interior points or not.
As in the previous sections, given 2 € Ay, we set for the sake of
simplicity

(10.6.2) Folug,Q,-):u € LN(Q) — sc™ (LY(Q)) Fo(ug, Q,u),

and recall that, by Proposition 3.5.3, it results that

TFo(ug,Q,-):u € LY(Q) + min { lim inf f(Vuh)

h—+o0o

{up} Cuo+ Wol’oo(Q), for every h € N Vuy(z) € domf for a.e. x € Q,
up — u in Ll(Q)} for every Q € Ag, u € L*(Q).
It is obvious that

(10.6.3) for every ug € W2 (R™) and every Q € Ay,

loc
Foluo, Q,-) is L*(Q)-lower semicontinuous.

Proposition 10.6.1. Let f be a Borel function as in (10.1.1), let ug €
WENR™), and let Fy(ug, -, -) be given by (10.6.2). Then

loc
FO(UOa Ql? u) < TO(UOa Qa U) + / f(vuo)d‘r
Q\Q

whenever Q, Q' € Ag satisfy Q C V', u € L*(Q) with u = ug a.e. in Q' \Q.

Proof. Let 2, ', u be as above. Clearly we can assume that Fp(ug, Q, u) -+
fQ,\Q f(Vug)dz < +0o. Then there exists {us} C ug + Wy ™ (Q) such that

up, — u in LY(2), and

(10.6.4) Fo(ug, Q,u —hmlnf/ f(Vup)d
h—+o00
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It is obvious that, for every h € N, u;, can be thought as an element
of ug + Wy (') once we extend it by ug out of . Therefore, uj, — u in
LY(€Y), and by (10.6.4) it follows that

Faluo, @) < limint [ f(Vun)de = Foluo, Q) + [ f(Vuo)da,
h—+oo Q Q\Q

which proves the proposition. m

In order to represent the functional Fy(ug, 2, ) for bounded open sets
Q and boundary values ug, suitable compatibility conditions on Q and u
are needed, depending on whether int(domf) is empty or not. This leads

to the introduction, for every € Ay, of the following classes of admissible
boundary data

(10.6.5) To(f,Q) = {w € WL®(R") : Vw(z) € domf for a.e. x € Q} ,
and, if int(domf) # 0, by
(10.6.6) Ti(f,Q) = {w € W °(R") : there exists a compact set

ocC

K, C int(domf) such that Vw(z) € K,, for a.e. x € Q}.

We observe explicitly that

(10.6.7) / F(Vug)dz < +o0
Q

whenever ) € Ay, ug € T1(f, ), and provided (10.1.12) holds.

§10.7 Relaxation of Dirichlet Problems
We start by treating the case in which
(10.7.1) int(domf) # 0.

Lemma 10.7.1. Let f be a Borel function as in (10.1.1) satisfying (10.1.11)
+(10.1.13), (10.7.1), let Fy be given by (10.6.2), and F(*) by (10.4.1). Then

F0(“05 Qa U) < F(OO)(Q7U)

for every 2 € Ap, uo € Wik (RY), and u € up + Wg (%)

such that Vu(x) belongs to a compact subset of int(domf) for a.e. x € €.
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Proof. Let €2, u be as above, let K C int(domf) be compact and such that
Vu(z) € K for a.e. x € Q, and assume that F(°)(Q,u) < oo.

Let ¢ > 0, and let {u,} € W,o>°(R") be such that uj — u in weak*-
Whee(Q), and

(10.7.2) FO(Qu) +¢> lim f(Vuh)

~>+oo
Moreover, since F(‘X’)(Q,u) < 400, let L. be a bounded subset of
domf such that Vuy(z) € Le Ndomf for a.e. x € Q and definitively in h,
and let zz_ be given by (10.1.13). Clearly by (10.7.1) we have that
(10.7.3) zr. € int(domf).

Let now A, B, B’ € Ay with A CcC B, B cC B, B’ cC Q, let
¢ € C}(B) satisfying

2
10.7.4 <p<linR" =1indA ~(Rr) < ——————
(1074) 0<p<lnR" o=l A [IVellio) < Grepm

€10, 1[, and v; € C*(R™) such that

(10.7.5) t<v%<1inR" v=tin B, v=1in R"\ B,
2(1 —t)
\V/ o (Rr) < .
Vel < G555

For every h € N, set w}, = v¢(¢un + (1 — ¢)u) + (1 — y)u.,_. Then
wh € ug + Wy ™(Q), and wl — vu + (1 — Ye)tz, in weak*-W1oo(Q).
By (10.7.4) and (10.7.5) we have

(10.7.6) Fo(uo, @, veu+ (1 — y)uz,, ) < hmmf/ f(Vw})dz <

h—+o0o

< lim sup/ fVup + (1 —t)zr.)dz + limsup f(Vwh)dz+
h—+o00 JQ h—+oo JB\A

+ lim sup/ f(Vwt)dx + lim sup f(Vu)dz
h—+o00 JB'\B h—+oco JO\B

Let us observe now that Vw! = tpVuy, +t(1 — )Vu + (1 — t)zr. +

t(up, —u)Vy a.e. in B\ A, therefore, by (10.7.4) and (10.1.11), we get that

to(x)Vup (z) + t(1 — o(x))Vu(z) + (1 —t)zr, € (1 —t)zL, + tdomf for a.e.

x € B\ A, and h large enough. Moreover, since by (10.7.3) and (10.1.11),

(1 =t)zp, + tdomf C int(domf), by the convergence in L>(B\ A) of {up}
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to u we deduce the existence of a compact subset K; of int(domf), and of
ht,a,B € N such that

wal(x) € K, for a.e. z € B\ A, and every h > hy 4 p.
Let us also observe that Vw! = vVu + (1 — y)zr. + uVy ae. in
B’ \ B, therefore, since Vu(z) belongs to a compact subset of int(dom f)

for a.e. x € B'\ B, by (10.7.5) and (10.7.3) we deduce the existence of a
compact subset H of int(domf) and of tp g € ]0,1] such that

Vw} (z) € H for a.e. ¥ € B'\ B and every h € N, provided t € |t p/, 1[.
Because of this and (10.1.12) we obtain that
(10.7.7) there exists M; > 0 such that

f(Vw} (z)) < M, for a.e. z € B\ A, and every h > h; 4 5,

and
(10.7.8) there exists M > 0 such that f(Vw} (z)) < M

for a.e. x € B\ B, and every h € N provided ¢ € |tg g/, 1].
In addition, by (10.1.13), there exists t. € [0, 1[ such that

(10.7.9) / F(tVun + (1 = 1)z )de < / F(Vun)dz + eL7(Q)
Q Q
for every t € Jt., 1[, h large enough.

Therefore, by (10.7.6)+(10.7.9), and (10.7.2), we conclude that
(10.7.10) Fo(uo, Qv+ (1 — y)uz,, ) <
< F(Q, u) e L™ () +e+M, L (B\A)+ ML (Q\B)+sup f(z)L"(Q\B).

zeK

By (10.7.10) and (10.6.3), since viu + (1 — y¢)us,. — u in L'(Q) as
t — 17, we deduce the lemma letting first A increase to B, then ¢ increase
to 1, B increase to €1, and finally € decrease to 0. m
Theorem 10.7.2. Let f be a Borel function as in (10.1.1) satisfying

(10.1.11)+(10.1.13), (10.7.1), let Fy be given by (10.6.2), and Ty(f,-) by
(10.6.6). Then

Fo(uo,Q,u):/Qf**(Vu)dx

for every Q € Ag, ug € Ty(f,Q), u € ug + Wy (Q).
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Proof. Let Q, ug, u be as above. Let us first prove that
(10.7.11) Fo(ug, Q,u) < / [ (Vu)dz.
Q

To do this, we can assume that [, f**(Vu)dz < +oo, and that 0 €
int(domf), so that Vu(x) € domf** for a.e. z € Q. Let K C int(domf)
be compact and such that Vug(z) € K for a.e. z € Q, and take t € [0, 1].
Then tu + (1 — t)ug € up + Wy (), and tVu(z) + (1 — t)Vue(z) €
tdom f** + (1 — t)K for a.e. x € Q.

We now recall that if A, B € R", and if B is relatively compact,
then A+ B = A + B. This, together with (1.3.6) of Proposition 1.3.2, and
(10.1.11), implies that

tdomf™ + (1 — K = tdom ™ + (1 — )K = tdomf + (1 — ) K,

therefore, since by Proposition 1.1.5 tdomf + (1 —¢)z C ri(domf) for every
z € K, we conclude that

tdomf** 4+ (1 — ¢t) K C ri(domf).
In conclusion, we have that tVu(z)+(1—t)Vug(z) belongs to a compact

subset of ri(domf) for a.e. x € §, from which, together with (10.1.12), we
deduce that

FOENQ, tu+ (1 — t)ug) < / FtVu+ (1 —t)Vug)dr < +oo.
Q

Because of this, Lemma 10.7.1, Theorem 10.4.1, Proposition 10.4.3,
Proposition 1.3.2, (1.4.2) and (1.4.3) of Proposition 1.4.1, and the convexity
of f**, we thus obtain that

Fo(uo, Q,tu+ (1 — t)ug) < FO(Q, tu+ (1 — t)ug) =
_ /(co(sc—f))(tw+ (1 — ) Vo )da — / PV + (1 — ) Vug)ds <
Q Q

< t/ f(Vu)dz + (1 — t)/ 7 (Vug)dzx for every t € [0,1],
Q Q

from which, together with (10.6.3), and (10.6.7), we deduce (10.7.11) taking
the limit as ¢ increases to 1.

In conclusion, by (10.7.11) and Theorem 7.4.6 applied to f**, the proof
follows. m

In order to extend Theorem 10.7.2 to wider classes of functions, we
need the following approximation lemma.

©2002 CRC Press LLC



Lemma 10.7.3. Let ¢:R"™ — [0, 00] be convex and lower semicontinuous
with int(dome) # 0, let Q € Ay, T1(¢, Q) be given by (10.6.6), and ug €
T1(¢,Q). Then for every w € BV () with spt(u — ug) C Q there exists
{un} Cup + Wol’oo(Q) such that up, — u in L(Q2), and

limsup/ ¢(Vuh)dx§/¢(Vu)dm+/ ¢>°(Vu)d|Dul.
Q Q Q

h—+oco

Proof. Let us preliminarily observe that, as usual, we can assume that
(10.7.12) 0 € int(dome).

Moreover, since ug € T1(¢,€2), let K C int(dom¢) be compact, and such
that Vug(x) € K for a.e. z € Q.

Let u € BV (Q) with spt(u —uo) C Q, Q' € Ay with ' cC Q, and
spt(u —ug) C Q. Let £ € ]0,dist(,9Q)[, and u. be the regularization of
u given by (4.1.2). Then Lemma 7.4.4 yields

(10.7.13) 6(Vuo)ds < / 6(Vu)dz + / 6% (Vou)d| D*ul.
Q/ Q Q

Let now A, B € Ag with spt(u—wug) C A, ACC B, Bcc ', tel0,1],
and ¢ € C}(B) with

2
0<p<1inR" po=1in A, |||V oRmr) < —————.
Spslin ' m ||| <P|||L (R™) dist(0B, A)

Let us set w! = t2(2 — t)[pue + (1 — @)ug] + (1 — t)(1 +t — t?)ug. Then

wt € ug + Wy™(Q), and spt(w? — ug) C .
By the convexity of ¢ we have

(10.7.14) d(Vw!)dz =
Q/

= / H(t3(2 — t)Vue 4+ (1 — t)(1 4+t — t*)Vug)dz+
A
+/ P2 —t)pVue + (2 — ) (1 — ) Vug + (2 — t)(ue — ug) Vo] +
B\A
+(]. — t)(l +t— tZ)VUO)dLC + \/Q/\B (ZS(V’U,())d{,C <

§t2(2—t)/A¢(Vus)da:+(1—t)(1+t7t2)/A¢(Vuo)dx+

+t d(t(2 —t)pVue +t(2 —t)(1 — ¢)Vug + (2 — t)(ue — uo)Vo)dz+
B\A
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+(1—-1) ¢«1+t—tﬂvmﬁm~+/ d(Vug)dx <
B\A Q\B

g/Agb(Vus)der(1—t)(1+t—t2)/A¢>(Vu0)d£c+

+t3(2 — t) d(oVue + (1 — ¢)Vug)dz+
B\A
2 — 1)

+(1—1) ¢((1+t—t2)Vu0)dx+/ d(Vug)dx <
B\A QN\B

< / H(Vue)dr + (1 —t)(1 +t —t?) / d(Vug)dz + d(Vue)dz+
A A B\A

+ d(Vug)dz + [1 — (2 — t)] /

é (ng - uow) dz+
B\A B\A

1—t(2—1t)

+(1—1t) O((1+t — £2)Vug)da +/ B(Vug)da.
B\A Q'\B

We now observe that u, — ug in L (B\ A) from which, together with
(10.7.12), and the local boundedness of ¢ in int(dome), we get that

(10.7.15) limsup /B\A ) (m(uE - uo)Vgo) dx = ¢(0)L"(B\ A)

e—0+t
for every ¢ € [0, 1].

Therefore, by (10.7.14), (10.7.13), and (10.7.15), we conclude that

(10.7.16) limsup [ ¢(Vw!)dx =

e—0t JQ

= lim sup/ d(Vwt)dz + d(Vug)dr <
e—0+ Jor o\Q/

S/Q¢>(Vu)dx+/ﬂ¢oo(vsu)d|Dsu\+(1—t)(1+t—t2)/A¢(Vuo)dx+

+ d(Vug)dx + [1 —t(2 —)]6(0) L™ (B\ A)+
a\A

+(1—1) d((1+t — t*)Vug)dz for every t € [0, 1].
B\A
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At this point we observe that, for ¢ is sufficiently close to 1, (1+t—t?)K
too is a compact subset of int(dome), therefore, by (10.7.16), and again the
local boundedness of ¢ in int(dom¢), we deduce that

(10.7.17) limsuplimsup/ d(Vwl)dz <
Q

t—1— e—0t

§/Q¢(Vu)dx+/9¢ (V3u)d|D u|+/Q\A¢(Vuo)dx.

In conclusion, once we observe that, for fixed ¢ € [0, 1[, we have that
wl — 22—t)[pu+ (1—p)ug)+ (1 —t)(1+t —t>)ug = t2(2—t)u+ (1 —t)(1+
t—t?)ug in L' (Q) as e — 0%, and that t2(2—t)u+ (1 —t)(1+t —t>)ug — u
in LY(Q) as t — 17, by (10.7.17) the proof follows letting also A increase
to Q2. m

We are now in a position to prove the representation results for Fy
under assumption (10.7.1). Let us start with a case concerning continuous
Sobolev functions.

Theorem 10.7.4. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13), (10.7.1), let Fy be given by (10.6.2), and Ti(f,-) by
(10.6.6),. Then

Folug, Q,u) = / 7 (Vu)dx
Q
for every Q € Ao, up € T1(f,9Q), u € (ug + Wy ' (Q2)) N C° ().
Proof. Let Q, ug, u be as above. Let us first prove that

(10.7.18) Fo(ug, Q,u) < / f**(Vu)dz.
Q

To do this, let us assume that fQ f**(Vu)dx < 400, and observe that,
by (10.6.7), we have that [, f**(Vuo)dz < [, f(Vuo)dz < +oc.
Let o > 0, ¥, € W1°(R) be given by

Yot € R — max{min{t + 0,0},t — o},
and set v, = ug + V,(u — up). Then, being u continuous in R™, it turns
out that v, € W(), and spt(v, — ug) C Q.

By Lemma 10.7.3 applied with ¢ = f** let {un} C ug+ Wy > (€2) with
up — v, in L1(Q), and

(10.7.19) limsup/f**(Vuh)sz/f**(VvU)dz.
h—+oc0 JQ Q
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Then, by (10.6.3), Theorem 10.7.2, (10.7.19), and the convexity of f** we
obtain that

(10.7.20) Fo(ug, Qvs) < lgm inf Fo(uo, Q,up) =

— 400

zliminf/ f**(Vuh)dxg/f**(va)dxg
Q Q

h—-+o0o

< / 9 (u — p) f** (V) + / (1= 9 (1 — o)) f** (Vuo)d =

£ (Vu)de + / £ (Vug)dz.

/{men:|u<w>—uo<w>|>o} {weQ:|u(z) ~uo(z)| <o}

We now observe that v, — u in L'(£2), and that, being [, f/**(Vu)da
and [, f**(Vug)dx finite, it results that

(10.7.21) lim f(Vu)dr =

o—=0% JizeQ:u(z)—uo(z)| >0}

/ £ (V) da,
{2€9: u(2)—uo(x)| >0}

lim f**(Vu)dx:/ [ (Vug)de.
0=0" J e u(z) ~uo(2) | <o} {z€Q:u(z)=uo(2)}

Hence, once we recall that Vug = Vu a.e. in {x € Q: u(x) = up(z)},
by (10.6.3), (10.7.20), and (10.7.21) we deduce as ¢ — 0T that

FO(u()a Qa U) < lim H}rfFO(’Lmv Qv U(T) <
0

g—

IN

7 (Vu)dx +/ 1 (Vug)dz

/{xEQ:u(:c)—uo(w)|>0} {zeQ:u(z)=uo(x)}

= 7 (Vu)dx +/ 7 (Vu)dx =

/{zEQ:|u(m)ug(z)>O} {zeQ:u(z)=uo(x)}

- [ e

that is (10.7.18).

Finally, by (10.7.18), and Theorem 7.4.6 applied to f**, the proof
follows. m

In order to prove the representation result for Fy on BV spaces, we
need the following lemma.
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Lemma 10.7.5. Let f be a Borel function as in (10.1.1), ug € W,->°(R™),

loc
o € R™ such that T[xzolug — up(xo) is positively 1-homogeneous, and let

Fy be given by (10.6.2). Then

Fo(ug, Q,u) < limiilf?o(uo, zo+t(Q—x0),u) for every Q € Ag,u € L*(Q).
t—

Proof. Let Q, u be as above, let us take ¢ > 1, and assume that Fy(ug, -+
(2 — o), u) < oo, so that there exists {up} C ug + Wy ™ (xo + H(Q — x0)),
with up, — uin L' (x¢ + t(Q — z0)), and

(10.7.22) Fo(uo, 2o + t(Q — z0),u) > lim inf/ f(Vup)dy.
wo+t(ﬂ :Eo)

h—+oco

For every h € N we set vy, = ug(zo) + T[—20]O:T [x0](ur — uo(zo))-
Then vy, € ug(xo) + T[—20]O+T[x0](uo — uo(xo)) + WO’OO(Q), and hence,
by the 1-homogeneity of T[zo]ug — ug(zo), vn € ug + Wy (). Moreover
vp — ug(x0) + T[—20]O0T[xo](u — ug(x9)) in L1(Q), and

1
/ f(Vop)dr = — f(Vup)dy.
Q " Jao+t(Q—a0)
This, together with (10.7.22), yields

(10.7.23) Fo(ug, wo + t(Q — z0),u) > " hmmf/ f(Vuop)dx >

h—+oo

Z tnF()('LLQ, Q, Uuo (1’0) + T[*i‘o}OtT[l’o](u - Uo(l’o)))
In conclusion by (10.7.23), the fact that uo(zo) + T[—20]O:T[x0](u —
ug(zg)) — v in L1(Q) as t — 17, and (10.6.3), we obtain the lemma. m
(20)) : ;

Theorem 10.7.6. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)=(10.1.13), (10.7.1), let Fy be given by (10.6.2), and Ti(f,-) by
(10.6.6). Then

Fy(ug, Q,u) =

= [ rrwuda [ (= dD [ (- wng)ane
Q Q o0
for every Q2 € Ay convex, ug € T1(f, Q) for which there exists xg € {2
such that T|xolug — uo(xo) is positively 1-homogeneous, and u € BV ().

Proof. Let Q, ug, u be as above.

Being ug € T1(f,Q), let K C int(domf) be compact and such that
Vug(xz) € K for a.e. x € Q. Let us observe that, by the 1-homogeneity of
Txolug — up(zo), Vug(z) € K for a.e. z € R".

©2002 CRC Press LLC



We can clearly assume that 0 € int(domf), and 2o = 0. Consequently
ug — uo(0) turns out to be positively 1-homogeneous.
Let us first prove that

(10.7.24) Fy(ug, Q,u) <

< /Q 5 (Vu)da + /Q (/)% (Vou)d| Dul + / (F)% (o — w)ng)dH"".

20

To do this we first define % as the extension of uw to the whole R"
obtained by defining @& = ug in R™\ 2, and take ¢ > 1. Then the convexity
of Q yields that  CC tQ and that spt(@ — up) C tQ. Moreover, being 2
convex, and hence with Lipschitz boundary, we also have that & € BV (¢2).

Let {up} C up 4+ Wy () be given by Lemma 10.7.3 applied with
¢ = f**. Then uy, — 4 in L' (¢Q) and by (10.6.3) and Theorem 10.7.2, we
obtain that

(10.7.25) Fo(uo,tQ,a) < lgminffo(uo,tfl, up) =

= liminf/m £ (Vup)da < /m f**(V&)dm—i—/tQ(f**)OO(VSa)d|DSa| <

h—-+o0o

< /Qf**(Vu)dx—i-/tQ\Q f(Vug)dz+

At this point, once we recall that Di = (ug — u)ngH" ! on 99, by
(10.7.25), (10.6.7), and the 1-homogeneity of (f**)°°, we infer that

(10.7.26) lim sup Fo(uo, tQ,0) <

t—1+

< /Q F(Vu)de + /Q (/) (Vou)d| D*u] + /a (0= W)

Therefore, by Lemma 10.7.5 and (10.7.26), since Fy(ug, Q,1) = Fy(ug, 2, u),
inequality (10.7.24) follows.

We now prove the reverse inequality in (10.7.24).

Let ¢t > 1. Then by Proposition 10.6.1, (10.6.7), and Theorem 7.4.6 we
infer that

(10.7.27) o (ug, Q,u) > Fo(uo, tQ, 1) f/ f(Vug)dx >
tQ\Q

> [ g aes [ g aanta - [ p(vugds -

tO\Q
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= [ @udes [ Gude+ [ (= (Tl
Q HO\Q Q

+/69(f**)00((u0 —u)ng)dH" ! — /m\ﬂ F(Vug)de,

therefore as t — 17, since Vug(z) € K for a.e. x € R™\ Q, we deduce from
(10.6.7) and (10.7.27) that

(10.7.28) Fo(uo, Q,u) >

zlﬁ“WMM+LUWWWMMDM+A(ﬁW%m)Mmmm“.

Q
By (10.7.24) and (10.7.28) the proof follows. m

By Theorem 10.7.6 we deduce the following corollaries.

Corollary 10.7.7. Let f as in (10.1.1) be convex, lower semicontinuous,
and satisfying (10.7.1), let Fy be given by (10.6.2), and Ty(f,-) by (10.6.6).
Then

Fy(ug,Q,u) =

— [ svwdo+ [ a5 - una)dne
Q Q Gl9)

for every Q2 € Ay convex, ug € T1(f, Q) for which there exists xg € {2
such that T[xolug — uo(xo) is positively 1-homogeneous, and u € BV ().

Proof. As in the proof of Corollary 10.5.4, the assumptions on f imply
that (10.1.11)+(10.1.13), and (10.7.1) are fulfilled.
Therefore the proof follows from Theorem 10.7.6. m

Corollary 10.7.8. Let g:R" — [0, +oo[ be continuous, and C' C R"™ be
convex and with int(C) # 0. Let Fy be given by (10.6.2) with f = g + I,
and Ty (I¢,-) by (10.6.6). Then

Eo(ug, Q,u) = /Q(ngIC)**(Vu)dx+/{Z((Q+Ic)**)°°(vsu)d|DSu|+

+ [ (o 1)) (o~ wna)ar
o0

for every Q2 € Ay convex , ug € Th(Ic, Q) for which there exists xg € §)
such that T'|xolug — uo(xo) is positively 1-homogeneous, and u € BV ().

Proof. Follows from Theorem 10.7.6 applied with f = g + Io, once we
observe that g + I satisfies conditions (10.1.11)=+(10.1.13), the last two
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being fulfilled by exploiting the uniform continuity of g on the bounded
subsets of R™. m

We now treat the case when
(10.7.29) int(domf) = 0,
in which the situation is much simpler than the one described under as-
sumption (10.7.1).

Lemma 10.7.9. Let f be a Borel function as in (10.1.1) satisfying (10.7.29),
let Q € Ag, To(f,Q) be given by (10.6.5), ug € To(f,§2), and u € ug +
W&’OO(Q with fQ f(Vu)dz < co. Then u = uyg.

Proof. By (10.7.29), let us first prove the lemma by assuming that
(10.7.30) aff(domf) = R* x {0,,_4} for some k € {1,...,n — 1},

or aff(domf) = {0}.
If [, f(Vu)dz < oo, then

Vu(z) € domf for a.e. x € Q,

therefore, since ug € To(f,2), by (10.7.30) we infer that u—wug € Wol’oo(Q ,
and that Vi1 (u—ug) =0,...,V,(u—ug) = 0a.e. in Q, or that V(u—ug) =
0 a.e. in 2. Because of this, we get that u = ug.

In order to treat the case when (10.7.30) is dropped, let us denote by
k € {0,1,...,n — 1} the dimension of aff(domf), and let A:y € R —
My +b € R™ be an affine transformation such that detMy = 1, and
A(aff(domf)) = R¥ x {0,,_x} if k > 0, or A(aff(domf)) = {0} if k& = 0.

Let us set fa:z € R™ — f(A71(2)), uf:y € R™ — ug(A(y)) +b-y, and
u?:y € R™ — u(A(y))+b-y. Then f4 is a Borel function satisfying (10.7.30)
with fa in place of f, ug € To(fa, A"1(Q)), u? € uf + Wy ™ (A~1(Q)),
and fA—l(Q) fa(Vut)dy = [, f(Vu)dz < +oco. Therefore, by the particular

case above considered, we conclude that u4 = ué‘, that is u = ug. ®

By Lemma 10.7.9 we deduce the following representation result.

Theorem 10.7.10. Let f be a Borel function as in (10.1.1) satisfying
(10.7.29), Fy be given by (10.6.2), and Ty(f,-) by (10.6.5). Then

?(u Q, u fQ Vuo dr if u=wug a.e. in
> otherwise

for every Q € Ay, uo € To(f,Q), v € L*(Q).
Proof. Trivial by Lemma 10.7.9. m

©2002 CRC Press LLC



§10.8 Applications to Minimum Problems

In this section we apply the relaxation results of the present chapter to the
study of some classes of minimum problems.

If fis asin (10.1.1), and p € [1,+o0], we assume that f satisfies the
following coerciveness conditions

(10.8.1)

|z|P < f(z) for every z € R™ if p € [1,+0o0]
domf is bounded if p=4o0.

We observe that, by using (1.3.3), conditions in (10.8.1) imply that

(10.8.2) {Z|p§f**(z) for every z € R™ if p € [1, +o0]

dom f** is bounded if p = 4o00.

We start with the case of Neumann minimum problems.

Theorem 10.8.1. Letp € [1,400], and f be a Borel function as in (10.1.1)
satisfying (10.1.11)+(10.1.13), and (10.8.1). Let Q@ € Ay be convex, A €
10, +o0], and r € |1, p*[. Then (10.8.2) holds. Moreover,

i) if p e ]1,+oc], and 3 € LY (), then

(10.8.3) inf{/ﬂf(Vu)dx—&—)\/Q |u|rda§+/ﬂﬁudx tu € WLOO(Q)} =

= min { /Q [ (Vu)dz + )\/Q |ul"dz + /Q Budz : u € Wl’p(Q)},

the minimizing sequences of the functional in the left-hand side of (10.8.3)
are compact in LP(Q2), and their converging subsequences converge to solu-
tions of the right-hand side of (10.8.3),

i) if p=1, and 3 € L" (), then

(10.8.4) inf{/ f(Vu)dx—&-A/ |u|rdac+/ Budx : u € Wl’“(Q)} =
Q Q Q

:min{/Qf**(Vu)dac+/Q(f**)‘”(vsu)dDSuH

Jr)\/ |u|"dx +/ fudz : u € BV(Q)},
Q Q

the minimizing sequences of the functional in the left-hand side of (10.8.4)
are compact in L"(Q), and their converging subsequences converge to solu-
tions of the right-hand side of (10.8.4).

Proof. We first prove i).
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Let F(€,-) be given by (10.1.2), let us set s = max{p,r}, and prove
that

Jo [ (Vu)dz  if u e WHP(Q)

(10.85) sc™(L*(Q)F(Qu) = { ! fue L(Q)\ WP Q)

for every u € L*(2).
By Theorem 10.5.2 and Proposition 10.5.3 it follows that

(10.8.6) sc™(L}(Q))F(Q,u) < {fﬂoi** Vede fue Z;pg \)lep( Q)

for every u € L*(Q).

On the other side, if u € L*(Q) is such that sc™ (L(Q))F (2, u) < +o0,
let {un} C W2°(R™) be such that up — u in L1(Q), and

loc

sc™ (LY (Q)F(9Q, fhmlnf/fVuh

h—+oco

Then, by (10.8.1), Lemma 4.4.2, and the Rellich-Kondrachov Compactness
Theorem we conclude that up — w in L*(Q), from which it follows that

(10.8.7)  sc™ (L*(Q)F(Q,u) > sc™ (L*(Q))F(Q,u) for every u € L(1).

Now, if u € L*() is such that sc™ (L*(Q))F(Q,u) < +oo, let {up} C
W Oo(R”) be such that u; — w in L¥(£2), and

loc

(10.8.8) sc™ (L°(Q))F(Q, fhm+1nf/ f(Vup)d

Then, again by (10.8.1), and Lemma 4.4.2, we conclude that up, — u in
weak-WhP(Q) (weak*-W12°(Q) if p = +00), from which it follows that
u € WHP(Q). Consequently, by (10.8.8), (1.3.2), and Theorem 7.4.6 applied
to f**, we conclude that

sc” (LF(Q)F(Q,u) = hm inf f(Vuh)dx >

~>+oo
Zliminf/f**(Vuh)de/f**(Vu)da:
h—+o0o Jq QO

from which, together with (10.8.6) and (10.8.7), (10.8.5) follows.

By (10.8.5) and Proposition 3.5.2, once we observe that the functional
ue L*(Q) — X[ |ul"dz + [, fudx is L*(Q)-continuous, we immediately
obtain that

(10.8.9) sc—(LS(Q)){F(Q,U)H/Q|u|7dx+/ﬂgudx} _
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S o (Vu)dr 4 A f, [ul e + [, Bude it u e WhP(Q)
oo ifue L5(Q)\ WhP(Q)

for every u € L*(Q).

In conclusion, let us prove that the functional u € L*(Q2) — F(Q,u) +
A fq lul"dz + [, Budz is coercive.

To do this, let us consider only the case in which p € |1, +o00[, the one
in which p = 400 being similar.

In this case, since (10.8.1) implies that

F(Q,u) —‘y—)\/ |u|rdac+/ Budx >
Q Q

>[IVl gy + Mullzr@) = 181l @) lull o) for every w e WHP(Q),

and since every u € L*(Q) satisfying F/(Q,u) < +o0o actually is in W1P(Q),
then {u € L*(Q) : F(Q,u) + A [, [u|]"dz + [, Budz < ¢} C {u e WHP(Q) :
11V ulll75 )+ Mlullyr ) = 181 e () lullwre@) < ¢} for every ¢ € R. Con-
sequently, the desired coerciveness follows from Proposition 4.4.3.

By the coerciveness of u € L*(Q) — F(Q,u) + X [, |u|"dz + [, Budz,
and (10.8.9) the assumptions of Theorem 3.5.6 are fulfilled with U = L*(),
and the proof follows from Theorem 3.5.6, once we observe that obviously
the left-hand side of (10.8.3) is finite, and that, being € convex, every u €
W1o°(Q) can be thought as the restriction to (2 of a function in I/Vﬁ)coo (R™).

Let us now prove ii).

In this case the proof follows the same outlines of the one for i), with
the obvious changes.

Clearly in this case s = r, and an argument similar to the one exploited
above, but with Rellich-Kondrachov Compactness Theorem replaced by
Theorem 4.2.11, yields

sc_(LT(Q)){F(Q,u)—i—)\/Qu|de+/Qﬁudac} _

Jo [ (Vu)dz + [o(f**)°°(VPu)d|D3ul+
— +A [ [u|"dz + [, Budx if u € BV(Q)
oo itue L7(Q)\ BV(Q)
for every uw € L"(2).

Analogously, Proposition 4.4.1 provides the coerciveness of u € L"(£2
— F(Q,u)+ A [, [u|"dz + [, Budz, and the proof completes as in case i). m

By Theorem 10.8.1 we deduce the following corollary.
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Corollary 10.8.2. Let p € [1,+00], g: R™ — [0, +00[ be continuous, C' C
R’ be convex, and assume that

|2|P < g(z) for every z € R" if p € [1,400]
C is bounded ifp = +oo.

Let Q € Ay be convex, A € ]0,+00[, and r € |1, p*[. Then

|2[P < (g + Ic)™*(z) for every z € R" if p € [1,+00]
dom(g + Ic)** is bounded if p = +oo0.

Moreover,
i) ifp € ]1,400], and 5 € LP (), then

(10.8.10) inf{/ g(Vu)dm—ﬁ—A/ |u|rd:c+/ Sudz
Q Q Q
u € Wh(Q), Vu(z) € C for a.e. x € Q} =

:min{/Q(g—l—lc)**(Vu)dai-i-/\/Q|u|rdsc+/QBudx:u € Wl”’(Q)}7

the minimizing sequences of the functional in the left-hand side of (10.8.10)
are compact in LP(Q), and their converging subsequences converge to solu-
tions of the right-hand side of (10.8.10),

i) ifp=1, and 3 € L" (Q), then

(10.8.11) inf{/ g(Vu)dx+)\/ |u|rd:c+/ Sudz
Q Q Q
u € WH(Q), Vu(z) € C for ae. x € Q} =
—min{ [ (g+ 10y (Ve + [ (g + 16 * (Vw0
Q Q

+)\/ |ul"dx + [ Budz:ue BV(Q)},
Q Q

the minimizing sequences of the functional in the left-hand side of (10.8.11)
are compact in L"(Q), and their converging subsequences converge to solu-
tions of the right-hand side of (10.8.11).

Proof. Follows from Theorem 10.8.1 applied with f = g + Io, once we
observe that g + I satisfies conditions (10.1.11)+(10.1.13), the last two
being fulfilled by exploiting the uniform continuity of g on the bounded
subsets of R™. m

We now come to Dirichlet minimum problems.
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Theorem 10.8.3. Letp € [1,+00], and f be a Borel function as in (10.1.1)
satisfying (10.1.11)+(10.1.13), (10.7.1), and (10.8.1). Let Q € Ao, T1(f,Q)
be given by (10.6.6), and ug € T1(f, ). Then (10.8.2) holds. Moreover,

i) if p € |n, +o0], and 8 € L(Q), then

(10.8.12) inf { f(Vuw)dx + [ Budr :u € up + Woloo(Q)} =
Q Q

:min{/ f**(Vu)dx—i—/6udm:u€u0+W01’p(Q)},
Q Q

the minimizing sequences of the functional in the left-hand side of (10.8.12)
are compact in L*(Q)), and their converging subsequences converge to so-
lutions of the right-hand side of (10.8.12),

ii) if p € |1,n], Q is also convex, 3 € L* (Q), and there exists 2o €  such
that T[xolug — ug is positively 1-homogeneous, then (10.8.12) holds, the
minimizing sequences of the functional in the left-hand side of (10.8.12) are
compact in LP(Q), and their converging subsequences converge to solutions
of the right-hand side of (10.8.12),

iii) if p = 1, Q is also convex, \ € |0, +oo, r € |1,1*[, 8 € L" (), and there
exists xo € §) such that T[zglug — ug is positively 1-homogeneous, then

(10.8.13) inf{ f(Vu)dz + )\/ |u|"dx + | Pudz :
Q Q Q

uéuo—l—Wol’oo(Q)} :min{/ f**(Vu)dm—f—/(f**)oo(vsu)d|Dsu|+
Q Q

+/m(f**)°°((uo —u)ng)dH" ! + A/Q ul|"dx +/Qﬂudx RS BV(Q)},

the minimizing sequences of the functional in the left-hand side of (10.8.13)
are compact in L™(Q), and their converging subsequences converge to solu-
tions of the right-hand side of (10.8.13).

Proof. We first prove i).

Let Fp(£2,ug,-) be given by (10.6.1). Then, an argument similar to
the one exploited to get (10.8.5) in the proof of Theorem 10.8.1, but with
Theorem 10.5.2 replaced by Theorem 10.7.4, yields

(10.8.14) sc™ (L>(Q)) {F() Q,ug,u //Budw}
_ { Jo [ (Vu)d + [ Budr  if u € up + Wol’p(Q)

Foo if u€ L>®(Q)\ (ug + WHP(Q))
for every u € L™ (Q).
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Moreover, (10.8.1), Sobolev Imbedding Theorem, and Proposition 4.4.4
prove that the functional u € L>(2) — Fy(S2, ug, u) + [, fudz is coercive.

Because of this and (10.8.14), the assumptions of Theorem 3.5.6 are
fulfilled with U = L*°(Q2), and the proof follows from Theorem 3.5.6, once
we observe that obviously the left-hand side of (10.8.12) is finite.

The proof of case ii) follows the same outlines of the one of i), with the
obvious changes. In particular, by considering relaxation processes in LP
spaces in place of L* ones, and by replacing Theorem 10.7.4 with Theorem
10.7.6.

Finally, the proof of case iii) follows the same outlines of the one of i)
with the obvious changes, by considering relaxation processes in L" spaces
in place of L*° ones, and by replacing Theorem 10.7.4 with Theorem 10.7.6.
By using Theorem 10.7.6, one first proves that

SC_(LT(Q)){FO(Q7uo,u)+/\ [uras [ Budx} _

Jo £ (Vu)dz + [o () (VPu)d| Doul+
—|—f89(f**)°°((uo —u)ng)dH" 1 + /\fQ |u|"dx + fQ Budx
if u € BV(Q)
+o0 ifueL"(Q)\ BV(Q),
and then, by exploiting Proposition 4.4.1, that the functional u € L"(Q) —
Fo(Q,up,u) + A [, [u]"dx + [, Budz is coercive.
Because of this, the proof follows from an application of Theorem 3.5.6
with U = L"(Q), once we observe that obviously the left-hand side of
(10.8.13) is finite. m

By Theorem 10.8.3 we deduce the following corollary.

Corollary 10.8.4. Let g:R™ — [0,4o00] be continuous, and C C R" be
convex with int(C') # ), and assume that

|2|P < g(2) for every z € R™ if p € [1,400]
C is bounded if p = +o0.

Let Q € Ao, Ti (g + Ic, Q) be given by (10.6.6), and uy € T1(g + Ic, Q).
Then

[2|P < (g4 Ic)*™(2) for every z € R™ if p € [1,+00]
dom(g + I¢)** is bounded if p = +o0.

Moreover,
i) if p € |n, +oc], and B € L'(2), then

(10.8.15) inf{/ﬂg(VU)dm—l-/Qﬁudx:
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u € ug + Wy (Q), Vu(x) € C for a.e. © € Q} =

:min{/(g+IC)**(Vu)dx+/ﬁudx:uEuo—i—Wé’p(Q)},
Q Q

the minimizing sequences of the functional in the left-hand side of (10.8.15)
are compact in L*(Q)), and their converging subsequences converge to so-
lutions of the right-hand side of (10.8.15),

ii) if p € |1,n), Q is also convex, 3 € L*' (Q), and there exists z¢ € Q such
that T[xolug — ug is positively 1-homogeneous, then (10.8.15) holds, the
minimizing sequences of the functional in the left-hand side of (10.8.15) are
compact in LP(Q), and their converging subsequences converge to solutions
of the right-hand side of (10.8.15),

iii) if p =1, A € ]0, +oo|, € |1, 1*[, Q is also convex, § € L" (2), and there
exists xg € §) such that T[zglug — ug is positively 1-homogeneous, then

(10.8.16) inf{/ g(Vu)dx—&—A/ |u|rdx+/ Sudz :
Q Q Q
u € ug + Wy (Q), Vu(z) € C for ae. x Q} =

= min { / (9+ Ic)™(Vu)dx + / ((g + Ic)™)>°(VPu)d| D ul+
Q Q

*3%) 00 _ n—1 T .
+/an((g+IC) )7 ((wo — u)ng)dH +)\/Q|u| dx—{—/gﬂudz.

ueBV(Q)},

the minimizing sequences of the functional in the left-hand side of (10.8.16)
are compact in L" (), and their converging subsequences converge to solu-
tions of the right-hand side of (10.8.16).

Proof. Follows from Theorem 10.8.3 applied with f =g+ Ic. m

Theorem 10.8.5. Let f: R™ — [0, 00] be a Borel function with int(dom f)
=0, Q € Ay, To(f,Q) be given by (10.6.5), ug € To(f,Q), and 3 € L' (Q).
Then ug is the only function in ug + WO1 °(Q) that makes the functional
u € ug+ Wy (Q) — Jo f(Vu)dz + [, Budx finite, and

inf{/Qf(Vu)dx—l—/Qﬁudx:ueuo—|—W01’°°(Q)}:

:/Qf(Vuo)dx—&—/Qﬁuodx.
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Proof. Follows from Lemma 10.7.9. m

Corollary 10.8.6. Let p € [1,+00], g: R™ — [0, +0o0[ be continuous, C' C
R"™ be convex with int(C) = 0, Q € Ay, To(Ic, Q) be given by (10.6.5), ug €
To(Ic,Q), and B € L*(Q). Then uyg is the only function in ug + W(}OO(Q)
that fulfils the constraint Vu(z) € C for a.e. x € Q, and

inf {/ g(Vu)dzx —|—/ Budz : u € ug 4+ Wy (),
Q Q

Vu(z) € C for a.e. x € Q} = / g(Vug)dz +/ Bupdx.
Q Q

Proof. Follows from Lemma 10.7.9. m

§10.9 Additional Remarks on Integral Representation on the
Whole Space of Lipschitz Functions

Let f be a Borel function as in (10.1.1), F be defined by (10.1.2), and F(>)
by (10.4.1).

In the present section we deepen the study of F’ () and, in particular,
of its integral representation properties on the whole W spaces.

First of all, we start to discuss on the lower semicontinuity properties
of F(),

Example 10.9.1. Let f be given by Example 1.4.2. Then f fulfils
(10.1.11)+(10.1.13).

Let us prove that, given a Q € Ay, F(°)(Q,-) is not even strongly
W1°(Q)-lower semicontinuous.

To see this take Z = (0,b), with b > 0, and {23} C ]0, +o0o[? such that
zp, — Z. Then u,, — uz in WH*°(Q), and by (10.4.7) of Theorem 10.4.1
and Proposition 10.4.3, we get that

(10.9.1)  F©(Q,uz) > co(sc™ f)(Z)L™() > lim inf co(se™ f)(zn)£"(92).

On the other side, since we have that
FO(Qu,,) < fz,) L7 () < +oo for every h € N,

by (10.9.1), (10.4.6) of Theorem 10.4.1, and Proposition 10.4.3, we conclude
that
FO(Q, uz) > lém inf F(Q, u., ).

— 400

We now prove that in some cases the inequalities in Theorem 10.4.1
can be strict. Actually, even being the assumptions of Theorem 10.4.1
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fulfilled, one can have +oo = F()(Q,u) > Jo co(sc™ f)(Vu)dx for some
regular 2 € Ay, u € C°(R").

Example 10.9.2. Let n = 2, and let f be defined by

if 21 <
2 ‘|1'00 22 ?ZI_O —22
fi(z1,22) ERP = ¢ - —€2 if0<z <e™™
0 if 2 > e 7.

Then f is continuous, and satisfies (10.1.11)+(10.1.13). Moreover it is clear
that

(10.9.2)  cosc™ f)(z1, 20) = {+oo if 23 <0

2
0 if z1 > 0 for every (Z17 ZQ) € R-.

In addition, let us also observe that

(1093) (f + IQm(O))**(Zl) 22) =
+00 if 1 <0orz >mor |ze| >m
—{ L _em if0<z1§e_m2and—m§zQ§m
zZ1 2
0 fe™™ <z1<mand - m<z<m

for every m € N, (z1,22) € R%.

Let Q =10,1[x] — 1,1], and u: (z1,22) € R? + 2}/2. Then, by Theo-
rem 10.4.1, Remark 10.4.2, and (10.9.3), it follows that F(°)(Q,u) = +o0
whilst, by (10.9.2), it results [, co(sc™ f)(Vu)dz = 0.

We now propose some sufficient conditions ensuring the validity of
(10.4.3) and (10.4.5) of Theorem 10.4.1, without any finiteness restriction.
More precisely that

(10.9.4) F(Q,u) = /Q co(sc™ f)(Vu)dx

for every Q € Ag convex, u € WhH(Q),
or, if int(domf) # ), that

(10.9.5) F(Q,u) = /Q co(sc™ f)(Vu)dx

for every Q € Ay, u € W,o°(R™).

C

Proposition 10.9.3. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13), and let F(*) be given by (10.4.1). Let Q € Ay, Q also
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convex if int(domf) # 0, let u € W,2>°(R™), and assume that one of the
following conditions is fulfilled

(10.9.6) f(Vu)dz < 400,
Q

(10.9.7) there exists K C ri(domf) compact such that

Vu(z) € K for ae. z € K,

(10.9.8) /Qco(scff)(Vu)dx = 4o0.

Then
F)(Qu) = / co(se™ f)(Vu)dz.
Q

Proof. If (10.9.6) holds, by (10.4.1) it results F(>)(Q,u) < 400, and the
proposition follows from Theorem 10.4.1, and Proposition 10.4.3.
If (10.9.7) holds, then (10.1.12) yields (10.9.6), and the proof follows.
If (10.9.8) holds, the proof follows from Theorem 10.4.1, and Proposi-
tion 10.4.3. m

Proposition 10.9.4. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)<(10.1.13), and let F(*) be given by (10.4.1). Assume that dom f
is bounded. Then (10.9.4) holds.

If in addition int(domf) # 0, then (10.9.5) too holds.

Proof. Let us first observe that, if domf is bounded, then f+Ig, (0) = f
for every m € N sufficiently large, and therefore, by Theorem 10.4.1, and
Remark 10.4.2, that F(°°)(Q, u) = fQ f**(Vu)dz for every Q € Ay convex,

u e Wh(Q) or, if int(domf) # 0, for every Q € Ag, u € Wi °(R").

loc

Because of this, and by Corollary 1.4.14 the proof follows. m

Lemma 10.9.5. Let f:R™ — [0, +00] be bounded on the bounded subsets
of domf, and satisfying (10.1.11). Then for every open set A it results that

dom(co(sc™ f)) N A C dom(f + I4)**.

Proof. Let us preliminarily prove that the boundedness of f on the
bounded subsets of dom f implies that

(10.9.9) domf NACdom(f+14)"".
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To do this, we observe that if z € domf N A, and {z,} C domf N A is
such that z, — z, then by the lower semicontinuity of (f + I4)**, (1.3.2),
and the boundedness of f on the bounded subsets of domf, we infer that

(f +14)7 (2) < liminf(f + L4)™ (2n) < lim inf(f + La)(en) =

= liminf f(z5,) < +oo for every z € domf N A,
h—+o0

from which inclusion in (10.9.9) follows.
At this point, by (1.4.1) of Proposition 1.4.1, (1.3.9), the convexity of
domf, and (10.9.9), we conclude that

dom(co(sc™ f))NA Cdomf**NACdomfnACdom(f+I14)",
which proves the lemma. m

Theorem 10.9.6. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11), (10.1.13), and let F(>) be given by (10.4.1). Assume that f
is bounded on the bounded subsets of domf. Then (10.9.4) holds.

If in addition int(domf) # 0, then (10.9.5) too holds.

Proof. Let us prove (10.9.4), the proof of (10.9.5) being similar.

It is clear that, by our assumptions on f, condition (10.1.12) too fol-
lows.

Let Q € Ap be convex, u € W1°°(Q). Then it is clear that, by Theorem
10.4.1 and Proposition 10.4.3, we have to treat only the case in which
F)(Q,u) = +oo. If this is the case, let mg > IVull|L<(q). Then, by
Theorem 10.4.1 and Remark 10.4.2, we get that fQ(f—i—IQmo(o))**(Vu)dx =
400 from which, taking into account the boundedness of f on the bounded
subsets of dom f, we conclude that

(10.9.10) there exists E € £,(Q2) with L"(F) > 0 such that

Vu(z) ¢ dom(f + Iq,, (o))" for a.e. x € E.

By (10.9.10), and Lemma 10.9.5 applied with A = Q. (0), we de-
duce that Vu(z) ¢ dom(co(sc™ f)) for a.e. = € E. This implies that
Joco(se™ f)(Vu)dx = 400, from which (10.9.4) follows. m

By Theorem 10.9.6 we deduce the following corollaries.

Corollary 10.9.7. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11), (10.1.13), and let F(>) be given by (10.4.1). Assume that dom f
is closed, and that f is upper semicontinuous. Then (10.9.4) holds.

If in addition int(domf) # @, then (10.9.5) too holds.

Proof. Follows from Theorem 10.9.6. m
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Corollary 10.9.8. Let ¢: R™ — [0,+o0[ be continuous, C' be a convex
subset of R", and let F(™) be given by (10.4.1) with f = g+ Ic. Then
(10.9.4) holds.

If in addition int(C) # 0, then (10.9.5) too holds.

Proof. Follows from Theorem 10.9.6, once we observe that g + I satisfies
(10.1.11)+(10.1.13). m

Corollary 10.9.9. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13), and let F(*) be given by (10.4.1). Assume that dom f
is an affine set. Then (10.9.4) holds.

If domf = R™, then (10.9.5) holds.

Proof. Follows from (10.1.12) and Theorem 10.9.6. m

The following result shows that Example 10.9.2 needs to be settled at
least in dimension two.

Proposition 10.9.10. Let n = 1, f be a Borel function as in (10.1.1)
satisfying (10.1.11)+(10.1.13), and let F(*) be given by (10.4.1). Then

(10.9.11) F)(Q,u) = /Q co(se™ f)(u')dx

for every Q € Ag, u € WE>(R).

loc

Proof. It is clear that we can assume that int(domf) # 0, so that domf
turns out to be an interval.

If domf is a bounded interval, the proof follows from Proposition
10.9.4.

If domf = R, the proof follows from Corollary 10.9.9, therefore we
have to treat only the case in which domf is an unbounded interval with
one real endpoint, say for example domf = ]a,+oo[, or domf = [a, +0o0[
for some a € R.

Let us prove that

(10.9.12) (f + Ig, )" (2) < co(se™ )(z) + f(z0) + 1

for every zo > a, m > |a| + |20] + 1, z € ]a, 20].

To do this let zg > a, m > |a| + |z0] + 1, z € ]a, zp[. Then by Theorem
1.2.6 there exist z1, 2z € domf with z; < z, t € [0,1] such that z =
tz1 + (1 — t)zq, and
(10.9.13) tf(z1) + (1 =) f(22) <cof(z) + 1.

Since a, zg € Q@ (0), and 21 € [a, 2], it is clear that z; € @Q,,(0), and
we treat separately the cases in which z9 € @,,,(0) and 22 & Q.,,(0).
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If zo € Q. (0), by (1.3.2), Theorem 1.2.6, (10.9.13), and Proposition
1.4.1, we have that

(f +1g,.0)""(2) < co(f + Iq,,0))(2) <

<t f+1g,,0))(21) + (L =O)(f + Ig,,0)(22) =
=tf(z1) + (1 = 1) f(22) < cof(z) + 1 =co(sc™ f)(z) +1,

from which (10.9.12) follows.
If zo0 & Qm(0), let s € [0,1] be such that z = sz; + (1 — s)z9. Let us
consider separately the two cases in which sf(z1)+ (1 —5)f(20) < tf(z1)+

(1 =1)f(22), and sf(z1) + (1 = 8)f(20) > tf(21) + (1 - t)f(z )-
I 57 (21) + (1 — 5)f(z0) < £ (1) + (1~ ) (z2), by (1.3.2), Theorem
1.2.6, (10.9.13), and Proposition 1.4.1 we have that

(f +1g,.0) " (2) <co(f + g, 0)(2) <

< s(f+1g,.0)(21) + (L= 38)(f + 1g,,0)(20) =
= sf(z21)+(1=5)f(20) < tf(21)+(1—t)f(22) < cof(z)+1 = co(sc™ f)(2)+1

from which (10.9.12) follows.
If sf(z1) + (1 — s)f(20) > tf(z1) + (1 — t)f(22), by (1.3.2), Theorem
1.2.6, and (10.9.13) we have that

(10.9.14) (f + Ign@)™(2) < colf + Ta0)(2) <
< s(f +1q,,)(21) + (1 = 8)(f + 1q,.0))(20) = sf(21) + (1 = 5) f(20) =
=tf(z1) + (1 =) f(22) + sf(21) + (1 = 5) f(20) — (tf(21) + (1 =) f(22)) <

<cof(z) + 1+ sf(z1) + (1= 8)f(20) — (tf(21) + (1 = ) f(22))-

We now observe that tf(z1) + (1 —t) f(22) is the value at z of the affine
function « satisfying a(z1) = f(21), and a(z2) = f(z2), whilst sf(z1)+ (1 —
$)f(z0) is the one at z of the affine function § satisfying 6(z1) = f(z1), and
B(z0) = f(20). Therefore, once we observe that (5(z1) = a(z1), and that
a(zy) > 0, we obtain that

(10.9.15) sf(z1) + (1= 8)f(20) = (tf(z1) + (1 = 1) f(22)) =

= 0(2) — a(2) < B(20) — a(20) < f(20)-
By (10.9.14), (10.9.15), and Proposition 1.4.1 we conclude that

(f+1g,,0)"(z) <cof(z) + 1+ f(20) = co(sc™ f)(z) + 1+ f(20),

from which (10.9.12) follows also in this case.
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Let us observe now that, if zo > a, m > |a| + |20| + 1, by the lower
semicontinuity of (f + I, (0))*", (10.9.12), the convexity of co(sc™ f), and
(1.4.1) of Proposition 1.4.1, it results that

(10.9.16)  (f + Ig,, () " (a) < lirglirlf(f +1g,,(0) " (ta+ (1 —t)z) <

< limsup{teo(sc™ £)(@)+ (1=1)F(z0)}+ f(0)+1 < colse™ f)(a) +(z0) +1.

whilst by Proposition 1.4.1, and (1.2.6) it clearly follows that

(10.917)  (f +1g,.(0))"(2) < co(sc™ f)(z) + f(20) + 1 for every z < a.
Hence by (10.9.12), (10.9.16), and (10.9.17) we conclude that

(109.15) (F + I o)™ (2) < cofse™ )(2) + [z0) + 1

for every zo > a, m > |a| + |z0| + 1, 2z €] — 00, 29].

In conclusion, if Q € Ap, u € W °(R) with F)(Q,u) = +oo,
and zg > /|| (), we deduce from Theorem 10.4.1, Remark 10.4.2, and
from the monotonicity properties of { [,(f +1Iq,,(0))** (v )dz}, that [,(f+
Ig,.(0)*(u')dx = 400 for every m € N.

Because of this, and (10.9.18), we thus obtain that [, co(sc™ f)(u')dx =
400, from which, together with Theorem 10.4.1, and Proposition 10.4.3,
(10.9.11) follows. m

For every Q € Ap let F(£,-) be defined by (10.1.2). Then the above
results can be applied to study the relationship between F(°°)(€,-) and the
greatest sequentially weak*-W1:°°(Q)-lower semicontinuous functional less

than or equal to F/(Q,-). For every u € W1>°(Q) we denote by F(N)(Q, u)
the value of such functional in w.
More precisely, under different sets of assumptions, we prove that

(10.9.19) FE Q) = F(Q,u) = / £ (Vu)da
Q
for every Q € Ag convex, u € WhH>(Q),
or

(10.9.20) FOUQu) =F(Qu) = [ f*(Vu)dz
Q

for every Q € Ay, u € VV&)’COO(R”).
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Let us preliminarily observe that, by using also Theorem 7.4.6, it fol-
lows that

(10.9.21) / F(Vu)dz < T2, u0) < FOO(Q, u)
Q

for every Q € Ao, u € WhH*(Q).

Theorem 10.9.11. Let f be a Borel function as in (10.1.1) satisfying
(10.1.11)+(10.1.13). Assume that domf is an affine set. Then (10.9.19)
holds.

If domf = R™, then (10.9.20) too holds.

Proof. Follows by (10.9.21), Corollary 10.9.9, and Proposition 1.4.8. m
Theorem 10.9.12. Let f be a Borel function as in (10.1.1) satisfying

(10.1.11)+(10.1.13). Assume that domf is bounded. Then (10.9.19) holds.
If in addition int(domf) # 0, then (10.9.20) too holds.

Proof. Follows from (10.9.21), Proposition 10.9.4, and Corollary 1.4.14. m
Theorem 10.9.13. Let f be a Borel function as in (10.1.1) satisfying

(10.1.11), (10.1.13). Assume that f is bounded on the bounded subsets of
domf, and that one of the following conditions is fulfilled

lim 1(z)

zZ—00 |Z|

= +o0,

for every zp € rb(co(domf)) there exists a non-trivial supporting
hyperplane to co(domf) containing zy having a bounded intersection
with rb(co(domf)).

Then (10.9.19) holds.
If in addition int(domf) # 0, then (10.9.20) too holds.

Proof. Follows from (10.9.21), Theorem 10.9.6, and Proposition 1.4.8 or
Theorem 1.4.13. m

Theorem 10.9.14. Let n = 1, f be a Borel function as in (10.1.1) satis-
fying (10.1.11)+(10.1.13). Then (10.9.20) holds.

Proof. Follows from (10.9.21), Proposition 10.9.10, and Corollary 1.4.16.
|
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Chapter 11

Cut-off Functions
and Partitions of Unity

In the present chapter, and in the next three, we study the homogenization
process for some classes of unbounded integral functionals of the calculus
of variations.

This chapter has a rather technical nature, and is preparatory to the
next ones, where the full process will be analyzed. Here, we just discuss
the construction of some special cut-off functions and partitions of unity on
which the analysis carried out in the next chapters will depend deeply.

We also want point out here that in homogenization theory both se-
quences of discrete parameters (denoted by ) and continuous ones (denoted
by €) are traditionally used. Generally, the sequences of discrete parameters
are assumed to be diverging in order to give the idea of the thickening of
the materials that mix together. On the other side, continuous parameters
are assumed to be vanishing in order to recall that the size of the zones
occupied by the single materials becomes smaller and smaller.

We will use both the types of parameters. For sake of simplicity, we
use sequences of discrete parameters for technical or intermediate results
and the continuous parameters for the main theorems, to make them inde-
pendent of the choice of sequences.

§11.1 Cut-off Functions
Let f be an integrand of the following type
2) ER" x R" — f(z,2) € [0,+00]

(,
(L,(R™) x B(R™))-measurable
Y.

periodic in the z variable, convex in the z one,

I
f
f

(11.1.1)
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and let us introduce for every ¢ € [1,+0o0], the function fgom defined by

(11.1.2) iz €R™

inf {/ Sy, 2+ Vo)dy : v e Wi(Y)n L“(Y)} .
Y

It is clear that, for every ¢ € [1, +o0], f}?om turns out to be convex.
In order to prove our results, we assume that

(11.1.3) 0 € int(dom f ).
Then there exists ¢ € |0, 1] such that
(11.1.4) Bas(0) C int(dom fL ),

and, for every j € {1,...,n}, there exist w}', w; € Wgé‘}(Y) N L*>®(Y) such
that

(ILL5)  f(-de; + V! () € LX(Y), f(-.de; + Vuw; () € L'(Y).

Lemma 11.1.1. Let f beasin (11.1.1), q € [1,400], and let f}‘fom be given
by (11.1.2). Assume that (11.1.3) holds. Let 6 € 0, 1] satisfy (11.1.4).
Then, for every {ry} C ]0,+o0o[ strictly increasing and diverging, 2 € Ay,
and any compact subset K of ) there exist {1,} C WH4(R™) N L*>°(R"),
¢ € Wha(R™) N L>°(R™), and ¢f € |0, 4+o0[ (cs depending only onn, f, q,
and §) such that

Yp =1 =0a.e in R"\Q for every h € N,

(11.1.6) 0<vyp<1ae. inf for every h € N,
(11.1.7) Y, =1 a.e. in K for every h € N,
(11.1.8) Yy, — 1 in L (Q) as h diverges,

odist(K, 0€)

11.1.9 i
(19 timswp [ f(rhx, By

VﬂJh) dx < Cfﬁn(A)
h—+o00

for every A € Ap.

Proof. We first consider the case in which Q@ = @Q,(0) and K = Q,(0).
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Let us fix j € {1,...,n}, and let uj and u; be two affine functions

such that Vuj' = de;, Vu; = —de; and
(11.1.10) J = 0 on the first face of Q,(0) in the direction of e;,
o u; =0 on the second face of Q,(0) in the direction of e;.

Since @, (0) and Q,(0) have the same centre, it turns out that

; (r — p) on the first face of Q,(0)
in the direction of e;
11.1.11 7
( ) (r — p) on the second face of Q,(0)

in the direction of e;.

[Nel[S9)

N,

Let w s wy € Wiy )ﬂLOO(Y) satisfy (11.1.5) and, for every h €N,
;rh, uip be defined by u = ul + —w+(rh) uy, = u; + —w = (rp).

Then, 1t results that

J

(11.1.12) uj:h — uj', ujy, — u; in L(Qr(0)),
and, by (11.1.5),
(11.1.13) lim /f rhT, Vu; h)dz =L"(A / fy, de; —|—Vw )dy,

h—4o0

lim / flrae, Vu,)de = [,”(A)/ f(y, —de; + Vw; )dy
h—-+oo | 4 > Y J

for every A € Aj.

Set M = max{max;c1, . n} ||w oo vy, maXjeqr,.. ny lw; Loy} +
1, ho [5(r p)] + 1, and let {x5} € C'(R) be such that

Xn(t) =0 for every t €] — oo, &L,

(11.1.14) Xn(t) = S(r —p) for every t € ]g( —p)— %,Jroo[
X, affine 1n]2jxj, g(r_ )_2121[
0 <xp(t) <2foreveryt e R
for every h > hy.
It results that
(11.1.15) Xh — Xoo In L=(R),
where X is the function on R defined by
ifte ] — O0,0[

ifte [0,%(7’7,0)]
(r—p) ifte]i(r—p),+ool.

(11.1.16) Xool(t) =

Nle, <+ O
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For every h € N, Xh(ujfh), xn (W), Xoo(t?), and Xoo(v?) are in
WLI(Rm) N L%(R™). From (11.1.10)+(11.1.12), (11.1.14), and (11.1.15),

C

it follows that

[« 9

_ d N,
(r—=p), 0<xn(u;,) < 5(r—p)ae inR

(11.117) 0 < xa(uly,) < 2

2

for every h > hy,

the trace of Xh(u;-:h) on the first face of @, (0)

in the direction of e; is 0,
the trace of x5 (u;)on the second face of @;(0)

in the direction of e; is 0

(11.1.18)

for every h > hg

(AL119)  wulufy) = 30— o). wulu) = 90— p) ac. in Q,(0)

for every h > hg,

and

(11.1.20)  xn(u)),) = Xoo(u] ), xn(u))) = Xooluj) in L®(Qr(0)).

Moreover, it results that

. 1
(11.1.21) lillm sup/ f (rhx7 EV(Xh(u;fh))> dx <

< ( /Y f(y,6e; + VuF)dy + /Y f(y,O)dy) £r(A),

limsup/ f (Th$71V(Xh(“jh))> dr <

h—4o0c0 JA 2 ’

< ([ sttes 4 vusan+ [ s00pay) £
for every A € Ap.

In fact, because of the convexity of f, and by (11.1.14), it results that
(we prove only the first statement in (11.1.21), the other being similar)

(11.022) £ (s 370000 ) = 1 (. G3huu @)l o)) <
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< % ;L(U;rh(x))f(rhx,Vu;rh(m)) + (1 — %X%(ujh(a:))) flrpz,0) <

< f(rpe, Vu] n(2)) + f(rpe,0) for a.e. x € R", and every h > hg,

therefore (11.1.21) follows by combining (11.1.22) with (11.1.13), and by
recalling that f(-,0) € L] (R™).

Set now
Un(x) = e = f[ up (@))xn(u, (2))
for a.e. z € R”, and every h € N,
P(z) = O ono )Xoo(uj (x)) for ae. z € R™.

It is obvious that, v and 9 are in VV1 Y(R™) N L>®°(R™) for every
h € N. Moreover, from (11.1.10) and (11.1.16)--(11.1.20) it follows that

(11.1.23) Y € W (Q(0)), 1 € Wy 9(Q,(0)) for every h > hy,

(11.1.24) 0<vp<1a.e. in @Q-(0) for every h > ho,
(11.1.25) Y, =1 a.e. in Q,(0) for every h > hg,
(11.1.26) bn — ¥ in L2(Q,(0)).

Furthermore, it results that

(11.1.27) lim sup / f <Thx, %vm) de < cLM(A)
A

h—+o00

for every A € Ay,

where

(11.1.28) ¢ = Z{/ f(y,éej—l—Vw;r)dy—i-/ f(y, —5ej+ij_)dy}+
Y Y

Jj=1

+(3n—|—1)/yf(y,0)dy
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In fact, once we define for every h > ho, j € {1,...,n}, and a.e.
n 1 :1: h th(u;:h(x))Xh(u;h(x))
T 6 R A‘;L(x) = 11(2)271.‘72(7._/))271,72.”
and, consequently, 2?21 A7 (z) < 1. Therefore by the convexity properties
of f, and (11.1.17), it results that

f (Th% %V%@O =

n ul, (x
=f (rhx, > X@) (%vm(um»(m

p)

)

, we have that 0 < )\fl(x) < %

INA
]

&,‘
/N

=

>

&

><

:‘
v

_|_
<.

3

f(?"hx Xh(U;fh))(w)>+

+ Z f(rrpz,0) + f(rpx,0) for a.e. z € R™, and every h > hyg.
j=1

In conclusion, (11.1.27) follows by combining the above inequalities with
(11.1.21), and recalling that f(-,0) € L (R").

Consider now the general case.

Let R = {Q{,}jeN be a partition of R™ into half open cubes with faces

parallel to the coordinate planes, and sidelength p = %@7@9). Let us

observe that it is not restrictive to assume the existence of m € N such
that Q% ﬂK;«é (¢ if and only if 7 € {1,...,m}.

3 dist(K,00)
Vvn

Let r = 2,0 = and, for every j € N, let @) be an open

cube with faces parallel to the coordinate planes, centred as QJ and with
sidelength equal to r.

~ Because of (11.1.23)+(11.1.27), for every j € {1,...,m} there exist
{0} C W, UQY), and 7 € Wy%(QJ) such that

(11.1.29) 0< wi <1 ae. in Q7 for every h € N,

(11.1.30) ¥l =1a.e. in QJ for every h € N,
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(11.1.31) gy, — 7 in L(Q)),

(11.1.32) lim sup/ f<rh:c, 5(7‘8; ) V@ZJ%) dx < cL™(A)
A

h— 400

for every A € Ay,

where ¢ is given by (11.1.28).
Let x € C1(R) satisfy

x(t) =0 for every t € | — 00, 0]
x(t) =1 for every t € [1,+00]
0<x(t) <2forevery t € R,

and, for h € N, let 95, and ¢ be defined by
%zx(Z%ﬂ) w=x<2¢j>-
j=1 j=1

It is obvious that, for every h € N, ¥} and v belong to WOLq(Q) N
L>(Q) and that (11.1.6) holds. Moreover (11.1.8) follows from (11.1.29)
and (11.1.31).

Since K C UJL 1Q from (11.1.30) it follows that Z 4 zph( x) > 1a.e.
in K for every h G N. Consequently, equality (11.1.7) holds

Finally, we prove (11.1.9).

Let A € Ag. It is not restrictive to assume the existence of a positive
integer s > m such that A C Ui_, Q.

On the other hand, for every fixed ¢ € {1,...,s}, let ¢; be the number
of the cubes in {Ql}je{l,...,m} that have nonempty intersection with Qﬁ,,
and let ji(i),...,Je, (i) € {1,...,m} be such that QJ N Q% # 0 if and only
it j € {j1(?),...,J¢,(7)}. Clearly for every i € {1,...,s}, it turns out that
c; < 3™,

Consequently (11.1.1), (11.1.32), and the properties of x provide that

. odist (K, 09Q) )
lim su TR, ———————V dr =
mewp [ 1 S Vo

i odist( K, 09)
:hmsup/A <rhx = (Zq{ﬂ) 3on3 vah>dx<

h—+o00
K Q m
<l]11msup/ <Zz/}]> (mj,%ZVW)d:ﬁ—
—400
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+1}1Lr3_5~‘_1;£)/14<1— (Zw )) (rpx,0)de <

S

. odist (K, 09Q)
gllmsupZ/@mAf<rhx, 33/ vah)dx—i—

h—+o00
L7 (4) / F(y,0)dy =

> odist (K, 0Q)
= limsu / TR, ——————— Vi | dot
hﬂ+o<?z Q;mAf< " 82n 3"\/_ Z ¥ )

i=1

1=

+£(4) [ 00y <

- odist( K, 8(2) i (i
<1 Z Jk (1) d
1msup§ 3 /Q;_)QA (?"hx E 61327“/— Vi, ) T+

h—4o0 i1

D> (1-2) 1 /Q i O+ 270 | 0y <

5dlSt(K, aQ) 7k (4)
< — i St Bt
hmsup E E /QiﬂAf(rhx, 2/ Vi, dz+

h—+oo 57 k=1

+2£7(4) [ 000y =

ey S o e

h—too 7 121

207(4) | 1000y <

< C;ﬁ@% NA)+2L"(A) /Y f(y,0)dy = <c+ 2/yf(y, 0)dy> £(A),

where ¢ is given by (11.1.28).
Because of this, inequality (11.1.9) follows. This completes the proof.
|

Remark 11.1.2. We point out that under the assumptions of Lemma

11.1.1, if ¢ satisfies (11.1.4) and, for every j € {1,...,n}, w;r, w; €

WoA(Y) N L>(Y) satisfy (11.1.5), the constant ¢y in (11.1.9) is given by

= (/ fy,de; + Dw;-r)dy +/ fly, —oe; + ij)dy> +
= Y Y

j=1
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+3(n+1) /Y F(y,0)dy.

§11.2 Partitions of Unity

For every f asin (11.1.1) and 2y € R"™ we introduce the function f(*0) given
by

(11.2.1) fEO:(2,2) € R® x R™ v f(x,2) + f(z, 220 — 2).

It is clear that, for fixed 2o € R™, f(30)(z,-) is symmetric with respect
to 2o for a.e. x € R", and that

f(z,2) < f&)(x, 2) for a.e. € R", and every z € R™.

For every g € [1,400] and zg € R™, we set

(11.2.2) C(z) = domf(zﬂ)iom = {z € R": there exists

v e WhI(Y) N L®(Y) with /wa(y, z 4+ Vo)dy < +oo}.

It is clear that, for every ¢ € [1,+o0] and zp € R", 6(1(20) is convex.
In the following, given zy € R", we assume that

(11.2.3) int(C9(z0)) # 0.

We also observe that (11.2.3) with zo = 0 implies (11.1.3).

Proposition 11.2.1. Let f be as in (11.1.1), q € [1,+00], z0 € R™, and
C%(zy) be defined in (11.2.2). Assume that (11.2.3) holds. Then there
exists 0 € |0, 1] such that

(11.2.4) Bos(z0) CC int(C9(z)),
and
(11.2.5) /Y fly, z0)dy < +o0.

Proof. Since C4 (20) is symmetric with respect to zg and convex, assump-
tion (11.2.3) provides the existence of ¢ € |0, 1] for which (11.2.4) holds.
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By (11.2.4) it follows trivially that zo € C%(z). Consequently there

exists vg € WLI(Y) N L™(Y) such that [, ) (y, 20 + Vug)dy < +oo.

Because of this, (11.2.5) follows, once we observe that (11.1.1) implies that

fy,z0) = f (y, %(Zo + V) + %(Zo - VUO)) <

< —{f(y. 20+ Vvo) + f(y,20 — Vo) } = %f(z‘)’(y, 20+ Vo)

| =

for a.e. y €Y. ]

Let € € 10,400, and Py,..., P, € R™ For every ¢ € {1,...,m},
denote by v.(Pi, ..., Pp)(F;) the number of the elements in {Py,..., Py}
whose distance from P; is less than €. Moreover, set

(11.2.6) 0e(Pr,y...,Py) = sup v (Py,...,Py)(P).
i€{1,...,m}

It is obvious that o.(Pi,..., Pn) € {1,...,m}.
Finally, for every i € {1,...,m}, set Pfs = (P)I, P = (P)-.

€

Lemma 11.2.2. Let f be as in (11.1.1), z9 = 0, f(©) be given by (11.2.1),
q € [1,+00], and C9(0) be defined in (11.2.2). Assume that (11.2.3)
holds. Let 6 € )0, 1] satisfy (11.2.4). Let {Q4,...,Q,} be a finite fam-
ily of bounded disjoint open subsets of R™, and € € |0 4+ oo| be such that
Q;. # 0 for every j € {1,...,m}. Then, for every j € {1,...,m} there
exist {777} C WH4(R™) N L®°(R"), v=9 € WHe(R™) N L°(R") such that

(11.2.7) vid =459 =0 a.e. in R™\ ijs for every h € N,

(11.2.8) 0<~;7 <1ae in UM, Q; for every h € N,

(11.2.9) 77 =1 ae. in Q. for every h € N,

(11.2.10) 3 Vit =1 ae. in UM, Q; for every h € N,
i=1

(11.2.11) V7 =7 in LU, ),

oe ;
11.2.12 limsu/ ©) <hx v ”) dx <
( ) Mlimsup | f 256n3" /10 (D1, - ) =
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<2 (cf + 2/ f(y,O)dy) L"(A) for every A € A(UL,€;),
Y
where cy is defined in Remark 11.1.2.

Proof. For every j € {1,...,m} let {wi’j}, and 97 be given by Lemma
11.1.1 applied to f© with Q = QF_, and K = Qj_ Then it results that

3.

Z ) >1, Z@[J” ) > 1 forae zeUjL ng,andeverthN
2
j=1
Let A, be an open set with Lipschitz boundary such that UjL,82; CC
A, Ccc U, Q;f%, and, for every h € N, let 95, ¥° € WLI(R™) N LS, (R™)
such that

(11.2.13) {19;(3:)

For every j € {1,...,m}, h € N let VZ’j, and 757 be the functions
defined by

w;»] i ws,g

11.2.14 & — = .
( ) ’yh 19}51 ? v 195

Then, by Lemma 11.1.1, and (11.2.13), the functions in (11.2.14) satisfy
conditions (11.2.7)+(11.2.11).
To prove (11.2.12) let us fix j € {1,...,m}, set oo = 0.(1,...,Q),
and let, for every h € N and a.e. x € U mQ, A (z) = W,
i=1 v

€ () — v (z)
)\h (‘T) 2(2;;1 Yi(@))?”
Because of (11.2.14) and (11.2.13), of the convexity of f, of the sym-
metry properties of f(©), and by observing that, for every h € N and a.e.

zEUL I, 0< N (2) <4 and0< A (z) < 1, it results that

oe ;
(0) €, —
(11.2.15) f <hx, 256n3"\/505v7h (x))
= £O)(har, Xy (2) e V5 ()
' 128n3"y/no. "

) Se m .
)& oK) <
h (I)128n3”\/505 Zizl Vi (x)) -

o ;
5 (0) \V4 €,J
< @)/ (hx, 128n3"+/no. ¥n (m))
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A @) 1 (hx 128n3"\/_ Zae " )+
+ (1= @) = X @) £ b, 0) <

0) % >
<f°< 1283nﬁ%w i(z)

(0)

SN SN S

for a.e. x € U,Q;, and every h € N.

Let us consider separately the first two terms after the last inequality
n (11.2.15). Since cr% €10, 1], the convexity of f provides that

de :
11.2.1 (0) SR v Y/ <
( 6) ! (hm’ 283 Jrnoe » U (x)) =

5e/2 L
< 7O (hx, mWﬁ(x)) +2f(hx,0)

for a.e. x € UZ,Q;, and every h € N.

On the other hand, for a fixed [ € {1,...,m}, the number of the sets
Q;, with 7 € {1,...,m}, such that dist(€;, ;) < ¢ is less than or equal to
o.. Let {Q;,,...,9;,_} be a subset of {Q1,...,Q,,} containing all the sets
Q; that satisfy dist(€2;,€;) < e. Consequently, from the convexity of f, it
follows that

oe T .
11.2.1 ) - E Sl VAL =
(11.2.17) / (’m’ 12837/ &= o V¥ ($)>

_ r(0) mk
_fo ( " 128n 3”\/_205 x)) =

1 de/2
< = 70 “k N |
=2 crsf (h  Gin 3n\/—v (x)) for a.e. x € Q;, and every h € N

Let now A be as in (11.2.12). Then by combining Lemma 11.1.1 applied
to f©) with (11.2.15)+(11.2.17), by using (11.2.5), and by recalling that

dlst(Qj'E, Qj%) = £, we obtain that

oe 1 ;
lim su / (0) ( ,———————V E’J> dr <
R SO T Ty

> 1
< 4£”(AQQZ)/ fy,0)dy + cp LY(AN ) + E U—cfE"(AﬂQl) =
Y i=1 ¢

=2 <2/ f(y,0)dy + cf> LM(ANY) for every I € {1,...,m},
Y

from which (11.2.12) easily follows. m
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Chapter 12

Homogenization
of Unbounded Functionals

In this chapter we analyze the homogenization process as ¢ — 07 for en-
ergy functionals of the kind u — [, f(£, Vu)dz, where the densities f are
actually unbounded, and satisfy

fi(z,z) e R" x R" — f(x,2) € [0,+00]
(12.0.1) f (Lp(R™) x B(R™))-measurable
f Y-periodic in the z variable, convex in the z one.

In the same order of ideas of [CCDAG1] and [CCDAG2], we develop
here a general study of the homogenization of integral energies with den-
sities as in (12.0.1), but under high coerciveness assumptions due to the
fact that (12.0.1) do not involve, as z varies, any kind of control on the
sets where the partial functions f(z,-) take the value +00, not even on the
behaviour of f(x,-) itself near the boundary of such sets.

On the contrary, in the next chapter, we will treat cases in which
some controls on the above quantities are assumed, and less restrictive
coerciveness assumptions are needed.

Energies of the above type appear in the treatment of various problems
of applied mathematics, as recalled in Chapter 6. Because of this, we
develop homogenization processes for the treatment of various classes of
minimum problems, for example of Dirichlet, Neumann, and mixed type,
with boundary conditions that look to be natural in the problems suggested
by the models recalled in §6.5. These homogenization processes also provide
an answer to a conjecture stated in [BLP, §17 of Chapter 1].
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§12.1 Notations and Basic Results

Let f be as in (12.0.1). }
We recall that, for every ¢ € [1,+0c], the function f  is defined in
Chapter 11 by

(12.1.1) fL :z€ R™ s inf { /Y fly, 2+ Vo)dy : v e WY )OLOC(Y)},

and that it turns out to be convex.
For every r € ]0,+00[, ¢ € [1,4+00], {rn} C [0,+00], Q € Ag, ' C 09,
and ug € W2 (R") we define the following functionals on L2 (R™)

loc

(12.1.2) F.(Q,):u € Lis,(R") —

(R")

loc
otherwise,

{fQ re, Vu)dzr if u € WhI(R™) N L2

(12.1.3) F.(Q T up,):u€ Lo (R") —
Jo flra, Vu)de  if u € ug + Wollg(Q) N L2 (R™)
~+00 otherwise,
and set
F'(Q,):u € L2 (R™) - D™ (L°°(Q)) im infj,— 4 o0 F},, (2, 1)
(12.1.4) N
F'(€,-):u € Lyg (R™) — T'7(L>(Q2)) limsupy, _, o Fy.,, (2, u),
ﬁ/(Q7F,UO,')- E L]oc?c(Rn)
= (L>°(Q)) liminfp,— 400 Fr, (Q, T up, u)
(12.1.5)

ﬁ//(Q,F,Uo, ) u e Lloc(Rn) =
'~ (L*°(2)) limsupy, 4 o0 Fr, (2, T, ug, u).

Moreover, we also set

FI(Q,)iu € L (R™) > T (L%°(Q)) lim infp_ 400 Fr (€, u)
(12.1.6)
F"(Q,-):u € L®

loc

(R™) = T (L>(Q)) limsupy, _, | oo Fr (2, u).

It is clear that all the functionals in (12.1.2)=(12.1.6) depend also on
q even if, for the sake of simplicity, we omit an explicit indication of it.

Nevertheless, we point out that the index ¢ measures the regularity of
the admissible configurations, and that the dependence on it in the corre-
sponding homogenization results may be true. In fact, it is well known that
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a Lavrentiev phenomenon may appear, and even survive the homogeniza-
tion processes (cf. [CEDA1], [CESC], [DDG]).
Because of (12.0.1) and of Proposition 3.4.1 it follows that

(12.1.7) F'(-,u), F"(-,u) are increasing
for every u € Liy,(R"™), and every {r,} C [0, +o0],
and
(12.1.8) F'(,-), F"(Q,") are convex
for every Q € Ay, and every {r,} C [0, +o0].

Moreover, the following properties are straightaway verified.

(12.1.9) F'(Qu1) = F'(Qug), F"(Q,u1) = F"(, ug)
whenever {r,} C [0, +o0[, Q € A

o0

uy, uz € Lis.(R™) satisfy ug = us a.e. in Q,

(12.1.10) F'(Qu+c)=F (Qu), F'(Qu+c) = F"(Q,u)

for every {rn} C [0, +o0[, Q€ Ap, u € Li5,(R"), c € R.

Proposition 12.1.1. Let f be as in (12.0.1), q € [1,+00], and let F’ and
F" be defined in (12.1.4). Then

F'(Q — xo, Twolu) = F' (Q,u), F"(Q — xo, Txolu) = F"(Q,u)
for every {r,} C ]0,+oo]| increasing and diverging, ) € Ay,

ro € R", u € CO(RM).

Proof. We prove the first equality, the second being analogous.
Let {rp}, Q, xo, u be as above. Let us prove that

(12.1.11) F'(Q = z0, T[xolu) > F' (Q,u)
To do this, let us assume that the left-hand side of (12.1.11) is finite.

Let us take O, B € A(Q) with O CC B CC . Then, there exists {u,} C
Wli’q(R”) N L2 (R™) such that up, — T[xolu in L®°(B — xp) and

C loc

F'(B — g, Tlxo]u) = lim inf/ flrpz, Vup)dz.
B—wo

k—-+o00
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For every h € N let m; € Z" be such that T—}f — xg. Then by
performing in the above integrals the change of variables y = x + T—b and
by exploiting the periodicity properties of f, we obtain that

(12.1.12) F'(B — @9, Tlaolu) =

zliminf/ f(rh (y—%),kuh (y—%)>dy:
h—+o00 B+T—}h*$0 Th Th

= liminf/ f (rhy,vy (T {— mh] Uh) (y)) dy.
h—+o00 B“rr:Jh'*xo Th

We now observe that O C B + %b- — xo provided h is large enough,
and that, because of the continuity of u, it turns out that 7[—
in L*°(0). Consequently, by (12.1.12) we infer that

mp,

T—h]uh —

h—+o0

F'(Q — 20, Tlzo]u) > lim inf/of (rhy, v, (T [—T—ﬂ uh> (y)) dy >

> F'(O,u) for every O cC Q,

from which (12.1.11) follows.
By symmetry, the reverse inequality to (12.1.11) follows. This com-
pletes the proof. m

Lemma 12.1.2. Let f be as in (12.0.1), q € [1,4+00], and let F', F", F,
and F" be defined in (12.1.6) and (12.1.4). Then

(12.1.13) F' (Q,u) < F' (Q,u), F"(Q,u) < F"(Q,u)

for every {r,} C )0, +oo[ diverging, Q € Ay, u € C°(R™).

Proof. Let {ry}, Q, u be as in (12.1.13) and set, for every h € N, kj, = [r].
Then limy, 4o % =1.

In order to prove the first inequality in (12.1.13) we observe that we
can obviously assume that F” (Q,u) < +oo so that, if Q” € Ay satisfies
Q" cC Q, there exist {h;} C N strictly increasing, and {u} € W,54(R™)N
L (R™) such that w, — u in L>(Q"), and

(12.1.14) F'(Q",u) > lim f(ra,z, Vup, )dz.
Jj—+oo Q7
Let Q' € Ay with Q' cc Q”. For every 7 € N we perform in the
integrals in (12.1.14) the change of variable z = #y, set vy, = Z_’h“h(%)’

and observe that, provided h is large enough, Q' C %Q” . Because of this,
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and by the continuity of u, we have that v, — u in L>(Q’) and, by (12.1.14)
and (3.2.5), that

(12.1.15) F'(Q,u) >

kn \" kp.
> . lim < i > /; f <kh7’y7 vxuhj < i y>> dy >
J—+o0o Thj k’_;LJ:Q// : : 'I"hj

J

>liminf [ f(kn,y, Vyop,)dy > T~ (L°(Q)) lim inf Fy, (', u) >
j—+oo Q/ h—-+oo

> F'(Y,u).

By (12.1.15) we deduce the first inequality in (12.1.13) as £’ increases
to €.

In order to prove the second inequality in (12.1.13), we can assume that
F"(§,u) < +o0 so that, because of (3.2.5), sup{T'" (L>°(A)) limsup,, | .,
Fr,(Au): ACCQ} < 4o0.

Let Q”, Q' be as before. Then there exists {us} € W,n4(R™")NLS (R™)
with up, — w in L>°(Q"), and

12.1.16) T~ (L*=(Q")) limsup Fy, (2", u) > limsup f(kpx, Vuy)dz.
h—+ " h—+oc Jaur

For every h € N we perform in the integrals in (12.1.16) the change
of variable x = ,:—’;Ly, set v, = ’ﬁ—:uh(Z—Z), and observe that, provided h is
large enough, f—:Q’ C Q". Because of this, and by the continuity of u, we

have that vy, — w in L>(£'), and by (12.1.16) and (3.2.5), that

(12.1.17) F'(Y,u) <limsup [ f(ryy, Vyon)dy <
h—-+oo JQ/

< lim sup (T—h> / fkpz, Vyup)de <
h—too \Fn Lo

<supq ' (L*(A))limsup Fy, (4,u) : ACC Qp < F"(Q,u).
h—+ "

By (12.1.17) we deduce the second inequality in (12.1.13) as €’ in-
creases to ). m

As usual in homogenization problems, we introduce for every g €
[1,400], the function f  defined by

(12.1.18) [l iz € R — inf { /Y fly,z4+ Vo)dy : v € Wgé‘i(Y)}.
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Then it is clear that for every ¢ € [1,4+o0], f, . is convex, that f! <
fi .. and that

(12.1.19) = L provided ¢ € |n, +0o0],
where f s given by (12.1.1).
We point out that sometimes we improperly refer to the definition of

fi ., in (12.1.18) as to the homogenization formula.
For every g € [1, +0o0], and 2z € R™, we also set

hom

(12.1.20) C(z) = dom(fF0))e = {z € R": there exists

v e Wd(Y) with / FE(y, 2 + Vu)dy < +oo}.
%

Then it is clear that for every ¢ € [1,4+00] and zy € R, C%(z) is
convex, that C(zg) C C%(zp), and that

(12.1.21) C%(z9) = C(z0) provided ¢ € |n, +o0],
where C9(zp) is defined in (11.2.2).
The next result collects some properties of the functions defined by

(12.1.18). In it we assume that

zIP < f(z, z) for a.e. x € R™ and every z € R”
Yy

(12.1.22) if p € [1, +00]
domf(z,-) C Bg(0) for a.e. z € R™ if p=+4o0

and that

(12.1.23) f(z,-) is lower semicontinuous for a.e. z € R",

for some R > 0.

Proposition 12.1.3. Let f be as in (12.0.1), ¢ € [1,+00], and let f
be defined in (12.1.18). Then f  is convex. Let now p € [1,+0o0], q €
[p, +00], and assume that (12.1.22) holds. Then f  satisfies

(12.1.24) { 2P < fi . (2) for every z € R™ ifp € [1,+oo

domf{ = C Bgr(0) if p = +o0.

Finally, if p € ]1,+00], ¢ = p and (12.1.23) holds, then f{  is also lower
semicontinuous, and

P () =min { / fly,z+Vo)dy : v € Wr}éf(Y)} for every z € R".
Y
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Proof. The convexity of f  has already been observed.

Let us prove (12.1.24). To this aim, we first assume that p < 400,
and observe that the Trace Theorem for Sobolev Functions and Jensen’s
inequality imply that

P
(12.1.25) |z|P = Yyony dH™ !
Y

zdy +
Y

P
/ (z4+ Vo)dy| < / |z 4+ Vv|Pdy for every v € Wplell, (Y).
% Y

Then (12.1.25) and (12.1.22) yield that

Y

< inf {/ fly,z+Vo)dy :v e Wgé‘rl(Y)} = fi . (2) for every z € R",
Y

from which the first estimate in (12.1.24) follows.

When p = 400, then also ¢ = +oco. Let z € domfhom, and w €
W2i(Y) be such that z+ Vw(z) € domf(z,-) for a.e. 2 € Y. Then, again
by (12.1.25) with p = 1, and (12.1.22), we obtain that

|z|:min{/ |2+ Voldy 1 v € Wit (Y } /|z+Vw|dy<R
Y

for every z € dom fhom,

that is the second estimate in (12.1.24).

Let us assume now that ¢ = p € ]1,+00]. Let z € R™, and {z,} C R"
be such that z, — z and liminf, 4 fF (2n) < +o00. Then there ex-
ists {hx} C N strictly increasing such that, for every & € N, there is
v, € Wgef(Y) with [y vpdy = 0, and limg_ 4o [y f(Y, 2n, + Vor)dy =
liminfp— 400 fi,,(2n) < +o00. Because of this, (12.1.22) and Theorem
4.3.19, {vy} turns out to be bounded in W?(Y'). Consequently, by Propo-
sition 4.5.1, it follows that there exists v € W1 :P(Y') such that, up to subse-
quences, vy — v in weak-W1P(Y) (in weak*- W1 (YY) if p = 400). Then,
by (12.0.1), (12.1.23), and Theorem 5.2.2 we obtain that

f}fom(z) < /Y f(y,z + VU)dy <

< lim / f(y7 Zhp + V’Uk)dy = lém}»nf f}I:om(Zh)v
Y — T 00

from which the lower semicontinuity of ff.  follows.
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In conclusion, an argument similar to the one just exploited yields that,
for every z € R", the infimum in the definition of f  is attained. m

§12.2 Some Properties of I'-Limits

Let f be as in (12.0.1), g € [1,40o0].

For every h € N let F, be defined by (12.1.2). In this section we study
some measure theoretic properties of the I-limits in (12.1.4) for u fixed in
L (R™), and investigate the relationships between the limits in (12.1.4)

and (12.1.5). }
To this purpose we consider f! —given by (12.1.1), assume that

(12.2.1) int(dom fZ ) # 0.

Proposition 12.2.1. Let f be as in (12.0.1), q € [1, +00], {rn} C |0, +oo|
be strictly increasing and diverging, F’, F" be defined in (12.1.4), and (2,
Ql, Oy € .Ao.

Ile ﬂQQ = (Z), and Ql UQQ Q Q, then
(12.2.2)  F.(Q,u) > F' (4, u) + F'(Q,u) for every u € LC.(R™).

loc

If Q C Qy UQy, and (12.2.1) holds, then

(12.2.3)  F"(Qu) < F"(Q,u) + F"(Q,u) for every u € LS. (R™).
Proof. Inequality (12.2.2) follows directly from the definition of F.

To prove (12.2.3) we can assume that (11.1.3) holds, otherwise, taken
zp € int(domfy ), it suffices to replace f with f(:,zo + -). Moreover, it
also suffices to consider the case in which Q CC Q7 U9, and to prove that

(12.24)  F"(Q,u) < F"(Q1,u) + F"(Q, u) for every u € LS (R™).

Fix u € L{S (R"), and assume that the right-hand side of (12.2.4) is

finite. Consequently, for ¢ = 1, 2, there exists {ug)} C Wﬁf(R”)ﬂLﬁj’c(R”)
such that ugf) — win L*>(€;) and

(12.2.5) limsup/ f (rwc,Vu?) dz < F"(Q;,u).

Since 2 CC Q4 U Qq, there exists A; CC 4 such that Q CC A_1U Oy
Let {¢} be given by Lemma 11.1.1 applied to 7 and K = A;, and
let {wp,} € WLIR™) N LE(R™) be defined by

c loc

wp, = Yy (ug) + €h> +(1- 1/Jh)u§12)7
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where ¢, = ||u§12) — UEll)HLoo(legz) for every h € N.

Then it is clear that wy, — u in L>=(Q).

Fix t € [0,1]. Then, by making use of the convexity properties of f,
and by recalling that Q\ A7 CC Qo, it results that

(12.2.6) F"(Q,tu) < limsup/ flrpz, tVwp)de =
h—+oco JQ

— lim sup / f(rhx,t(thugl)+(1—wh)Vuf)+
h—4o00 JQ

(ug)—i—ah—uf)) th>>dx <

h—+4o00
+(1—1) /Q f(rhsc, I t_t (ug) +ep— uf))vwh)dx} <

< lim sup/ wh(:lz)f<rhx, Vugll))dx—&—
Q

h——+oo

< lim sup {t/ f(rhx,z/}hVug) +(1- ¢h)Vu22)>dx+
Q

+lim sup/ (1- wh(x))f(rhx, Vuf))dm-i-
Q

h—+oco

t
+(1—t)lim sup/ﬂf(rh:z; T (US) +ep— uf))Viﬁh) dr <

h—+o0

< lim sup/ f(rhx, Vug))dx + lim sup/ f(rhx, Vuf)) dr+
h—4o00 JO, h—+oo JQy

t
+(1—1) limsup/ f(rhx7 v (u;ll) +ep— u§f>)v¢h) da+
h—+o00 Jn(Q:\ A7) 1-t

+(1-1) limsup/ f(rpz, 0)dz.
h—+oco JQ\(Q1\A7)

On the other hand, since QN (Q; \ A;) CC Q; N Qy, it results that
ugl) +en —_ugf) — 0in L=®(Q2N (21 \ 41)), and ugll) +en— uf) >0a.e. in
QN (2 \ Ar). Consequently, there exists hy € N such that

t (1) C) odist(Aq, 0024)
1t (“h (@) +en — (x)) €% eamsn v

for a.e. x € QN (Q \ A1), and every h > hy,
where 0 € ]0, 1] satisfies (11.2.4). Because of this, we get that for a.e. = €

QN(Q;\ A1), and every h > h; the vector ﬁ(uﬁll)(x)+6h7u22) () Vi (z)
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is a convex combination of 0 and %Vzﬁ (z). Therefore, by the

convexity of f in the second group of variables, it follows that

t
(1227) / f (’f’hx’ ( (1) +ep uE?)) V’(/}h> dx <
Qn(2:\A7) 1-t

< / _ f(rpz,0)dz+
Qﬁ(ﬂl\Al)

ddist (A, 0821)
+/ f(O) (rhx, ————— V1, | dx for every h > hy.
(T 64n3"y/n '

from which, by making use of (11.1.10) of Lemma 11.1.1, we infer that

(12.2.8) limsup/ f (rhx, f ( D 4 ep — >V1/1h> dz <
h—-+o00 Jn(Qi\ A7) 1-t

< <cf+ /| f(y,0>dy> £ (@ (@ \ ) < <cf+ / f(y,0>dy> (),

where ¢y is defined in Remark 11.1.2.
By combining (12.2.6) with (11.2.5), (12.2.5), and (12.2.8), it results
that

(12.2.9) F"(Q,tu) < F"(Q,u) + F"(Qy, u)+

a1 <cf + [ 1o o>dy) £ + (-0 [ 1000y

for every t € [0, 1].

Finally, passing to the limit in (12.2.9) as ¢ tends to 17, and making
use of Proposition 3.3.2, inequality (12.2.3) follows. m

Proposition 12.2.2. Let f be as in (12.0.1), q € [1, +00], {rn} C |0, +oo|
be strictly increasing and diverging, F', F” be defined in (12.1.4), Q €
Ay, and ﬁ’(Q,aQ,O, Yy ﬁ”(Q,@Q,O, -) be defined in (12.1.5). Assume that
(11.1.3) holds. Then

(12.2.10) F'(Q,u) = F' (Q,u) = F'(,09,0,u),

F"(Q,u) = F"(Q,u) = F"(Q,09,0,u)
for every u € LS (R™) N C°(Q) such that u = 0 on 9.

Proof. Let u be as in (12.2.10). We prove (12.2.10) for F”(%,-), F” (%, ),
and F”(Q,09,0,-), the proof for F(£2,-), F'.(£, -), and F'(Q, 99,0, -) being
analogous.

©2002 CRC Press LLC



Let {e1} be a decreasing sequence of positive numbers converging to
zero, and {xi} be the sequence of functions defined by

(12.2.11) Xk:t € R — min{t + ey, max{t — 4,0} }.

For every k € N let Ag, Qi € Ay be such that Ay, CC Ag41, szl’Ak =
Q, Q has Lipschitz boundary, Q) CC Qx41, Ax CC Qp CC 2 and

(12.2.12) sup Ju(z)] < £
e\ Ay 2
Let us prove that
(12.2.13) F"(€,00,0,u) < F"(Q,u).

To do this assume that ﬁ’_’(Q, u) < 400. Then, for every k € N, there
exists {uglk)} C WEI(R™) N L2 (R™) such that ugf) — u in L>°(Qf), and

loc loc

limsup/ f (rhx,Vuglk)) dz < F" (Q, w).
h—+o00 JQ

For every k € N let s; € N be such that s > k, sp+1 > sk,
~ 1
(12214) / f (T’hl',vuglk)) dx < F/I(kau) + E for every h > Sk,
Qp

and

(12.2.15) Hu —u{®

€
H <% for every h > si.
C ol () T2

For h > s1 set kp = max{k € N : s < h}, and define up, and ap, by
up, = ul,z", Up = Xk, (up). Then, for every h > s1, up, € I/Vli)f(R")ﬂLﬁfc(R")

and by (12.2.11), (12.2.12), and (12.2.15), we infer that @, € Wy'9(Qx, ) N

L (R™). Let us denote again by @y, the zero extension of @ from Qy, to

R™.
By (12.2.11), (12.2.15) and (12.2.12) it turns out that

(12216) () - u(@)] < [an(2) — un(@)] + Jun(e) - u(@)] <

€ 3
<ep, + % = 5k for a.e. x € Q, and every h > sy,

and, by (12.2.12), that

(12.2.17) lan(z) — u(x)] = |u(z)] < lakh
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for a.e. © € Q\ Qp,, and every h > s5.
Consequently, from (12.2.16) and (12.2.17), it follows that
(12.2.18) ip — uin L(Q).
Now let By, By € Ag be such that By CC By CC Yy, for h sufficiently

large. Let {t¢,} be given by Lemma 11.1.1 applied to By and K = By, and
let {wy,} C W, %(Q) N L2 (R™) be defined by

loc
wp, = Yp(up + €k, ) + (1 — p)Up,.

Then obviously w;, — u in L*°(Q).
By making use of the convexity of f, it results that

/ frpa, tVwp)dz <

Q

<t [ Un(x)f(rre, Vup)de —|—t/ (1 —vp(x)) f(rpz, Vag)dz+
Q Q
+(1 - t) /Q f (rhx, %_t(uh + ek, — ah)V’l,/)h> dr <

< Yn(x) f(rae, Vup)dz +/ (1 = Yn(2)) f(raz, Vi, )do+

Qkh, Qkh
t
+/ f(rh$70)d$ + (1 — t)/ f (Th337 —(Uh + €k, — ah)V¢h> dr <
O\, Q 1-t

< Yn(x) f(rnz, Vuy)de + / (1= Pn(@) X, (un(x)) f (raz, Vup)da+
Qg Q

o,

23

(1= dn(@)) (1 — X, (un(2))) F(rz, 0)de + / F(raz, 0)dz+

kp, Q\Qkh

t -
+(1 - t)/ f (TW, 1—t(uh + ek, — uh)vwh> dzr <
0 _

< flrpz, Vup)dx + 2/ flrpz,0)dz+
Qg Q\ By

—|—(1 - t) /Q f (Th$7 %(Uh + €k, — ah)th) dxr

for every h € N sufficiently large, ¢ € [0, 1].
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Hence because of (12.2.14), we conclude that

(12.2.19) / flrpz, tVwp)dz <
Q

~ 1
< F"(Q,,u) + — + 2/ flrpz,0)dz+
kp Q\B;

H(1-1) /Q 7 (rhx, L+ e, ah)wh) dz <

- 1
< F"(Qu)+ — + 2/ f(rpz,0)dz+
k, Q\B;

+(1—1) {/32 f (rhm, %(uh + ek, — ﬁh)Vz/)h) dx + /9\32 f(rhx,O)da:}

for every h € N sufficiently large, t € [0, 1].

On the other hand, because of (12.2.15), (12.2.18), and again the inclu-
sion By CC {, for every h large enough, it results that up, + e, — w4, — 0
in L*>°(By), and that up+ek, —un > 0 a.e. in By. Consequently, by making
use of (11.1.10) of Lemma 11.1.1, and by arguing as in the proof of (12.2.8),
it is easy to verify that

t
(12.2.20) lim sup/ f (rh:m ﬁ(uh +ep, — ﬂh)th> dx <
h—-+o00 Bo -

< (e [ s00an) £2(52) < (e + [ sw0rin) )

for every t € [0, 1],

where cy is defined in Remark 11.1.2.
Passing to the limit in (12.2.19) as h tends to infinity, because of
(11.2.5) and (12.2.20), it results that

(12.2.21) F"(Q,00,0, tu) <

< ﬁﬁ(ﬂ,u)—&-?ﬁ"(Q\Bl)/Yf(y70)dy+(1—t) <Cf+2/yf(y,0)dy) L™(Q)

for every t € [0, 1].

Finally, letting ¢ increase to 1 in (12.2.21), by Proposition 3.3.2, and
again (11.2.5), we conclude that

F(0,00,0,u) < F"(Q,u) + 2£7(Q\ By) /Y £y, 0)dy,
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from which (12.2.13) follows as Bj increases to ).
On the other hand, since it is always true that

(12.2.22) F"(Q,u) < F"(Q,u) < F"(Q,09,0,u),
the proof follows from (12.2.13) and (12.2.22). m

Proposition 12.2.3. Let f be as in (12.0.1), q € [1, +00], {rn} C |0, +o0|
be strictly increasing and diverging, F', F" be defined in (12.1.4), Q € Ay,
I C 909, and }NT"(SLF,O,-), I?"’(Q,F,O,) be defined in (12.1.5). Assume
that (11.1.3) holds. Then

(12.2.23) F'(Q,u) = F'(Q,T,0,u), F"(Q,u) =F"(Q,T,0,u)

for every u € LS. (R™) N C°(Q) such that u =0 on T.

Proof. The proof follows the outlines of the one of Proposition 12.2.2.
Let u be as in (12.2.23). Let us prove that

(12.2.24) F"(Q,T,0,u) < F"(Q,u).

To do this we can assume that F”(Q,u) < +0oo, so that there exists
{un} € WEYR™) N L2 (R™) such that u, — u in L®(Q), and

oc loc

limsup/ Flrna, Vup)de < F"(Q, u).
h—+4oco JQ

For every h € N let &5, = 2[|up, — ul| = (q), and x5 be as in (12.2.11).
Then xp(up) € Wollg(ﬂ) N L (R™) for every h € N. In fact, if h € N, it is

loc

clear that xp,(up) € WU9(R™) N LS (R™). Moreover by the continuity of u

in 99 it follows that the set I, = {x € Q: |u(z)| < 3&5} is a neighborhood
of T' in €2, consequently we have that

1 .
jun(@)] < fun(z) = u(@)| + Ju(@)] < Jun — wli=(o) + 520 = e 2. in Iy,

that is xp(up) = 0 a.e. in I, and therefore xp,(up) € Wollg(Q) N LS.
Finally it is clear that xp(up) — w in L®(9).

Let By, By be two open sets such that By CC By CC £, and let {3}
and {wp} be as in Proposition 12.2.2. Then (12.2.24) follows from the same
arguments used in the proof of (12.2.13) in Proposition 12.2.2.

By (12.2.24) and the obvious inequality

(R").

F"(Q,u) < F"(Q,T,0,u),

the right-hand side of (12.2.23) follows. This completes the proof. m
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§12.3 Finiteness Conditions

Let f be a function satisfying (12.0.1), p € [1,+o0], and F” be the func-
tional defined in (12.1.6). In this section we give sufficient conditions on Q
and u in order to get finiteness of F"'(Q,u).

For every u = > ", (us; + 55)xp, € PAR™) we set

o(u) = max card{ie {1,...,m} lﬁiﬂﬁj?ﬁ@}'
je{1,...m}

Lemma 12.3.1. Let f be as in (12.0.1), 20 = 0, q € [1,+00], 6‘1(0) and
fi . be defined in (11.2.2) and (12.1.1) respectively, and F” in (12.1.6).
Assume that (11.2.3) holds. Let § €]0,1] satisfy (11.2.4). Then

(1231)  F'(Qtu) <t /Q F(Vu)dr + (1— £)L™(Q) /Y £y, 0)dy

for every Q € Ay, u € PAR"),
)
te |0,
256n3"\/no(u)? (2||Vul o) + 1) + 6

Proof. Let Q, u = >°;" (us, + s;)xp,, t be as in (12.3.1), and set, for
every j € {1,...,m}, Q; = QNint(P;).
In order to prove (12.3.1), let us assume that

(12.3.2) Z L) L9 / f L (Vu)dz < 4oo.

Inequality (12.3.2) provides that z; € domf}'fom for every j € {1,...,
m}. Hence, for every fixed 6 € ]0,+oo[ and j € {1,...,m}, there exists
vl e Wha(Y)n L>°(Y) such that

per

/ Fly, 2+ Vod)dy < F2(2) + 9.
Y

Whence, for every j € {1,...,m}, by setting vfl = +vI(h-) for every h € N,

it follows that

(12.3.3) lim 7 (hx, 2+ Vv;;) dr < LYQNQT)(FL(2) +0).
h—+4o00 QQQ;—E J€ om

For every ¢ > 0 sufficiently small, and j € {1,...,m}, let {'yfl’j} and
~&J be given by Lemma 11.2.2, and let, for every h € N,

w§, = Z(uzj + 55+ vl )y
j=1
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Then, because of Lemma 11.2.2, it results that

(12.3.4) Wi, — we = Z(UZJ‘ + 5,77 in L>®(Q) and a.e. in Q
j=1

for every € > 0 sufficiently small.

By (12.3.4), the convexity properties of f, Lemma 11.2.2, and by re-
calling that 372, V7,7 = 0 a.e. in €, it results that

(12.3.5) F"(Q,tw.) < l}ilm sup | f(hz, tVwy)dx =
——+00

:hmsup/ f(hm,tZ(Zj—FV’Ui)’YZ’j‘F
Q

h—+o0 =1

m
—t Z “ZJ+SJ+”h )V, )df’f <
j=1

h— 400

m
< tlimsup/ < Z z; + VU ) dr+

t & . .
+(1—-1¢) limsup/ﬂf<h:1:7 1% Z(UZJ + s+ vfl)VrnyvJ>da: <

h—+o0 j=1

m
< tz lim sup/ vl (z) f (hx, zj + Vv'}jl) dx+
Q

J=1 h—-+oco
. t N j €.j
+(1 —¢)limsup [ f| he, — E (uz; + 55 +vp —u)Vy,” |de <
h—+oco JQ 1 -1 j=1

<t limsup/ f (hx, zi + ij) dr+
-Z; h—+oo JonQt ! h

+(1-1) hmsupZ/ f (hz,0) dz+

h—+4oo =
m

t . .
+(1—-1) limsup/ fl he,— Z(uzj + 55+ vl —u)Vy7 |de <
a\ur,Q;, 1t

h—+o0

< chm sup/ f (ha:, zj + Vvi) dx+
Qnet,

h—-+oco
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+(1-1) hmsupZ/ f (hz,0) dz+

e
S t & , _
+1—1) th Sup/ | he, — Z(Uzj + s+ vl —u)Vy? |de
=1 h—+oo Jana;, 1—-t =

for every € > 0 sufficiently small.

On the other hand, let 0. = 0.(Q4,...,Q,) be given by (11.2.6). Let
us observe that, for a fixed e > 0 sufficiently small and ¢ € {1,...,m}, the
number of the sets ©; such that dist(€;,§;) < ¢ is less than or equal to
oc. Let {Q,,...,9Q;, } be a subset of {Qy,...,Q,} containing all the sets
Q; satisfying dist(£2;,€;) < e. Consequently, as regards the last term in
(12.3.5), it results that

m

t . ,

j=1

. 1 ; |
B /Q \Q; f<hx’z U_Usm(uzjk + Sj. -‘r’l}glk —u)Vry Jk)dx <

k=1

E t .
= h T \Uz; ; Ik _ Ik d <
O’E/Q\Q ( x7051_t(u3k+sjk+vh u)V7 ) "
E t .
Ntz f(”’%— Uz, + S U — )V ’”“) dz+
=1 ¢ /(Qi\ﬂm)mﬂxs 1— t( ik Jk n )

—|—/ f(hz,0)dz
Q\Q; .

for every i € {1,...,m}, € > 0 sufficiently small, h € N.
We now observe that there exists (u) € ]0,4+o00[ such that

e (Q1,..., Q) < o(u) for every € € ]0,e(u)].

Fix € € ]0,(u)[. Then, since
|-

our choice of ¢ provides that

t
1—-t¢

(uzj+sj+vi—u> <o.——

2| Vuleoy + Ve
Le=(Qnaf,) -

for every h sufficiently large, j € {1,...,m},

oe

¢ .
Oe—— uz,—f—s»—i—vj—u) < -
Et —t ( 7 J h LOQ(QQQIE) 256”3”\/50’5
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for every h sufficiently large, j € {1,...,m},

i.e.

(12.3.7) 06% (uzj () +s; + vfl(ac) - u(m)) €

B o€ oe
256n3"\/no.’ 256n3"\/no.

for a.e. T € (QZ \ Q. ) N Q ., every h sufficiently large, j € {1,...,m}.

Then (12.3.7), an argument similar to the one used to get (12.2.7), the
convexity properties of f, and Lemma 11.2.2 provide that

o 1
(12.3.8) limsupz —/ f<hx,
htoo oy e (@9 )nay,

t
1—-1¢

O¢

(s, +85 +0* —u) VA5 ) de <

Oc

1 o€
<limsup » — fo (hx, s —— V7 ’]k) dx <
h—+o00 k:ZZI O¢ (Ql\Q;E)mQ;E 256”3”\/50'5 h

<2 <Cf + 2/ f(y, O)dy) L (QZ \Q;E) for every € € ]0,e(u)],
y

where £ is defined by (11.2.1), and ¢y by Remark 11.1.2.
By combining (12.3.5) with (12.3.3), (12.3.6), (12.3.8), and by making
use of (11.2.5) and of the periodicity of f(-,0), it then results that

(12.3.9) F"(Q, tw,) <

<tZ£" (@n0f) (flu(z)+0) + (1-n > " (Q;s)/yf(y70)dy+
i=1
H1=0Y £ @\ 07) [ fo. 00y

+(1 4)225" )\ Q) <cf +2/Y f(y,O)dy)
i=1

for every e € 10, e(u)].

Observe now that, because of Lemma 11.2.2,

m
st_u”LOC(Q) = Z Uzy + 55— u)y™ <
=t L>(Q)
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< DMy + 55 = 01| gy y <M (2 IVull o ) + 1) €
j=1 ’

for every € € ]0,¢(u)],

and consequently that
(12.3.10) we — u in L>(Q).

Then, because of Proposition 3.3.2, (12.3.10), and (12.3.9), it results
that

(12.3.11) F"(Q,tu) < limi(r)lf F'(Q, tw.) <
£—

<yer@nm) (Fhon(z) +6) + (1 =027 (@ [ 7(3.0)ay

By passing to the limit in (12.3.11) as 6 tends to 07T, and recalling that
S LN Q) flom (25) = [ Flom (Vu)da, inequality (12.3.1) follows. m

We can now prove the finiteness result.

Proposition 12.3.2. Let f be as in (12.0.1), zg = 0, ¢ € [1,+00], C4(0)
be defined in (11.2.2), and F" in (12.1.6). Assume that (11.2.3) holds. Let
d € ]0,4o0[ satisfy (11.2.4). Then there exist r € 0,4[, and ¢ € |0, +o0|
such that

(12.3.12) F"(Q,u) < cL™(Q)

for every Q € Ay, u € Wb (R™) such that V| poe ) <7

loc

Proof. Let 2 € Ay, and @ be an open cube with Q CC Q.

Let 7 € ]0,400] to be specified later, and u € W2>°(R™) such that
IVl Lo (@) <7

Because of (12.1.9), it is not restrictive to assume u equal to 0 in R™\ Q.

Let S1,...,5 € R™\ @ be polyhedral sets with pairwise disjoint in-
teriors such that L"((R™\ @) \ Ué-:lSj) =0, and let P;,..., P, C Q be
n-simplexes with pairwise disjoint interiors such that @ = Ui, P;. For
every h € N let Pl ..., Pr},‘lh be the n-simplexes obtained by taking the
%-replies of Py,..., P, repeated %Q—periodically so that QQ = U}":hlPJh.

For every h € N let up, € PA(R™) be such that wuy is affine on each
n-simplex of {P}', ..., Pr}r‘l » }, equal to u on the vertices of the elements of
{P}, ... ,Pfrllh} and equal to 0 in each element of {S1,...,S;}. Then, since
for every h € N and j € {1,...,m"}, P]h intersects at most m™ elements
of {P}',..., P",}, we immediately obtain that

(12.3.13) o(up) <m™+1 for every h € N,
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(12.3.14) up, — u in L=(R"),

(12.3.15) Vup| L) < €l|Vul|pe(q) < r for every h € N,

where € is in [1, +oo[ and depends only on n.
Since, because of (12.3.15) and (12.3.13), it results that

)
<
256n3"/n(m™ 4+ 1)2(20 + 1)+ 6 —

)
< for every h € N,

256n37\/no?(up) (2 H%VuhHLoo(Q) + 1) +90

Lemma 12.3.1 provides that

(12.3.16) F" (Q,t_iuh) <
cr

<t [ Bt (v ) s a= 0@ [ 1000

5
for every h €N, # € [O’ 256n37y/n(mn + 1)2(26 + 1) + 5] ’

where fil s given by (12.1.1). B
In (12.3.16) it is possible to take ¢t = 5 if and only if

52
12.3.17 < )
( ) "= E(256n3" n(mn + 1)2(20 + 1) + 0)

furthermore, since clearly ¢ > 1, it results that r € ]0,J][. _
By choosing r as in (12.3.17), from (12.3.16) written with ¢t = < it
then follows that

(12.3.18) F"(Q,up) <

<= / £ _iVuh do + (1 — z),C"(Q)/ f(y,0)dy for every h € N.
0 Jo oM \or ) v
We now observe that, by (12.3.15) it results

)
—Vuh

cr

(12.3.19) < 6 for every h € N,

Lo ()
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and that, by using (12.0.1) and (11.2.4), fZ  turns out to be bounded in
B;(0). Consequently, by (12.3.18) and (12.3.19) it follows that

Bs(0)

(12.3.20) F"(Q,up) < (m_mf§0m+Lf(y70)dy> L£7(€).

Finally (12.3.14), Proposition 3.3.2, (12.3.20), and (11.2.5) provide
(12.3.12) with r satisfying (12.3.17) and ¢ deduced by (12.3.20). m

§12.4 Representation on Linear Functions

Let f be as in (12.0.1), ¢ € [1,+o00], and F’, F” be defined in (12.1.6). In
this section we prove that, for every bounded open set Q, F'(£2,-) = F"(9Q, )
on the class of the linear functions, and give a representation result for their
common value.

Lemma 12.4.1. Let f be as in (12.0.1), ¢ € [1,+00], fi.  be defined in
(12.1.1), and F" in (12.1.6). Then

(12.4.1) F"(Qu.) < LMQ)se™ fl(z) for every Q € Ay, z € R™.

Proof. Fix Q2 € Ay, and z € R™.

In order to prove (12.4.1), we can assume that sc™fl, (z) < +oo.
Then, for every e € ]0,+ocl, there exist zz € R™ and v. € W) (Y) N
L2 (R™) satisfying z. — z as ¢ — 0, and

(12.4.2) Sc_fgom(z) +2e > fgom(zs) +e> / fy, ze + Vo) dy.
Y

For every ¢ € ]0, +oo| let {vy} € WUY(R™) N LS, (R™) be defined by

loc loc
= 30e(h-). It is obvious that vy, — 0 in L>(£2), consequently, because

Uh
of (12.0.1) and (12.4.2), it results that

(12.4.3) F"(Q,u,,) <lim sup/ f(hz,ze + Vop)dx =
h—+4oc0 JQ

= £7@) [ sz + To)dy < £(0) (5 () +2)
Y
for every € > 0.

Inequality (12.4.1) now follows from Proposition 3.3.2 as ¢ tends to 07
in (12.4.3). m

To prove the reverse inequality of (12.4.1) with F” replaced by F’, we
need some technical lemmas.
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Lemma 12.4.2. Let f be as in (12.0.1), q € [1,+00], and F’ be defined in
(12.1.6). Assume that f(-,0) € L{ _(R™). Then

loc
F'(Q,tu) <tF'(Q,u) + (1 — ) L™(Q) /Y f(y,0)dy

for every Q € Ag, u € Li5.(R™), t € [0,1].
Moreover similar inequalities hold for F"', F' , F" in place of F’.
Proof. The proof follows trivially from (12.1.8), and the obvious inequality

F'(©,0) <liminf | f(hz,0)dx = E"(Q)/ f(y,0)dy. [
h=+o0 Jo Y

Lemma 12.4.3. Let f be asin (12.0.1), q € [1,+o00], and F' be defined in
(12.1.6). Then

1 1
—nF,(Il + 7’1)/, UZ) = —nF/(l‘g + T’QY, UZ)
r r

1 2
for every x1, 9 € R", 71, r2 €]0,+00], z € R™.

Proof. Let z1, z2 € R", r1, 2 € ]0,4+00[, z € R™ be as above, and let
S1 < 7Ty, So > To.
In addition, let {mp} C Z™ be such that

Mh)i . . m
(12.4.4) ( }:) > (x1); for every i € {1,...,n}, hEIJIrloo Th =11,
let {kn} C N satisty
kn st . kn s
12.4. — < —= fi N 1 _—=—
( 5) n s or every h € N, }Lirfw N -

and let {ny} € Z™ be such that

(mn)s < (z2); for every i € {1,...,n}, lim L Z3.

12.4.6 =
( ) h h— 400 kh

Let us prove that

1 1
(12.4.7) —F'(z1 + 1Y, uz) > —F' (22 4+ 1Y, uz).
1 L)

To do this we can assume that T%F’ (x1+7mY,u,) < +00, so that there
1

exists {un} € W,H9(R™) N L2 (R™) with up, — u, in L(z; 4+ 7Y, and

(12.4.8) F'(z1 +mY,u;) > lim inf/ f(hz, Vup)dz.
x1+r1Y

h—+4o00
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By (12.4.8), and (12.4.4) we thus have that

(12.4.9) F'(z1 +7Y,u;) > lim 1nf/ f(hx,Vuy)dx =
—1+le

h—-+oco

=fmint [ 7 (o Vo (o4 52)) o =

= liminf ha, Vup)d
pmint | stk Vo

where vy, = up,(- + ) obviously satisfies vy, — u, + 2z - 21 in L>(s51Y).
We now observe that (12.4.5) yields

(12.4.10) /Yf(h%Vvh)de <%>”/L Yf(khy,wh(kh >>dy>

2 ( ) / f(kny, Vwy)dy for every h € N,

where w;, = kivh(kh -) obviously satisfies wj, — u, + i—fz <x1 in L>®(s2Y).

Finally, by (12.4.6) we infer that

(12.4.11) liminf/ Fkny, Vwp)dy =
h—-+oco s2Y

:Hminf/ f (kh (y+@> ,th> dy =
h—+o0 s2Y kh
. np
= hmmf/ f (khy, Vwp <y — —)) dy >
h— o0 Z_:+32y kh

> lim inf fkny, Vap)dy > F’ (xg + 1Y, u, + %2,. T — 2 $2> ,
h—4o00 ZotraY S1

where z, = wp(- — Z—:) satisfies zp, — u, + i—fz cx1 — 2T in L® (a9 +12Y).
In conclusion, by (12.4.9)+(12.4.11), and (12.4.5) we deduce that

n
F'(x1+7rY,u,) > <ﬂ> F’ <m2 + oY, u, + 52, x1—2- x2> =

52 S1
n
— <8—1> F/($2+T2Kuz),
52

from which inequality (12.4.7) follows as s; — 71, and s3 — 75 .

By exchanging the roles of z1 and x5, and of 7y and ry in (12.4.7), the
proof follows. m

©2002 CRC Press LLC



Lemma 12.4.4. Let f be as in (12.0.1), q € [1,+00], and f _ be defined
in (12.1.1). Then

fi . (2) = inf {/Y f(hx,z+ Vu)dz :v € Wgég(Y) N LOO(Y)}

for every z € R", h € N.

Proof. Let z € R™, and h € N.
Let us first prove that

(12.4.12) fL (2) < inf{ / f(ha,z+ Vv)dz :v € WhI(Y) N L°°(Y)}.
Y

Let v € WL49(Y) N L°°(Y), and define vy, as

per

h—1 ) .
1 7 in
vh(xl,...,mn):ﬁ E v<x1+%,...,xn+z>.

01,0500 =0

Then vy, € Wip?(R™) N L®(Y), and is +Y-periodic.
Then, by using the convexity and periodicity properties of f, by per-
forming the change of variables y = = + (“72", and by exploiting the

Y -periodicity of v, we have that

(12.4.13) / f(hx, z 4+ Vup)dx <
Y
h—1 . .

1 .

<— /f(hx,z—&—Vv(m—i-i(“’ ’Z"))>dgc:
h i1yeeyin=0"Y h

;b

= Z [1_1 ..... in)+yf(h:z:—(11,...,zn),z+V1}(x))dx:

P10yt =0 R

= — flha,z+ Vou(z))dx =
X i S @)

A1 geeeyin=

h—1
—i X[ stz Vowde= [ fiha, 4 Toyde

i1,enyin=0

We now observe that Oy vy, is actually Y-periodic, therefore, by the
%Y—periodicity of vy, and the Y-periodicity properties of f, we conclude
that

(12.4.14) Lo (2) < /Yf(y, z+ V(O1/non))dy =
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:/Yf(y,z—&-Vvh( ))dy—h”/l Flhe, z + Von (z))de =

= Z / flhx — (i1, ..., in), 2+ Vop(z))dx =

i1y00y0n =0

= Z / (hx,z+Vvh (x—i—M))dx:
(1onin) | 1y h

01,000t =0

- Z / . hm,z+Vvh(:v))da?z/yf(hx,z—l—vvh)dx

01 5e00yin =0

In conclusion, by (12.4.14), and (12.4.13), we deduce (12.4.12).
We now prove that

(12.4.15) inf {/ f(hz, 2+ Vo)dz 1 v € Wad(Y) N LW(Y)} < flom(2).
Y

Let v € WhI(Y)NL>(Y). Then Oy,,v is Y-periodic, and the period-

icity properties of f provide that

1nf{/fhx z+Vu)dz :ve Wyd(y )ﬂLOO(Y)}g

§/Yf(has7z+Vm(Ol/hv)(x))dx:/Yf(hx,z—i—vyv(hx))dx:

—%/1MM+%MM@=
hY
1 h—1

= [y, z+ Vyo(y))dy =
h Z ‘/(ilv ,in)"ry Y

0150y =0

= Z /fy— (i1, sin), 2+ Vyu(y — (i1,...,1n)))dy =

11,000yt =0

=/f@¢+vw@,
Y

from which (12.4.15) follows.
By (12.4.12) and (12.4.15) the proof follows. m

Lemma 12.4.5. Let f be as in (12.0.1), z0 = 0, q € [1,+oc], 5‘1(0) and
fi . be defined in (11.2.2) and (12.1.1) respectively, and F' in (12.1.6).
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Assume that (11.2.3) holds. Let z € R™ be such that F'(] — 1,2[",u,) <
+00. Then )
FL(tz) < +oo for every t € [0,1].

Proof. By the above assumptions there exist {vy} C I/Vli’cq(R”) NLE.(R™)
and {h} C N strictly increasing such that v, — u, in L*°(] — 1, 2["), and

(12.4.16) / f (hxx, Vop, ) dr < oo for every k € N.
1—1,2["

Since (11.2.3) with zp = 0 implies (11.1.3), for a fixed n € ]0, 1], let
{1} be given by Lemma 11.1.1 applied to r, = h for every h € N, |—n, 1+
n[™ and K = [0,1]". Because of (11.1.7) and (11.1.8) of Lemma 11.1.1, it
then results that for a.e. x € R™ and every h € N the sum ), .. ¥p(z+1)
is actually extended only to a finite set of indices 4, and that

(12.4.17) Z Yp(r+1) > 1 for a.e. € R", and every h € N.
iezn

For every h € N let 15, be defined by

@h(x) = Yn()

— for a.e. z € R".

Zjezn wh(J? + ])

Then, for every h € N, Un € WHI(R™) N L=®(R™), ¢, = 0 ae. in R™\
]—n,1+n[" and 0 < 4, <1 a.e. in R™. Moreover,

- . Yp(x + 1)
(12.4.18) Un(x +1i) = =
ieZZ:n zezz:n Zjezn Up(x + 7 +1)
= Z Yz +19) — =1 for a.e. x € R", and every h € N.
icezn Zjezn wh(«r + j)

Let now {up} be the sequence of functions defined by
un(x) = uz(z) + Y (on(w + ) = us(z +0)gn(z +1)
iezn
for a.e. x € R", and every h € N.

Then, by using the properties of {Qﬁh}, it is easy to verify that, for every
h € N, the above sums are extended only to a finite set of indices ¢, and,
consequently, that u, € Wllog(R”) N L. (R™). Furthermore it also results
that

(12.4.19) (up, —u.) € Whi(Y)n L*®(Y) for every h € N.

per

©2002 CRC Press LLC



In fact

(un —uz)(z+e;) = Y (va(z+ej+i) —us(z+e;+1i) Yn(x+e;+i) =
VAL

=Y (onlz +i) —ua(x + 1) Gz + 1) = (up — uz) ()
iezn
for a.e. z € R", and j € {1,...,n}.

Let now t € [0, 1]. Let us prove that there exists k; € N such that
(12.4.20) /Y f (P, tz 4+ 1V (up,, — u.)) do < 4o0.

In fact, because of (12.4.18) and of the convexity properties of f, it
results that

(12.4.21) / f(hpz, tz + tV(up, —uy))de =
Y

= /}/f(hkx,tz“r‘t Z U, (x4+1)V (v, —uz) (244) +

ieLm

+t Z (vp,, —z ) (241) Vb, (a:+z)> dr =

ieZn

:/ f(hkx,t Z 1/~)hk(x+i)Vvhk(x+i)+
Y

IS4

+t Z (vp, —uz)(a:—i-i)Vihk (a:+z)> de <

ieZn

< t/ f(hkfv, Z Uy (z + 1) Vop, (z + i))d:c+
%

IS AL

t -
+(1—t)/ Fl ez, — > (on, —ws)(z + )V, (z + 1) | do
Y -t
for every k € N.
To estimate the last two integrals in (12.4.21) set I = {i € Z" :
(Y +i)Nn]—mn,14+n[* # 0}. Then I has 3" elements,

(12.4.22) L7(]—1,2["\ Uier (Y +14)) =0,
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and, because of (12.4.18),

(12.4.23) Z?/;h(x +i)=1for a.e. x €Y, and every h € N.
iel

The convexity and periodicity properties of f, (12.4.23), (12.4.22),
and (12.4.16) provide the finiteness of the first integral in the last term
of (12.4.21). In fact

i€Zm

(12.4.24) /Yf (hkx, > Uny (@ +8) Vg, (= + z’)) dx =

=£j<m@§ijx+wwmw+w>ms

i€l

< Z/ Uny (@ +0) f (i, Vop, (2 + 1)) da <

el

<Y [ ruly =0 Vo) dy =3 [ (. Vo) dy =
Y +i

iel iel Y Y+i

:/} { f(hry, Vo, )dy < +o00
1,2["

for every k € N.

In order to treat the last integral in (12.4.21), for ae x €Y, ev-

ery k € N, and 7 € I let us set )\( )( ) = S whk(zﬂﬂ)’ ﬂ;(;)( ) =

and observe that, by (12.4.17), it results 0 < )\,(C)( )

Yy, (T+19)
<ZM” Uy (2 +i+9)??

, 0 < M(z)( ) < i forae x €Y, everyk € Nandi€ I. Then the
convex1ty properties of f provide that

(12.4.25) /Y f <hkx, %—t Z (vh,, — uz) (@ + 1)V, (x + z)) dr =

i€EZn

= /Yf<h’fx 3 Z 31n (0n, — uz) (@ + ) Vi, (x+i)>dx <
< Z / (hkx 3"

el

(’Uhk —uy)(x + i)VdN)hk_ (x + z))dm <

<Z/<W”n @WUMFMWMWMHW

iel
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2 (@) (ony ) i) 3 Vi, (m+z’+j)+(1— A}(j)(lﬁ)ﬂ,&l’)(l))O))dm <

jezZn
>/ (hx 32 (o ) o+ ) ) dot
el
+Z/ <hkm —3n 27 (vhk u,)(x +1) Z thk(x+i+j)>dw+
i€l JjeZn

—|—3"/ f(hgz,0)dx for every k € N.
Y

Consider now the first term in the last sum of (12.4.25).
Fix ¢ € I. Then the periodicity properties of f provide that

(12426) L f <hk(£,3n21 t(vhk — uz)(m + Z)V?/)hk ((E + Z)) dx =

:/ f(hk(y—i),?)"?l

Vi

=/ f <hky73"2
Yi 1

Since Y +1i C | —1,2[*, and v, — u, in L>(] — 1,2["), it results that
there exists k,; € N such that

L~ )V ) ) o =

t
— t(vh’“ — uz)Vz/;hk> dy for every k € N.

(12.4.27) 3"2

(o = 1)) € |~ e |

64n3"\/n’ 64n3"/n

for a.e. y € Y 47 and every k > ky 4,

1—-1

where ¢ is given by (11.2.4). Consequently, an argument similar to the one
utilized to get (12.2.7), together with (11.1.10) of Lemma 11.1.1, yields

(12.4.28) / f (hky,3”2 ' (on, — uz)vwhk) dy <
Y i -t

on
< £ (hk% 7V¢h ) dy < 400 for every k > k; +,
/Y+i 64n3"y/n " "

where (%) is defined by (11.2.1).
By combining (12.4.26) with (12.4.28), the finiteness of the first term
in the last sum of (12.4.25) is obtained, i.e.

(12.4.29) Z/ (hkx3 2

el

- (Un, (2+0) —us(2+9))
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Vibp,, (m—i—i))dx < 400 for every k > ki 4.

Consider, now, the second term in the last sum of (12.4.25).
Fix i € I. Then the periodicity properties of f provide that

t
1-t¢

(12.4.30) Lf(hkx —3"2 (0n, —uz)(@+i) > thk(x+i+j)>dx —

jezZn

=/ _f(hk(y—i)7—3”2lit(vhk —us)(y) Y Vz/}hk(yﬂ))dy =
Y +1

jezn

=/ ‘f<hky7 —3"27 it(vhk —u2)(y) > Vi (y +j)> dy
Y+

jezn
for every k € N.
Let J;={j€Z": (Y +i)N]—n—7,1+n—j["# 0}. It is obvious that

J; has 3™ elements. Consequently, (12.4.30) and the convexity properties
of f imply that

(12.4.31) /Yf<hka:7 —3”21 t_t(vhk —uy)(z+1) Z Vibp,, (a:—l—i—l—j))dx =

jezZ™

1
= / f<hky,—3"21 (o — ) )3 Y S—nvwwﬂ))dy <
Y+i

J€J:

< Z ., / (hky, —9m2 1 i t(’Uhk —uz)(y) Vo, (y +j)> dy

Jjedi
for every k € N.

By arguing as in (12.4.27) and (12.4.28), by using also the periodicity
properties of f, and (11.1.10) of Lemma 11.1.1, it follows that

(124.32) ) /y+’f (hky, _grp ! (Vhy, = w2) Vi, (y +j)> dy <

i 1-t¢

SZ/

jer, 'Y

0
= Z /Y+'+‘f(0) (hk(y—j),mvﬁbhk(y)) dy =
it+j

JEJ;

0 )
O (hky, rngzﬁvwk (y +J)> dy =
+1
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n
= § £ (hky __ gy, ) dy < +o0
, /Y+z'+j 64n3"y/n §

JjeJ;
for every k sufficiently large.

In conclusion, by combining (12.4.31) with (12.4.32), we obtain that

(12.4.33) Z/ (hkx —3m9

i€l

— (On —uz) (2+1)

Z Vb, (:c+i+j)> dr < +oo for every k sufficiently large.
jeZn

Inequality (12.4.20) now follows by combining (12.4.21) with (12.4.24),
(12.4.25), (12.4.29), and (12.4.33).
Finally Lemma 12.4.4, (12.4.19), and (12.4.20) provide the lemma. m

We now prove the reverse inequality of (12.4.1) with F” replaced by
F'.
Proposition 12.4.6. Let f be as in (12.0.1), zo = 0, q € [1, +0o0], C7(0)
and fl_ be defined in (11.2.2) and (12.1.1) respectively, and F' in (12.1.6).
Assume that (11.2.3) holds. Then

(12.4.34)  L7(Q)sc™ fL (2) < F'(Q,u,) for every Q € Ag, z € R™.

Proof. Fix z € R™. Let us first consider the case Q2 =Y.
Clearly we can assume that

(12.4.35) F'(Y,u,) < +o0.
Consequently Lemma 12.4.3 yields
(12.4.36) F'(]—1,2[" u,) < 4o0.

Fix t €]0,1[. Then (12.4.36) and Lemma 12.4.5 provide that f{ _(tz)
< +00, whence there exists v € W2(Y) N L>(Y') such that [, f(y,tz +
Vou)dy < +00.

For every h € N let us set v, = +v(h-). Then vy, € WoA(Y)NLs,(R™)
for every h € N, and v, — 0in L>=(Y).

On the other hand, (11.2.5), (12.4.35), and Lemma 12.4.2 provide that
F'(Y,tu;) < 4o00. Hence, there exist {un} C Wl (R™) N L. (R™) and

loc

{hi} C N strictly increasing such that up — tu, in L>°(Y") and

(12.4.37) F'(Y,tu,) = lim /fhka: Vup, )dx.

k——4oc0
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Let now ', Q" be open sets such that Q' cC Q" cC Y, {¢n} be
given by Lemma 11.1.1 applied to 7, = h for every h € N, Q” and K = (V/,
and, for every k € N, let w;, € Wli’cq(R”)Y) N Ly (R™) defined by wy =
Yhy Uy, + (1= Pn,) (vn,, + tus).

It is obvious that wy — tu, € W (Y) N L>(Y) for every k € N, and

wy — tu, in L®(Y). Consequently, because of Lemma 12.4.4, and of the
convexity properties of f it results that

(12.4.38) o (t22) =
= inf {/ [ (hyz, 22 + Vo) dx:v € Wgég(Y) N LOO(Y)} <
Y
< / f(hz, 22 4+ V (tH(wy, — tus))) do = / [Pz, tVwg)de <
Y Y
<t [ b, in, Vun, + (1= 61, (Ton, +t2))da+
Y
+(1-1¢) /Y f (hkx, %(uh,c — Vp,, — tuz)V¢hk> dzx <
< t/ f(hgz, Vup, )dx + t/ _ f(hex, Vu(hgo) + tz)da+
Y Y\
+(1-1¢) /Y f (hkac, %—t(u}“" — Vp,, — tuZ)thk> dx

for every k € N.

On the other hand, it turns out that up, — vp, — tu, — 0 in L>(Y).
Consequently, by an argument similar to the one used to get (12.2.7), there
exists k; € N such that, for every k > ki,

t
(12.4.39) / f (hkx, T3 (Un,, — O, — tuz) Vq/)hk> dx <
v _
5dist(§Y, 9Q")
< O (hpo, —2 " Ly d
< /Yf < K g/ Yn, | dz,

where f(©) is defined by (11.2.1).
Then (11.1.10) of Lemma 11.1.1 and (12.4.39) provide that

t
(12.4.40) llicmiup/ f <hkm, T—3 (up,, — vn, — tuy) V?,th) dx <
— 400 Y -

<erL'(Y) = ¢y,

where cy is defined in Remark 11.1.2.
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By passing to the limit in (12.4.38) as k tends to infinity, (12.4.37) and
(12.4.40) provide that

FU(22) < FU(Y, tuy) + £ (Y\Q’)/ £, Vo +t2)dy + (1 — ey,
Y

from which, by using also Lemma 12.4.2, it follows that
(12.4.41) L (t22) <

<P +(1-0) | w.0ay+£0N\D) [ Fost)dy+(1-0c;

Inequality (12.4.41) holds for all ¢ € [0, 1] and @’ CC Y. Therefore, as
' increases to Y, and t converges to 1~ in (12.4.41), by (11.2.4) it results
that

(12.4.42) sc” fl(z) < liminf £ (t%2) < F'(Y,u.).
t—1-
Consider now the general case in which  is a bounded open set.
For every k € N let QF, ..., ka7 BY, ..., B’;lk be cubes with faces

parallel to the coordinate planes such that Q¥ N Q? =0if i # j, Uiy Q;? C
Q, B cc QF for every j € {1,...,ms}, and

1 1
n my k n k k
(12.4.43) LM (Q\ U Q7) < o £ (QF \ Bj) < ik
for every j € {1,...,ms}.
From (12.2.2) of Proposition 12.2.1 it follows that

(12.4.44) F'(Qu,) > F (Q,u.) > F (U Q% u.) >

‘77
mi
ZZF’_( S Uy) >ZF’ ,u,) for every k € N.

On the other hand, Lemma 12.4.3 and (12.4.42) provide that
(12.4.45) F'(B¥,u.) = £" (B¥) F'(Y,u.) > £ (BY) sc™ fi . (2)
for every j € {1,...,my}, k€ N.
Therefore, by combining (12.4.44) with (12.4.45) and (12.4.43), it re-
sults that

mp
(12.4.46) F'(Qu.) > Y L™ (Bf)sc™ fi(2) =
j=1

— L (OB s (a) 2 (£ 2 ) s (2

for every k € N.
As k tends to infinity in (12.4.46), inequality (12.4.34) follows. m

Combining Lemma 12.4.1 with Proposition 12.4.6, the result below
follows.
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Proposition 12.4.7. Let f be as in (12.0.1), zo = 0, q € [1,+00], C(0)
and f  be defined in (11.2.2) and (12.1.1) respectively, and F', F" in
(12.1.6). Assume that (11.2.3) holds. Then

F'(Q,u,) = F"(Qu,) = F (Q,u,) = F"(Qu,) = L*(Qsc™ fL(2)

for every Q) € Ag, z € R™.

§12.5 A Blow-up Condition

In this section we prove that the functional F” defined by means of (12.1.6)
satisfies a blow-up condition.

Lemma 12.5.1. Let f be as in (12.0.1), q € [1,+00], and F’ be defined in
(12.1.6). Then

F (tQ,Ol/tu) = t"F' (Q,u) for every Q € Ay, u € C°(R™), t €10, 400|.
Proof. Proof. Let €, u, t be as above. Let us prove that
(12.5.1) F' (19,01 0u) > t"F(Q,u).

We can assume the left-hand side of (12.5.1) to be finite, so that for
every A CC Q there exist {hr} C N strictly increasing, and {up} C
Wl (R™) N LS (R) with up, — Oy pu in L%(tA), and

loc loc

F' (9, O1ju) > lim / f(hgz, Vup, )dx.

k—+4o00

By performing in the last inequality the change of variable x = ty, we
deduce that Oyup, — u in L>°(A), and, by (3.2.5), that

(12.5.2) F' (9,01 p4u) > " lim / f(thgx, VOsup, )dy >

k—+o00
> "I (L*°(A)) liminf Fyj, (A, u) for every A € Ag with A CC Q.

h—+oco

At this point, by (12.5.2), Lemma 12.1.2, and (3.2.5), we infer (12.5.1).
By symmetry, the reverse inequality of (12.5.1) follows. This completes
the proof of the lemma. m

Proposition 12.5.2. Let f be as in (12.0.1), ¢ € [1,+o0], and F’ be
defined in (12.1.6). Then

(12.5.3) hmsup —F" (Qr(x0),u) > F.(Q1(x0),u(xo) + Vu(zg) - (- — x0))

root T

©2002 CRC Press LLC



for a.e. zo € R", and every u € Wo™°(R™).

loc

Proof. Let xg, u be as in (12.5.3). Because of (12.1.10), Proposition 12.1.1,
and Lemma 12.5.1 it results that

(12.5.4)
hnl?ipripwczr(xo), )‘l“i?ip_ " (Qr(0), Tlzo)(u — u(ao))) =

> lim inf FL(Q1(0), 0, T[xo](u — u(xo))) =

=liminf F" (Q1(x0), T[—20]OT[xo](u — u(wp))).

r—40+

We now recall that
T[—20]O,T[wo](u — u(xg)) — Vu(zo)(- — 20) in L=(Q1(z0)) as r — 0.

Then (12.5.3) follows from (12.5.4), the L>°(Q1(zo))-lower semicontinuity
of F' (Q1(xy),), and (12.1.10). m

§12.6 Representation Results

In this section we prove some integral representation result for the I' ~-limits
of the functionals in (12.1.3).

Proposition 12.6.1. Let f be as in (12.0.1), zo = 0, q € [1,400], C7(0)
and f — be defined in (11.2.2) and (12.1.1) respectively, and F', F" in
(12.1.6). Assume that (11.2.3) holds. Then

F' (Qu)=F"(Q,u) = / sc” fl(Vu)da
Q
for every Q2 € Ag, u € Ugspy W5 (R™).

loc

Proof. Let {hi} C N be strictly increasing. Then Proposition 3.4.3 pro-
vides the existence of {hg;} C {hy} such that

(12.6.1) sup {F(LOO(A)) lim inf Fj, (Au): ACC Q} =

Jj—+oo

= sup {F(LOO(A)) limsup Fy, (Au): AcCC Q}

Jj—+oo
for every Q € Ag,u € Li;.(R").
Let now p € |n,+o0c]. Then I/Vl1 P(R™) C CO(R") C L2 (R™). Conse-

loc

quently, for every Q € Ag, we can consider the functional G(€2,-) defined
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in Wﬁ)Cp(R") that to every u assigns the value in (12.6.1), and prove that
G fulfils the assumptions of Theorem 9.3.8.

In fact (9.3.8) is trivial, (9.2.5) follows from (12.1.10), (9.3.31) from
Proposition 12.1.1, (9.3.32) from (12.1.7) and Proposition 12.2.1. More-
over, (9.3.33) comes from (3.2.5), Proposition 12.5.2, Proposition 12.4.7
and (12.1.10), and (9.3.34) from (12.1.8).

In order to verify (12.3.3) we preliminarily observe that Proposition

12.4.7 yields that fg in Theorem 9.3.8 agrees with sc fhom, and that, by
Proposition 11.2.1, we have that 0 € C’q( ) C domfhom C domsc fhom
Therefore (12.3.3) Wlth 2o = 0 follows from Proposition 12.3.2, and (3.2.5).
Moreover (9.3.7) too holds, in fact, given Q € Ag, and an open set with Lips-
chitz boundary A such that A CC €, Proposition 3.3.2 yields that the func-
tionals I'™(L*°(A)) liminf; | Fh, (A,-), and I'"(L>(A))limsup;_,
Fh,, (A, -) are WEP(Q) (Ngept,+00WH4(R) if p = +00) -lower semicontinu-

ous in Wli’cp(R"), and hence that so is also G(€2,-), since it agrees with the
last upper bound of the family of such functionals obtained letting A vary
with the above properties.

Consequently, by Theorem 9.3.8, Proposition 12.4.7, and (3.2.5) it fol-
lows that

G(Q,u) = / sc_fgom(Vu)dx for every Q € Ap,u € VVI})C’)(R”)
Q
Then we have proved that
for every {hy} C N strictly increasing there exists {hx;} C {hy} such that

sup {F_(LOO(A))Ijlg_il_lolf Fh,, (Au): ACC Q} =

= sup {I‘(LOO(A)) limsup £y, (A,u): AcCC Q} =

Jj—-+o0o
/ SC fhom(Vu)d:c fOI' every Q e »AO, u e Wll P(Rn)
Q

Because of this, and by Proposition 3.4.2, we thus have that
F' (Qu) =F"(Q,u) = / sc” fL(Vu)da
Q

for every Q € Ag, u € W,oP(R"),

loc

from which, as p varies in |n, +00], the proof follows. m

The following representation result in the Dirichlet case holds.
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Theorem 12.6.2. Let f be as in (12.0.1), zg € R", ¢ € R, q € [1, +0o0],
Qe Ag, CUz) and f,, be defined in (11.2.2) and (12.1.1) respectively,
and F,.(Q,00,uy, + c,) in (12.1.3) for every r € ]0,4o0[. Assume that
(11.2.3) holds. Then

'™ (L>(Q)) liminf Fy /. (Q,0Q, uz, +c,u) =

e—0t

=T (L>(Q)) limsup F /. (2, 0, uz, + c,u) =

e—0t
= / sc™ fL(Vu)dz for every u € uz, + ¢ + Ugs Wy * (Q).
Q

Proof. Let u be as above, and let {,} C ]0, +o0[ be strictly decreasing
and converging to 0. o

Let F’" and F" be defined in (12.1.6), and F', F", F'(Q,09Q,u,, +¢, )
and F" (€, 00, u, + ¢,-) by (12.1.4) and (12.1.5) with rj, = 1/e, for every
h € N. Then, from Proposition 12.6.1, Lemma 12.1.2, and Proposition
12.2.2 applied to the function (z,z) € R™ x R™ — f(x, 29 + z) we obtain
that

/ sefl(Vu)de = F' (Q,u) < F' (Q,u) = F'(Q,09, uz, + ¢, u) <
Q

< F'(Q,00, uz + ¢, u) = F"(Q,u) < F”(Q,u) = / sc” fl(Vu)dz
Q

for every u € u,, + ¢+ US>nW01’S(Q),
from which, together with Proposition 3.2.3 and Proposition 3.2.6, the proof
follows. m
Regarding the Neumann case, the following result holds.

Theorem 12.6.3. Let f be as in (12.0.1), zo € R", q € [1,+00], CN'q(zo)
and f. = be defined in (11.2.2) and (12.1.1) respectively, and F, in (12.1.2)
for every r € 10, +oo[. Assume that (11.2.3) holds. Then

I (L>(Q)) lim(i)rifFl/g(Qu) =T (L>(Q)) limsup F (2, u) =

e—0t
= / sc™ fl(Vu)dz for every Q € Ay convex, u € Ugsn, W,°(R™).
Q
Proof. Let us first consider the case in which zy = 0.
Let p € |n, +].

Let F' and F” be given by (12.1.6). Then, by Lemma 12.1.2, Propo-
sition 3.2.3, and Proposition 3.2.6, it follows that

F’" (Q,u) < sup {I‘_(L‘”(A))liméEfFl/E(A,u) tAcCcC Q} <
E—
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< sup {F(LOO(A))limsup Fi/.(Ayu): AcCcC Q} < F"(Q,u)

e—0*+
for every Q € Ay, u € C°(R™).

Consequently, by making use of Proposition 12.6.1, we infer that

(12.6.2) sup {I‘(LOO(A)) liminf Fy /. (A,u) : A CC Q} =

e—0t

= sup {I‘(LOO(A)) limsup Fy /. (A,u) : A CC Q} = / sc” f(Vu)dz
Q

e—0t

for every Q € Ag, u € Wll’p(R").

oc

To complete the proof, let us verify that I'"(L>(-)) liminf. o+ F /.

and I'"(L*°(+)) lim sup, g+ Fj /. fulfil the assumptions of Proposition 2.7.4
with O = Ay, and U = W,5P(R").

By (12.1.7) they are increasing. Moreover, the continuity of the ele-
ments of Wli)’cp (R™) implies that T[—x0)O:T[xo]u — w uniformly in Q as
t — 17 for every Q € Ag, xg € R, u € Wé’f (R™), consequently, by Propo-

sition 3.3.2, (2.7.2) follows. Finally, because of (12.6.2), (2.7.3) too holds.
Consequently, Proposition 2.7.4 applies, and (12.6.2) yields

L™ (L(Q)) liminf Fy /. (Q,u) =

e—0+

=T7(L>(Q)) limsup Fy /. (2, u) = /Qsc_fgom(Vu)dx

e—0*

for every Q € Ay convex, u € W P(R™),

loc

from which, letting p vary in |n, +oc], the proof follows if zg = 0.
Finally, if zy # 0, the theorem follows from the above considered par-
ticular case applied to the function (z,z) € R" x R" — f(z,20+ z). m

By Theorem 12.6.3 we deduce the following result concerning the mixed
problem case.

Theorem 12.6.4. Let f be as in (12.0.1), zo € R", ¢ € R, ¢ € [1, +o0],
Q € Ay be convex, ' C 99, C9(z) and f_ be defined in (11.2.2) and
(12.1.1), and F.(Q, T, uy, +¢,-) in (12.1.3) for every r € |0, +o0[. Assume
that (11.2.3) holds. Then

I~ (L(Q)) liminf Fy /. (Q, T, uzy +c,u) =

e—0t

=T7(L>(Q)) limsup Fy /o (Q, T, uz, + c,u) = /Qsc_fgom(Vu)dx

e—0t
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for every u € US>nW1"S(R”) such that u =u,, +conT.

loc

Proof. Let 2, u be as above, and let {e5,} C ]0, +o0[ be strictly decreasing
and converging to 0. _

Let F', ", F'(Q,T, uy, + ¢,-) and F"(Q,T,uy, + ¢,-) be defined by
(12.1.4) and (12.1.5) with r, = 1/ep, for every h € N. Then, from Theorem
12.6.3, Proposition 3.2.6, and Proposition 12.2.3 applied to the function
(x,2) e R" x R" — f(x, 20+ z) we obtain that

/ sc i (Vu)de = T~ (L>®(Q)) lim(iJrif Fi/o(Qu) < F'(Q,u) <
Q e~

< ﬁ'(QJ‘,uzO +c,u) < ﬁ”(QI,uzO +ecu) < f"(Q,u),

from which, together with Proposition 3.2.6, Proposition 3.2.3, and Theo-
rem 12.6.3, we conclude that

/ sc” fil (Vu)de = T~ (L>=(Q)) lim(iJI+1f Fr/e(Q,T  uz +c,u) <
Q e

ST (L(Q)) limsup Fy e (T uzy +c,u) <

e—0+
< T7(L>(Q)) limsup Fy . (Q,u) = / sc” fl(Vu)da.
e—07t Q

This completes the proof. m

§12.7 Applications to the Convergence of Minima and of Mini-
mizers

In this section we apply the theorems of the previous one to deduce con-
vergence results for minima and minimizers of some classes of variational
problems.

To do this, we take f as in (12.0.1), p € |1,4o<], ¢ € [p, +o0], and
assume that (12.1.22) holds. Moreover, if C4(zy) is given by (12.1.20) for
every zg € R", we also assume that

(12.7.1) int(C%(z) # 0

for some zy € R™.
If f7.. is defined in (12.1.18), then Proposition 12.1.3 yields

(12.7.2) { |2[P < fI .. (2) for every z € R" if p € [1,400]

domf ~C Bg(0) if p = +o0.

We start with the case of Dirichlet minimum problems.
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Theorem 12.7.1. Let f be as in (12.0.1), p € |n,+o0], ¢ € [p,+00],
zo € R", C9(z) and f{  be defined in (12.1.20) and (12.1.18) respectively.
Assume that (12.1.22) and (12.7.1) hold. For every € > 0, 2 € Ay, 0 €
LY(Q), and c € R let

(12.7.3) i2(Q,8) =

= inf{/ f (E,Vu> dx + / Budz : u € uy, —&-c—l—Wol’q(Q)}7
Q ¢ Q
mgom(Qaﬂ) =
= min {/ sc” fir L (Vu)dx +/ Budx : u € uyy + ¢+ WolvP(Q)},
Q Q

and let {ue}eso C Uz +c+ W&’q(Q) be such that

lim (/Qf(g,Vus) dx+/ﬂﬁu€dx—¢g(9,g)> —0.

Then f{  is convex and satisfies (12.7.2), {i2(§2, 3)}e>0 converges as ¢ —
0t to m{_ (Q,0), {uc}eso has cluster points in L>(Q2) as ¢ — 0T, and
every such point is a solution of mgom(Q,ﬁ).

Moreover, if ¢ = p and (12.1.23) too holds, then sc™ ff. = fF. . for
every z € R"™ the infimum in the definition of f{ (z) is attained, problems

in (12.7.3) have solutions, and for every € > 0 one can take as u. a solution
of ig(2, 3).

Proof. The properties of f{  follow from (12.0.1) and Proposition 12.1.3.
Let €, 3, ¢ be as above, and, for every € > 0, let Fy /. (2,09Q,u., +c,)
be defined by (12.1.3).
First of all, we prove that the limit below exists, and that

(12.7.4) I7(L(Q) lim Fiye (2,00, 0z +c,u) =
E—

_ { Jas¢™ Hom(Vu)dz if u € us, + e+ WeP(9)
oo if w e L)\ (us + ¢+ Wy P(Q))

for every u € L™ (Q).
By (12.1.21), Theorem 12.6.2, and (12.1.19) it follows that

(12.7.5) ™ (L>(2)) limsup Fy /o (2,09, uz, + ¢, u) <

e—0*t

[ T T s 1370
- “+00 ifue LOO(Q) \ (uzo +c+ W()LP(Q))
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for every u € L>(Q).

On the other side, if u € L>°() is such that I'"(L°>°(2)) liminf, g+
F1/.(9,09, uz, +c,u) < 400, then, by Proposition 3.2.6, there exists ¢, —
0 such that I'"(L*(Q)) iminfy, 1 o Fr, (2,00, uyy + ¢, u) < +00.

Let {un} C u., + ¢+ Wy'%(Q2) be such that uj — u in L>(£2), and

= (L>(Q)) lﬁg}rgcf) F., (9,00, uy, + c,u) = légligf/ﬂ f (aVuh> dx.

Then, by (12.1.22), and the Rellich-Kondrachov Compactness Theo-
rem, we conclude that v € u,, +c + WO1 P(Q), and therefore, by Theorem
12.6.2, and (12.1.19), that

Fi(LOO(Q))lim(i)Iif Fr/e(9,0Q,uz, +c,u) > / sc” Al L (Vu)dz,
E— Q

from which, together with (12.7.5), (12.7.4) follows.
By (12.7.4), and Proposition 3.2.2, once we observe that the functional
u € L®(Q) — [, Budx is L°°(2)-continuous, we immediately obtain that

(12.7.6) = (L>*(Q2)) lir(l)l+ {Fl/E(Q,(?Q,uzO +ec,u) + / ﬁudm} =
E— Q
_ { Jose fL(Vu)da + [, Budz if u € uz + ¢+ Wy P (Q)
+00 if ue L®(Q)\ (uz + ¢+ Wy ()

for every u € L>(Q).

Let us now prove that the functionals v € L>(Q) — Fy/.(Q2, 09, uz, +
c,u) + fQ Pudz are equi-coercive.

To do this, let us consider only the case in which p € |1, +o0[, the one
in which p = 400 being similar.

In this case, since (12.1.22), and Sobolev Imbedding Theorem imply
that

F1 (9,09, uz, + ¢, u) +/ Budr >
Q

2 (1IVulll 0y = 18] sy llull =) = NIVl ) = ClAIL @ lullwra)
for every € > 0, u € uy, +c+ Wol’p(Q)a

for some C' > 0 not depending on h, and since every u € L () satisfy-
ing F:(Q,00,u., + c,u) < +o0 actually is in u., + ¢+ Wol’p(Q), then
{u e L®(Q) : Fi-(Q,00,uz + c,u) + [ fude < A} C uzy +c+{u €
Wo () : [[Vulll}, ) = ClIBI L@ lulwis@) < A} for every A € R, & > 0.
Consequently, the desired coerciveness follows from Proposition 4.4.4.
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By (12.7.6), and the equi-coerciveness of u € L*(2) — Fy,.(£2,09Q,
Uz + €, u) + fQ Budx, the assumptions of Theorem 3.3.8 are fulfilled with
U = L>*(Q), and the proof follows from Theorem 3.3.8, once we observe
that obviously

lim sup i5(€2, §) < E"(Q)/ F(ys20)dy +118] Lo (0 luzo +¢llr(@) < +o0. ®
Y

e—0t

We now treat the case of Neumann minimum problems.

Theorem 12.7.2. Let f be as in (12.0.1), p € |n,+], ¢ € [p,+00],
20 € R, C(z9) and f{, be defined in (12.1.20) and (12.1.18) respectively.
Assume that (12.1.22) and (12.7.1) hold. For every € > 0, 2 € Ay convex,
A €10, 400, r € ]1,+00[, and pu € M(Q) let

(12.7.7) ie(SL, A ) =

— inf f (E,Vu) de+ X\ [ |ul"de+ | udy:u e WH(Q) ¢,
Q € Q Q

mhom(Q» >‘a /1') =
= min { / sc” fi L (Vu)dz + /\/ |u|"dx + /_udu RS Wl’p(Q)},
Q Q Q

and let {u:}es0 € WH9(Q) be such that

. x , . _
Elir(r)l+ (/Qf(g,V%) d;v—i—)\/ﬂ|u€| dx—i—/ﬁugdﬂ 15(97)\,#)) =0.

Then f{ is convex and satisfies (12.7.2), {i-(Q, A, ) }e0 converges as
e — 0% t0 Mpom (2, A\, 1), {uc}eso has cluster points in L>(Q) as ¢ — 0T,
and every such point is a solution of myem (2, A, p).

Moreover, if ¢ = p and (12.1.23) too holds, then sc™ ff. = fF . for
every z € R™ the infimum in the definition offfom(z) is attained, problems
in (12.7.7) have solutions, and for every € > 0 one can take as u. a solution
of i (Q, A, ).

Proof. The properties of f  follow from (12.0.1) and Proposition 12.1.3.
Let Q, A, r, u be as above, and, for every ¢ > 0, let F,.(Q,-) be
defined by (12.1.2).
First of all, let us set

Jgudp ifue CO(Q)

B(Q,):ue L>®(Q) — {—l—oo if u e L®(Q)\ COQ).
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Then, by exploiting Theorem 12.6.3, and the L (€2)-continuity of the re-
striction of B(£),-) to W1P(Q), it is easy to prove that

(12.7.8) I~ (L>®(Q)) Elir& {Fi/c(Q,u) + B(Q,u)} =

- / S fitom (Vu)da + /—udu for every u € WH7(Q).
Q Q

Then, by (12.7.8), an argument similar to the one exploited in the
proof of Theorem 12.7.1, Proposition 2.5.1, and the Rellich-Kondrachov
Compactness Theorem it follows that the limit below exists, and that

(1279)  T=(L®(Q) lim {Fl/g(ﬂ,u) +)\/Q u|rdx+B(Q,u)} _

e—0

Jos¢™ flom(Vu)de + X [ |u|"de + [qudp  if u e WHP(Q)
+00 if ue L*(Q )\W1,p( )

for every u € L™ (Q).

Let us now prove that the functionals u € L>(Q) — Fy/.(Q,u) +
A [q lul"dz + B(Q, u) are equi-coercive.

To do this, we first recall that, since 2 has Lipschitz boundary, and
p € |n,+0o0], by (12.1.22), and Sobolev Imbedding Theorem there exists
C € [0, +00[ such that

Fi/e(Qu) + )\/ lu|"dz + B(2,u) >
Q

> IVulllZo) + Allul

27-(9) - |/~L|(ﬁ)”u”L°°(Q) >
> 1190l gy + Al gy — Cladl @l
for every e > 0, and u € W'P(Q).

Therefore, once we recall that every u € L*(Q) satisfying Fy,.(Q,u) <
+00 actually is in W'P(Q), we obtain that {u € L>(Q) : Fy,.(Q,u) +
AJg lul"dz + B(Q,u) < ¢} © {u € WHP(Q) : [[[Vulllf, ) + Mully- ) —
Clul(Q)|lullwr.r) < ¢} for every ¢ € R, £ > 0. Consequently, the desired
coerciveness follows from Proposition 4.4.3.

When p = +00, the same result follows from (12.1.22), and Proposition
4.4.3, once we observe that

Fuyel@) 4+ [ Julrde + B@0) 2 0 [ Julde — 1l @)l o) >
Q Q

> Nl ) — 1l @) ullws @)
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for every € > 0, and u € WH>(9Q).

By (12.7.9), and the equi-coerciveness of u € L>() — Fy,.(2,u) +
A [q lul"dz + B(Q, u), the assumptions of Theorem 3.3.8 are fulfilled with
U = L>*(Q), and the proof follows from Theorem 3.3.8, once we observe
that obviously
lim sup i (2, A, 1) <

e—0t

SE"(Q)/ Iy, zo)dy+/\/ |u20\rdar—|—/_u20du<+oo. ]
Y Q Q

The following result deals with another case of Neumann minimum
problems.

Theorem 12.7.3. Let f be as in (12.0.1), p € |n,+], ¢ € [p,+00],
zp € R™, C%(z) and f;  be defined in (12.1.20) and (12.1.18) respectively.
Assume that (12.1.22) and (12.7.1) hold. For every € > 0, 2 € Ay convex,
and € M(Q) such that (Q) = 0 let

(12.7.10) is(Q,u)inf{/ﬂf(;Vu) der/ﬁudu:uEWl’q(Q)},

Mhom (2, 1) = min{ / s¢” fiton (Vu)dz + /_ud,u Tu € Wl’p(Q)},
Q Q

and let {u.}es0 € W19(Q) be such that

. X .
El_1)r(r)1+ (/Q f <E,Vu5) dzr + /ﬁusdu - ZS(Q,/,L)) =0.

Then f{ s convex and satisfies (12.7.2), {i-(, 1) }o>0 converges as € —
0T t0 Mnom (2, 1), {ue— [, uedz } >0 has cluster points in L°(2) ase — 0%,
and every such point is a solution of mpem (£2, 1).

Moreover, if ¢ = p and (12.1.23) too holds, then sc™ff = fP
for every z € R" the infimum in the definition of fL  (z) is attained,
problems in (12.7.10) have solutions, and for every € > 0 one can take u.
as a minimizer of i. (2, ).

Proof. Let 2, u be as above. Then the theorem follows by arguing as in

the proof of Theorem 12.7.2, once we observe that the condition p(2) =0
yields

iE(Q,,u):inf{/Qf(g,Vu) dm—i—/ﬁudu:uewl’q(ﬁ), /Qudx=0}

for every € > 0,
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Mhom (Qa /~L) =

:min{/sefgom(Vu)da?—i—/_udu:uGWl’p(Q), /udx:O},
Q Q Q

and that by (12.1.22), Theorem 4.3.19, and Proposition 4.4.3, the above
functionals are equi-coercive in L*°(2). m

Finally, the result below is concerned with mixed minimum problems.

Theorem 12.7.4. Let f be as in (12.0.1), p € |n,+o0], ¢ € [p,+0o0],
zp € R™, C%(z9) and f;  be defined in (12.1.20) and (12.1.18) respectively.
Assume that (12.1.22) and (12.7.1) hold. For every € > 0, Q € Ay convex,
AT CON, cecR,and u € M(Q) let

(12.7.11) i (LT, p) =
. - . 1.q
mf{/f(—,Vu)der/ud,u.ueuZOJchrWOF(Q)},
Q € Q ’
mhom(Qar7ﬂ) =
= min{ / s¢” fif o (Vu)dr + /_ud,u TUE Uy, +C+ Wol,’ff(ﬂ)},
Q Q

and let {ue}teso C Uy +c+ Wollil(Q) be such that

. x .
El—l>%1+ (/Q f <g7vuh) dx + /ﬁuhdﬂ - ZE(Q7F7/J“)> =0.

Then f{  is convex and satisfies (12.7.2), {ic(%, T, p)}eso converges as
e — 0" t0 Muom (2, T, 1), {ue}eso has cluster points in L>=(Q2) as ¢ — 0T,
and every such point is a solution of mpem (2, T, 1).

Moreover, if ¢ = p and (12.1.23) too holds, then sc™ ff. = fF . for
every z € R"™ the infimum in the definition of ff_ () is attained, problems
in (12.7.11) have solutions, and for every € > 0 one can take as u. a solution
of i.(Q, T, ).

Proof. The proof follows the same outlines of the one of Theorem 12.7.1
with the necessary changes.

In particular, if Fy /. is defined in (12.1.3) for every ¢ > 0 and B is
the functional introduced in the proof of Theorem 12.7.1, by considering
Theorem 12.6.4 in place of Theorem 12.6.3, one first proves that

I~ (L>(Q)) lim, {Fi/c(Q,T,uz + c,u) + B(Q,u)} =
E—
B Jose™ flom(Vu)de + [qudp if u € uzy + ¢+ WOIIQ(Q)
) 4o if u € L°(Q) \ uz, + ¢ + Wy ()
for every u € L>(Q),

and then, by using Proposition 4.4.3, that the functionals u € L>°(Q) —
Fi/e(Q, T uz, + ¢, u) + B(Q, u) are equi-coercive. m
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Chapter 13

Homogenization
of Unbounded Functionals
with Special Constraints

In this chapter we examine the homogenization process for unbounded in-
tegral functionals when the constraints on the admissible deformations are
not allowed to oscillate freely. We consider essentially the extreme case in
which they are fixed, and the intermediate one in which they can oscillate,
but with some restrictions.

In both the cases it is possible for us to prove results sharper than
those of the previous chapter, and settle the homogenization process in the
two settings of Sobolev and BV spaces.

§13.1 Homogenization with Fixed Constraints: the Case of Neu-
mann Boundary Conditions
In this section we start the study of homogenization problems when the
constraints are fixed.
Thus, if f is as in (12.0.1), we assume that
(13.1.1) domf(x,-) = C for a.e. z € R"
for some convex set C', not necessarily bounded, satisfying
(13.1.2) int(C) # 0,
and that the following mild summability condition in the space variable

(13.1.3) f(,2) € LN(Y) for every z € C
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is fulfilled.

In this setting we are able to carry out the homogenization processes
for Neumann, Dirichlet, and mixed problems under weak coerciveness as-
sumptions. We refer to [CCDAG3] and [CCDAG4] for additional references
on the subject.

Let f be as in (12.0.1). For every r € ]O +oo[, ¢ € [1,400], {rp} C
[0, +00], 2 € Ay, T C 99, and uy € W2 (R") we define the following

functionals on L (R™)

. 1 n
(13.1.4) G(Q,):ue LL (R") {fQ ra, Vu)dz if u e W I(R")
otherwise,

(13.1.5) G (T, up,-):u € L (R™) =
fQ ro, Vu)dz if u € ug + WOIIQ(Q)
otherwise,

and set

G'(Q,):u € Lh (R™) — T (LY(Q)) liminfp, 4 o G, (2,u)
(13.1.6) {

G"(Q,):u e L (R™) — T~ (LY(Q)) limsup;,_, o Gr, (2, u),

G'(Q,T,ug, ):u € L}OC(R”)

(Ll( )) lim infh*)Jroo Grh (Q, F7 uo, u)

(13.1.7)

G"(Q,T,ug,-):u € L (R") —

D™ (LY(Q)) imsupy,_, 4 o0 Gy, (2, T, ug, w).
Moreover, we also set

G'(Q,):ue LL (R™) — I~ (L)) liminfp_ oo GR(Q, u)
(13.1.8)
G"(Q,):u € L (R™) — T~ (LY()) limsup,_ 4 o Gn (2, u),
Because of (12.0.1) and of Proposition 3.4.1 it follows that
(13.1.9) G'(-,u), G"(-,u) are increasing

for every u € Ll .(R"), and every {r,} C [0, +oc],

and

(13.1.10) G'(Q,-), G"(%,-) are convex
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for every Q € Ay, and every {r,} C [0, +o0].

Moreover, by using arguments analogous to those exploited in the proof
of Proposition 12.1.1, it turns out that

(13.1.11) G (Q—=0, T[zo)u) = G (Q,u), G" (Q2—z0, T[zo]u) = G (2, u)

for every {r,} C]0,+o0[ increasing and diverging, Q € A,
o € R", u € Llloc(Rn)'

Lemma 13.1.1. Let f be as in (12.0.1), q € [1,4+00], and let G', G”, G,
and G be defined in (13.1.8), and (13.1.6). Then

G (Qu) <G (L u), G"(Qu) <G (Qu)

for every {r,} C ]0,+oo[ diverging, Q € Ay, u € L (R™).

Proof. Follows as the one of Lemma 12.1.2. Actually, it is even simpler,
because the consideration of L!'-convergence allows to drop the continuity
assumptions on the limit functions required in Lemma 12.1.2. m

In the present section we represent the limits defined in (13.1.8).
In the following result we assume that

(13.1.12) 6(2) < f(,2) < alz) + Mo(2)

for a.e. x € R", and every z € R"

for some ¢:R"™ — [0, +oc], a € L (R™) Y-periodic, M > 0.

loc

Lemma 13.1.2. Let f be as in (12.0.1), ¢ € [1,+0o0], {rp} C [0,40c0[ be
increasing and diverging, and G' be defined in (13.1.8). Assume that

i) C C R™ is convex satisfies (13.1.1) and (13.1.3), 0 € ri(C), and Q) € A,
u € W,h>°(R™) are such that G (Q,u) < +oo,

or that

ii) f satisfies (13.1.12) for some ¢: R™ — [0, +oo[ convex with 0 € ri(domg),
a € L (R™) Y-periodic, M > 0, and 2 € Ag, u € I/Vlicl(R”) are such that
G (Q,u) < +oc.

Then, for every t € [0, 1], the integrals { [ f(rpz,tVu)dz} are equi-absolute-
ly continuous in Q.

Proof. Let us first prove the lemma under the assumptions in i).
Since G_(Q,u) < 400, fixed A € Ag with A CC Q, by (13.1.1) there
exists {ux} C W,o4(R™) such that uy — u in L'(A), and

(13.1.13) for every k € N, Vug(x) € C for a.e. x € A.
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By (13.1.13), and an argument similar to the one exploited in the proof
of Lemma 10.1.2, we obtain that Vu(z) € C for a.e. © € A, from which,
letting A increase to €2, we conclude that

(13.1.14) Vu(z) € C for a.e. x € Q.

We now fix t € [0,1], and observe that, since 0 € ri(C') and Vu €
(L°°(Q))™, (13.1.14), the convexity of C, and Proposition 1.1.5 provide the
existence of z1, ..., zm, € ri(C) such that tVu(z) € co({z1,...,2m}) for a.e.
x € ). Consequently, by the convexity of f, we deduce that

flrpx, tVu(z Z rpe,Z;) for ae. x € Q, every h € N,

from which, together with (13.1.3) and the weak convergence in L'(Q2) of
{f(rn-,Z;)}, the lemma under assumptions in i) follows.

Let us now assume that ii) holds. Then, fixed A € Ay with A CC Q,
there exist {hx} C N strictly increasing, and {ux} C Wlf)g(R") such that
up — u in L'(A), and

llgiminf/ Flrn,z, Vup)de < G' (A, u) < G (Q,u) < +o0,

from which, making use of the left hand side of (13.1.12), and of the L*(A)-
lower semicontinuity of v € VV1 o R” — 4 5¢”¢(Vv)dx ensured by Theo-
rem 7.4.6, it turns out that

/ s¢” ¢(Vu)dr < liminf | sc” ¢(Vug)dz <liminf | ¢(Vug)dz <
A k— 400 A k—4o00 A

< lkimJirnf/ Frnz, Vug)dz < G (Q,u) < +00
for every A € Ay with A CC Q,

and therefore that
(13.1.15) / sc¢” ¢p(Vu)dx < 4o0.
Q

Let us now fix ¢t € [0,1[. By (13.1.15), once we observe that dom¢
convex, 0 € ri(dome), and ri(dom¢) = ri(domsc™¢), we get that tVu(x) €
ri(domsc™¢) for a.e. z € 2, and consequently, by the convexity of ¢, that
sc” p(tVu(z)) = ¢(tVu(z)) for a.e. z € Q. Because of this, the right-hand
s